URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_spram_2048x32_bw.v] - Rev 33
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Generic Single-Port Synchronous RAM with byte write signals //// //// //// //// This file is part of memory library available from //// //// http://www.opencores.org/cvsweb.shtml/generic_memories/ //// //// //// //// Description //// //// This block is a wrapper with common single-port //// //// synchronous memory interface for different //// //// types of ASIC and FPGA RAMs. Beside universal memory //// //// interface it also provides behavioral model of generic //// //// single-port synchronous RAM. //// //// It should be used in all OPENCORES designs that want to be //// //// portable accross different target technologies and //// //// independent of target memory. //// //// //// //// Supported ASIC RAMs are: //// //// - Artisan Single-Port Sync RAM //// //// - Avant! Two-Port Sync RAM (*) //// //// - Virage Single-Port Sync RAM //// //// - Virtual Silicon Single-Port Sync RAM //// //// //// //// Supported FPGA RAMs are: //// //// - Xilinx Virtex RAMB16 //// //// - Xilinx Virtex RAMB4 //// //// //// //// To Do: //// //// - xilinx rams need external tri-state logic //// //// - fix avant! two-port ram //// //// - add additional RAMs //// //// //// //// Author(s): //// //// - Damjan Lampret, lampret@opencores.org //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.4 2004/06/08 18:15:32 lampret // Changed behavior of the simulation generic models // // Revision 1.3 2003/10/17 07:59:44 markom // mbist signals updated according to newest convention // // Revision 1.2 2003/09/12 09:03:54 dries // correct all the syntax errors // // Revision 1.1 2003/08/26 09:37:02 simons // Added support for rams with byte write access. // // // synopsys translate_off `include "timescale.v" // synopsys translate_on `include "or1200_defines.v" module or1200_spram_2048x32_bw( `ifdef OR1200_BIST // RAM BIST mbist_si_i, mbist_so_o, mbist_ctrl_i, `endif // Generic synchronous single-port RAM interface clk, rst, ce, we, oe, addr, di, doq ); `ifdef OR1200_BIST // // RAM BIST // input mbist_si_i; input [`OR1200_MBIST_CTRL_WIDTH - 1:0] mbist_ctrl_i; // bist chain shift control output mbist_so_o; `endif // // Generic synchronous single-port RAM interface // input clk; // Clock input rst; // Reset input ce; // Chip enable input input [3:0] we; // Write enable input input oe; // Output enable input input [10:0] addr; // address bus inputs input [31:0] di; // input data bus output [31:0] doq; // output data bus // // Internal wires and registers // `ifdef OR1200_ARTISAN_SSP `else `ifdef OR1200_VIRTUALSILICON_SSP `else `ifdef OR1200_BIST assign mbist_so_o = mbist_si_i; `endif `endif `endif `ifdef OR1200_ARTISAN_SSP // // Instantiation of ASIC memory: // // Artisan Synchronous Single-Port RAM (ra1sh) // `ifdef UNUSED art_hssp_2048x32_bw artisan_ssp( `else `ifdef OR1200_BIST art_hssp_2048x32_bw_bist artisan_ssp( `else art_hssp_2048x32_bw artisan_ssp( `endif `endif `ifdef OR1200_BIST // RAM BIST .mbist_si_i(mbist_si_i), .mbist_so_o(mbist_so_o), .mbist_ctrl_i(mbist_ctrl_i), `endif .CLK(clk), .CEN(~ce), .WEN(~we), .A(addr), .D(di), .OEN(~oe), .Q(doq) ); `else `ifdef OR1200_AVANT_ATP // // Instantiation of ASIC memory: // // Avant! Asynchronous Two-Port RAM // avant_atp avant_atp( .web(~we), .reb(), .oeb(~oe), .rcsb(), .wcsb(), .ra(addr), .wa(addr), .di(di), .doq(doq) ); `else `ifdef OR1200_VIRAGE_SSP // // Instantiation of ASIC memory: // // Virage Synchronous 1-port R/W RAM // virage_ssp virage_ssp( .clk(clk), .adr(addr), .d(di), .we(we), .oe(oe), .me(ce), .q(doq) ); `else `ifdef OR1200_VIRTUALSILICON_SSP // // Instantiation of ASIC memory: // // Virtual Silicon Single-Port Synchronous SRAM // `ifdef OR1200_BIST wire mbist_si_i_ram_0; wire mbist_si_i_ram_1; wire mbist_si_i_ram_2; wire mbist_si_i_ram_3; wire mbist_so_o_ram_0; wire mbist_so_o_ram_1; wire mbist_so_o_ram_2; wire mbist_so_o_ram_3; assign mbist_si_i_ram_0 = mbist_si_i; assign mbist_si_i_ram_1 = mbist_so_o_ram_0; assign mbist_si_i_ram_2 = mbist_so_o_ram_1; assign mbist_si_i_ram_3 = mbist_so_o_ram_2; assign mbist_so_o = mbist_so_o_ram_3; `endif `ifdef UNUSED vs_hdsp_2048x8 vs_ssp_0( `else `ifdef OR1200_BIST vs_hdsp_2048x8_bist vs_ssp_0( `else vs_hdsp_2048x8 vs_ssp_0( `endif `endif `ifdef OR1200_BIST // RAM BIST .mbist_si_i(mbist_si_i_ram_0), .mbist_so_o(mbist_so_o_ram_0), .mbist_ctrl_i(mbist_ctrl_i), `endif .CK(clk), .ADR(addr), .DI(di[7:0]), .WEN(~we[0]), .CEN(~ce), .OEN(~oe), .DOUT(doq[7:0]) ); `ifdef UNUSED vs_hdsp_2048x8 vs_ssp_1( `else `ifdef OR1200_BIST vs_hdsp_2048x8_bist vs_ssp_1( `else vs_hdsp_2048x8 vs_ssp_1( `endif `endif `ifdef OR1200_BIST // RAM BIST .mbist_si_i(mbist_si_i_ram_1), .mbist_so_o(mbist_so_o_ram_1), .mbist_ctrl_i(mbist_ctrl_i), `endif .CK(clk), .ADR(addr), .DI(di[15:8]), .WEN(~we[1]), .CEN(~ce), .OEN(~oe), .DOUT(doq[15:8]) ); `ifdef UNUSED vs_hdsp_2048x8 vs_ssp_2( `else `ifdef OR1200_BIST vs_hdsp_2048x8_bist vs_ssp_2( `else vs_hdsp_2048x8 vs_ssp_2( `endif `endif `ifdef OR1200_BIST // RAM BIST .mbist_si_i(mbist_si_i_ram_2), .mbist_so_o(mbist_so_o_ram_2), .mbist_ctrl_i(mbist_ctrl_i), `endif .CK(clk), .ADR(addr), .DI(di[23:16]), .WEN(~we[2]), .CEN(~ce), .OEN(~oe), .DOUT(doq[23:16]) ); `ifdef UNUSED vs_hdsp_2048x8 vs_ssp_3( `else `ifdef OR1200_BIST vs_hdsp_2048x8_bist vs_ssp_3( `else vs_hdsp_2048x8 vs_ssp_3( `endif `endif `ifdef OR1200_BIST // RAM BIST .mbist_si_i(mbist_si_i_ram_3), .mbist_so_o(mbist_so_o_ram_3), .mbist_ctrl_i(mbist_ctrl_i), `endif .CK(clk), .ADR(addr), .DI(di[31:24]), .WEN(~we[3]), .CEN(~ce), .OEN(~oe), .DOUT(doq[31:24]) ); `else `ifdef OR1200_XILINX_RAMB4 // // Instantiation of FPGA memory: // // Virtex/Spartan2 // // // Block 0 // RAMB4_S2 ramb4_s2_0( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[1:0]), .EN(ce), .WE(we[0]), .DO(doq[1:0]) ); // // Block 1 // RAMB4_S2 ramb4_s2_1( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[3:2]), .EN(ce), .WE(we[0]), .DO(doq[3:2]) ); // // Block 2 // RAMB4_S2 ramb4_s2_2( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[5:4]), .EN(ce), .WE(we[0]), .DO(doq[5:4]) ); // // Block 3 // RAMB4_S2 ramb4_s2_3( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[7:6]), .EN(ce), .WE(we[0]), .DO(doq[7:6]) ); // // Block 4 // RAMB4_S2 ramb4_s2_4( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[9:8]), .EN(ce), .WE(we[1]), .DO(doq[9:8]) ); // // Block 5 // RAMB4_S2 ramb4_s2_5( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[11:10]), .EN(ce), .WE(we[1]), .DO(doq[11:10]) ); // // Block 6 // RAMB4_S2 ramb4_s2_6( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[13:12]), .EN(ce), .WE(we[1]), .DO(doq[13:12]) ); // // Block 7 // RAMB4_S2 ramb4_s2_7( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[15:14]), .EN(ce), .WE(we[1]), .DO(doq[15:14]) ); // // Block 8 // RAMB4_S2 ramb4_s2_8( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[17:16]), .EN(ce), .WE(we[2]), .DO(doq[17:16]) ); // // Block 9 // RAMB4_S2 ramb4_s2_9( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[19:18]), .EN(ce), .WE(we[2]), .DO(doq[19:18]) ); // // Block 10 // RAMB4_S2 ramb4_s2_10( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[21:20]), .EN(ce), .WE(we[2]), .DO(doq[21:20]) ); // // Block 11 // RAMB4_S2 ramb4_s2_11( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[23:22]), .EN(ce), .WE(we[2]), .DO(doq[23:22]) ); // // Block 12 // RAMB4_S2 ramb4_s2_12( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[25:24]), .EN(ce), .WE(we[3]), .DO(doq[25:24]) ); // // Block 13 // RAMB4_S2 ramb4_s2_13( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[27:26]), .EN(ce), .WE(we[3]), .DO(doq[27:26]) ); // // Block 14 // RAMB4_S2 ramb4_s2_14( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[29:28]), .EN(ce), .WE(we[3]), .DO(doq[29:28]) ); // // Block 15 // RAMB4_S2 ramb4_s2_15( .CLK(clk), .RST(rst), .ADDR(addr), .DI(di[31:30]), .EN(ce), .WE(we[3]), .DO(doq[31:30]) ); `else `ifdef OR1200_XILINX_RAMB16 // // Instantiation of FPGA memory: // // Virtex4/Spartan3E // // Added By Nir Mor // // // Block 0 // RAMB16_S9 ramb16_s9_0( .CLK(clk), .SSR(rst), .ADDR(addr), .DI(di[7:0]), .DIP(1'b0), .EN(ce), .WE(we[0]), .DO(doq[7:0]), .DOP() ); // // Block 1 // RAMB16_S9 ramb16_s9_1( .CLK(clk), .SSR(rst), .ADDR(addr), .DI(di[15:8]), .DIP(1'b0), .EN(ce), .WE(we[1]), .DO(doq[15:8]), .DOP() ); // // Block 2 // RAMB16_S9 ramb16_s9_2( .CLK(clk), .SSR(rst), .ADDR(addr), .DI(di[23:16]), .DIP(1'b0), .EN(ce), .WE(we[2]), .DO(doq[23:16]), .DOP() ); // // Block 3 // RAMB16_S9 ramb16_s9_3( .CLK(clk), .SSR(rst), .ADDR(addr), .DI(di[31:24]), .DIP(1'b0), .EN(ce), .WE(we[3]), .DO(doq[31:24]), .DOP() ); `else // // Generic single-port synchronous RAM model // // // Generic RAM's registers and wires // reg [7:0] mem_0 [2047:0]; // RAM content reg [7:0] mem_1 [2047:0]; // RAM content reg [7:0] mem_2 [2047:0]; // RAM content reg [7:0] mem_3 [2047:0]; // RAM content reg [10:0] addr_reg; // RAM address register // // Data output drivers // assign doq = (oe) ? {mem_3[addr_reg], mem_2[addr_reg], mem_1[addr_reg], mem_0[addr_reg]} : {32{1'b0}}; // // RAM address register // always @(posedge clk or posedge rst) if (rst) addr_reg <= #1 11'h000; else if (ce) addr_reg <= #1 addr; // // RAM write byte 0 // always @(posedge clk) if (ce && we[0]) mem_0[addr] <= #1 di[7:0]; // // RAM write byte 1 // always @(posedge clk) if (ce && we[1]) mem_1[addr] <= #1 di[15:8]; // // RAM write byte 2 // always @(posedge clk) if (ce && we[2]) mem_2[addr] <= #1 di[23:16]; // // RAM write byte 3 // always @(posedge clk) if (ce && we[3]) mem_3[addr] <= #1 di[31:24]; `endif // !OR1200_XILINX_RAMB16 `endif // !OR1200_XILINX_RAMB4 `endif // !OR1200_VIRTUALSILICON_SSP `endif // !OR1200_VIRAGE_SSP `endif // !OR1200_AVANT_ATP `endif // !OR1200_ARTISAN_SSP endmodule
Go to most recent revision | Compare with Previous | Blame | View Log