URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_mult_mac.v] - Rev 502
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// OR1200's Top level multiplier, divider and MAC //// //// //// //// This file is part of the OpenRISC 1200 project //// //// http://opencores.org/project,or1k //// //// //// //// Description //// //// Multiplier is 32x32 however multiply instructions only //// //// use lower 32 bits of the result. MAC is 32x32=64+64. //// //// //// //// To Do: //// //// - make signed division better, w/o negating the operands //// //// - implement non-serial divider that is synthesizable //// //// //// //// Author(s): //// //// - Damjan Lampret, lampret@opencores.org //// //// - Julius Baxter, julius@opencores.org //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000, 2010 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: or1200_mult_mac.v,v $ // Revision 2.0 2010/06/30 11:00:00 ORSoC // Minor update: // Bugs fixed. // // synopsys translate_off `include "timescale.v" // synopsys translate_on `include "or1200_defines.v" module or1200_mult_mac( // Clock and reset clk, rst, // Multiplier/MAC interface ex_freeze, id_macrc_op, macrc_op, a, b, mac_op, alu_op, result, mult_mac_stall, // SPR interface spr_cs, spr_write, spr_addr, spr_dat_i, spr_dat_o ); parameter width = `OR1200_OPERAND_WIDTH; // // I/O // // // Clock and reset // input clk; input rst; // // Multiplier/MAC interface // input ex_freeze; input id_macrc_op; input macrc_op; input [width-1:0] a; input [width-1:0] b; input [`OR1200_MACOP_WIDTH-1:0] mac_op; input [`OR1200_ALUOP_WIDTH-1:0] alu_op; output [width-1:0] result; output mult_mac_stall; // // SPR interface // input spr_cs; input spr_write; input [31:0] spr_addr; input [31:0] spr_dat_i; output [31:0] spr_dat_o; // // Internal wires and regs // reg [width-1:0] result; `ifdef OR1200_MULT_IMPLEMENTED reg [2*width-1:0] mul_prod_r; wire alu_op_smul; wire alu_op_umul; wire alu_op_mul; `ifdef OR1200_MULT_SERIAL reg [5:0] serial_mul_cnt; reg mul_free; `endif `else wire [2*width-1:0] mul_prod_r; `endif wire [2*width-1:0] mul_prod; wire mul_stall; wire [`OR1200_MACOP_WIDTH-1:0] mac_op; `ifdef OR1200_MAC_IMPLEMENTED reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r1; reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r2; reg [`OR1200_MACOP_WIDTH-1:0] mac_op_r3; reg mac_stall_r; reg [63:0] mac_r; `else wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r1; wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r2; wire [`OR1200_MACOP_WIDTH-1:0] mac_op_r3; wire mac_stall_r; wire [63:0] mac_r; `endif wire [width-1:0] x; wire [width-1:0] y; wire spr_maclo_we; wire spr_machi_we; wire alu_op_div; wire alu_op_udiv; wire alu_op_sdiv; reg div_free; wire div_stall; `ifdef OR1200_DIV_IMPLEMENTED `ifdef OR1200_DIV_SERIAL reg [2*width-1:0] div_quot_r; wire [width-1:0] div_tmp; reg [5:0] div_cntr; `else reg [width-1:0] div_quot_r; reg [width-1:0] div_quot_generic; `endif `endif // // Combinatorial logic // `ifdef OR1200_MULT_IMPLEMENTED assign alu_op_smul = (alu_op == `OR1200_ALUOP_MUL); assign alu_op_umul = (alu_op == `OR1200_ALUOP_MULU); assign alu_op_mul = alu_op_smul | alu_op_umul; `endif `ifdef OR1200_MAC_IMPLEMENTED assign spr_maclo_we = spr_cs & spr_write & spr_addr[`OR1200_MAC_ADDR]; assign spr_machi_we = spr_cs & spr_write & !spr_addr[`OR1200_MAC_ADDR]; assign spr_dat_o = spr_addr[`OR1200_MAC_ADDR] ? mac_r[31:0] : mac_r[63:32]; `else assign spr_maclo_we = 1'b0; assign spr_machi_we = 1'b0; assign spr_dat_o = 32'h0000_0000; `endif `ifdef OR1200_DIV_IMPLEMENTED assign alu_op_sdiv = (alu_op == `OR1200_ALUOP_DIV); assign alu_op_udiv = (alu_op == `OR1200_ALUOP_DIVU); assign alu_op_div = alu_op_sdiv | alu_op_udiv; `else assign alu_op_udiv = 1'b0; assign alu_op_sdiv = 1'b0; assign alu_op_div = 1'b0; `endif assign x = (alu_op_sdiv | alu_op_smul) & a[31] ? ~a + 32'b1 : alu_op_div | alu_op_mul | (|mac_op) ? a : 32'd0; assign y = (alu_op_sdiv | alu_op_smul) & b[31] ? ~b + 32'b1 : alu_op_div | alu_op_mul | (|mac_op) ? b : 32'd0; // // Select result of current ALU operation to be forwarded // to next instruction and to WB stage // always @* casez(alu_op) // synopsys parallel_case `ifdef OR1200_DIV_IMPLEMENTED `OR1200_ALUOP_DIV: begin result = a[31] ^ b[31] ? ~div_quot_r[31:0] + 32'd1 : div_quot_r[31:0]; end `OR1200_ALUOP_DIVU: begin result = div_quot_r[31:0]; end `endif `ifdef OR1200_MULT_IMPLEMENTED `OR1200_ALUOP_MUL: begin result = a[31] ^ b[31] ? ~mul_prod_r[31:0] + 32'd1 : mul_prod_r[31:0]; end `OR1200_ALUOP_MULU: begin result = mul_prod_r[31:0]; end `endif default: `ifdef OR1200_MAC_IMPLEMENTED `ifdef OR1200_MAC_SHIFTBY result = mac_r[`OR1200_MAC_SHIFTBY+31:`OR1200_MAC_SHIFTBY]; `else result = mac_r[31:0]; `endif `else result = {width{1'b0}}; `endif endcase `ifdef OR1200_MULT_IMPLEMENTED `ifdef OR1200_MULT_SERIAL always @(`OR1200_RST_EVENT rst or posedge clk) if (rst == `OR1200_RST_VALUE) begin mul_prod_r <= 64'h0000_0000_0000_0000; serial_mul_cnt <= 6'd0; mul_free <= 1'b1; end else if (|serial_mul_cnt) begin serial_mul_cnt <= serial_mul_cnt - 6'd1; if (mul_prod_r[0]) mul_prod_r[(width*2)-1:width-1] <= mul_prod_r[(width*2)-1:width] + x; else mul_prod_r[(width*2)-1:width-1] <= {1'b0,mul_prod_r[(width*2)-1: width]}; mul_prod_r[width-2:0] <= mul_prod_r[width-1:1]; end else if (alu_op_mul && mul_free) begin mul_prod_r <= {32'd0, y}; mul_free <= 0; serial_mul_cnt <= 6'b10_0000; end else if (!ex_freeze | mul_free) begin mul_free <= 1'b1; end assign mul_stall = (|serial_mul_cnt); `else // // Instantiation of the multiplier // `ifdef OR1200_ASIC_MULTP2_32X32 or1200_amultp2_32x32 or1200_amultp2_32x32( .X(x), .Y(y), .RST(rst), .CLK(clk), .P(mul_prod) ); `else // OR1200_ASIC_MULTP2_32X32 or1200_gmultp2_32x32 or1200_gmultp2_32x32( .X(x), .Y(y), .RST(rst), .CLK(clk), .P(mul_prod) ); `endif // OR1200_ASIC_MULTP2_32X32 // // Registered output from the multiplier // always @(`OR1200_RST_EVENT rst or posedge clk) if (rst == `OR1200_RST_VALUE) begin mul_prod_r <= 64'h0000_0000_0000_0000; end else begin mul_prod_r <= mul_prod[63:0]; end assign mul_stall = 0; `endif // !`ifdef OR1200_MULT_SERIAL `else // OR1200_MULT_IMPLEMENTED assign mul_prod = {2*width{1'b0}}; assign mul_prod_r = {2*width{1'b0}}; assign mul_stall = 0; `endif // OR1200_MULT_IMPLEMENTED `ifdef OR1200_MAC_IMPLEMENTED // Signal to indicate when we should check for new MAC op reg ex_freeze_r; always @(posedge clk or `OR1200_RST_EVENT rst) if (rst == `OR1200_RST_VALUE) ex_freeze_r <= 1'b1; else ex_freeze_r <= ex_freeze; // // Propagation of l.mac opcode, only register it for one cycle // always @(posedge clk or `OR1200_RST_EVENT rst) if (rst == `OR1200_RST_VALUE) mac_op_r1 <= `OR1200_MACOP_WIDTH'b0; else mac_op_r1 <= !ex_freeze_r ? mac_op : `OR1200_MACOP_WIDTH'b0; // // Propagation of l.mac opcode // always @(posedge clk or `OR1200_RST_EVENT rst) if (rst == `OR1200_RST_VALUE) mac_op_r2 <= `OR1200_MACOP_WIDTH'b0; else mac_op_r2 <= mac_op_r1; // // Propagation of l.mac opcode // always @(posedge clk or `OR1200_RST_EVENT rst) if (rst == `OR1200_RST_VALUE) mac_op_r3 <= `OR1200_MACOP_WIDTH'b0; else mac_op_r3 <= mac_op_r2; // // Implementation of MAC // always @(`OR1200_RST_EVENT rst or posedge clk) if (rst == `OR1200_RST_VALUE) mac_r <= 64'h0000_0000_0000_0000; `ifdef OR1200_MAC_SPR_WE else if (spr_maclo_we) mac_r[31:0] <= spr_dat_i; else if (spr_machi_we) mac_r[63:32] <= spr_dat_i; `endif else if (mac_op_r3 == `OR1200_MACOP_MAC) mac_r <= mac_r + mul_prod_r; else if (mac_op_r3 == `OR1200_MACOP_MSB) mac_r <= mac_r - mul_prod_r; else if (macrc_op && !ex_freeze) mac_r <= 64'h0000_0000_0000_0000; // // Stall CPU if l.macrc is in ID and MAC still has to process l.mac // instructions in EX stage (e.g. inside multiplier) // This stall signal is also used by the divider. // always @(`OR1200_RST_EVENT rst or posedge clk) if (rst == `OR1200_RST_VALUE) mac_stall_r <= 1'b0; else mac_stall_r <= (|mac_op | (|mac_op_r1) | (|mac_op_r2)) & (id_macrc_op | mac_stall_r); `else // OR1200_MAC_IMPLEMENTED assign mac_stall_r = 1'b0; assign mac_r = {2*width{1'b0}}; assign mac_op_r1 = `OR1200_MACOP_WIDTH'b0; assign mac_op_r2 = `OR1200_MACOP_WIDTH'b0; assign mac_op_r3 = `OR1200_MACOP_WIDTH'b0; `endif // OR1200_MAC_IMPLEMENTED `ifdef OR1200_DIV_IMPLEMENTED // // Serial division // `ifdef OR1200_DIV_SERIAL assign div_tmp = div_quot_r[63:32] - y; always @(`OR1200_RST_EVENT rst or posedge clk) if (rst == `OR1200_RST_VALUE) begin div_quot_r <= 64'h0000_0000_0000_0000; div_free <= 1'b1; div_cntr <= 6'b00_0000; end else if (|div_cntr) begin if (div_tmp[31]) div_quot_r <= {div_quot_r[62:0], 1'b0}; else div_quot_r <= {div_tmp[30:0], div_quot_r[31:0], 1'b1}; div_cntr <= div_cntr - 6'd1; end else if (alu_op_div && div_free) begin div_quot_r <= {31'b0, x[31:0], 1'b0}; div_cntr <= 6'b10_0000; div_free <= 1'b0; end else if (div_free | !ex_freeze) begin //div_quot_r <= div_quot[63:0]; div_free <= 1'b1; end assign div_stall = (|div_cntr); `else // !`ifdef OR1200_DIV_SERIAL // Full divider // TODO: Perhaps provide module that can be technology dependent. always @(`OR1200_RST_EVENT rst or posedge clk) begin if (rst == `OR1200_RST_VALUE) begin div_quot_r <= 32'd0; div_quot_generic <= 32'd0; end else begin if (alu_op_udiv & !(|y)) // unsigned divide by 0 - force to MAX div_quot_generic[31:0] <= 32'hffff_ffff; else if (alu_op_div) div_quot_generic[31:0] <= x / y; end // Add any additional statges of pipelining as required here. Ensure // ends with div_quot_r. // Then add logic to ensure div_stall stays high for as long as the // division should take. div_quot_r[31:0] <= div_quot_generic; end assign div_stall = 0; `endif `else // !`ifdef OR1200_DIV_IMPLEMENTED assign div_stall = 0; `endif // !`ifdef OR1200_DIV_IMPLEMENTED // // Stall output // assign mult_mac_stall = mac_stall_r | div_stall | mul_stall; endmodule
Go to most recent revision | Compare with Previous | Blame | View Log