URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_fpu_mul.v] - Rev 502
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// or1200_fpu_mul //// //// //// //// This file is part of the OpenRISC 1200 project //// //// http://opencores.org/project,or1k //// //// //// //// Description //// //// Serial multiplication entity for the multiplication unit //// //// //// //// To Do: //// //// //// //// //// //// Author(s): //// //// - Original design (FPU100) - //// //// Jidan Al-eryani, jidan@gmx.net //// //// - Conv. to Verilog and inclusion in OR1200 - //// //// Julius Baxter, julius@opencores.org //// //// //// ////////////////////////////////////////////////////////////////////// // // Copyright (C) 2006, 2010 // // This source file may be used and distributed without // restriction provided that this copyright statement is not // removed from the file and that any derivative work contains // the original copyright notice and the associated disclaimer. // // THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR // OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE // GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // module or1200_fpu_mul ( clk_i, fracta_i, fractb_i, signa_i, signb_i, start_i, fract_o, sign_o, ready_o ); parameter FP_WIDTH = 32; parameter MUL_SERIAL = 0; // 0 for parallel multiplier, 1 for serial parameter MUL_COUNT = 11; //11 for parallel multiplier, 34 for serial parameter FRAC_WIDTH = 23; parameter EXP_WIDTH = 8; parameter ZERO_VECTOR = 31'd0; parameter INF = 31'b1111111100000000000000000000000; parameter QNAN = 31'b1111111110000000000000000000000; parameter SNAN = 31'b1111111100000000000000000000001; input clk_i; input [FRAC_WIDTH:0] fracta_i; input [FRAC_WIDTH:0] fractb_i; input signa_i; input signb_i; input start_i; output reg [2*FRAC_WIDTH+1:0] fract_o; output reg sign_o; output reg ready_o; parameter t_state_waiting = 1'b0, t_state_busy = 1'b1; reg [47:0] s_fract_o; reg [23:0] s_fracta_i; reg [23:0] s_fractb_i; reg s_signa_i, s_signb_i; wire s_sign_o; reg s_start_i; reg s_ready_o; reg s_state; reg [4:0] s_count; wire [23:0] s_tem_prod; // Input Register always @(posedge clk_i) begin s_fracta_i <= fracta_i; s_fractb_i <= fractb_i; s_signa_i<= signa_i; s_signb_i<= signb_i; s_start_i <= start_i; end // Output Register always @(posedge clk_i) begin fract_o <= s_fract_o; sign_o <= s_sign_o; ready_o <= s_ready_o; end assign s_sign_o = signa_i ^ signb_i; // FSM always @(posedge clk_i) if (s_start_i) begin s_state <= t_state_busy; s_count <= 0; end else if (s_count==23) begin s_state <= t_state_waiting; s_ready_o <= 1; s_count <=0; end else if (s_state==t_state_busy) s_count <= s_count + 1; else begin s_state <= t_state_waiting; s_ready_o <= 0; end assign s_tem_prod[0] = s_fracta_i[0] & s_fractb_i[s_count]; assign s_tem_prod[1] = s_fracta_i[1] & s_fractb_i[s_count]; assign s_tem_prod[2] = s_fracta_i[2] & s_fractb_i[s_count]; assign s_tem_prod[3] = s_fracta_i[3] & s_fractb_i[s_count]; assign s_tem_prod[4] = s_fracta_i[4] & s_fractb_i[s_count]; assign s_tem_prod[5] = s_fracta_i[5] & s_fractb_i[s_count]; assign s_tem_prod[6] = s_fracta_i[6] & s_fractb_i[s_count]; assign s_tem_prod[7] = s_fracta_i[7] & s_fractb_i[s_count]; assign s_tem_prod[8] = s_fracta_i[8] & s_fractb_i[s_count]; assign s_tem_prod[9] = s_fracta_i[9] & s_fractb_i[s_count]; assign s_tem_prod[10] = s_fracta_i[10] & s_fractb_i[s_count]; assign s_tem_prod[11] = s_fracta_i[11] & s_fractb_i[s_count]; assign s_tem_prod[12] = s_fracta_i[12] & s_fractb_i[s_count]; assign s_tem_prod[13] = s_fracta_i[13] & s_fractb_i[s_count]; assign s_tem_prod[14] = s_fracta_i[14] & s_fractb_i[s_count]; assign s_tem_prod[15] = s_fracta_i[15] & s_fractb_i[s_count]; assign s_tem_prod[16] = s_fracta_i[16] & s_fractb_i[s_count]; assign s_tem_prod[17] = s_fracta_i[17] & s_fractb_i[s_count]; assign s_tem_prod[18] = s_fracta_i[18] & s_fractb_i[s_count]; assign s_tem_prod[19] = s_fracta_i[19] & s_fractb_i[s_count]; assign s_tem_prod[20] = s_fracta_i[20] & s_fractb_i[s_count]; assign s_tem_prod[21] = s_fracta_i[21] & s_fractb_i[s_count]; assign s_tem_prod[22] = s_fracta_i[22] & s_fractb_i[s_count]; assign s_tem_prod[23] = s_fracta_i[23] & s_fractb_i[s_count]; wire [47:0] v_prod_shl; assign v_prod_shl = {24'd0,s_tem_prod} << s_count[4:0]; always @(posedge clk_i) if (s_state==t_state_busy) begin if (|s_count) s_fract_o <= v_prod_shl + s_fract_o; else s_fract_o <= v_prod_shl; end endmodule // or1200_fpu_mul
Go to most recent revision | Compare with Previous | Blame | View Log