URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [or1200/] [rtl/] [verilog/] [or1200_tpram_32x32.v] - Rev 122
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Generic Two-Port Synchronous RAM //// //// //// //// This file is part of memory library available from //// //// http://www.opencores.org/cvsweb.shtml/generic_memories/ //// //// //// //// Description //// //// This block is a wrapper with common two-port //// //// synchronous memory interface for different //// //// types of ASIC and FPGA RAMs. Beside universal memory //// //// interface it also provides behavioral model of generic //// //// two-port synchronous RAM. //// //// It should be used in all OPENCORES designs that want to be //// //// portable accross different target technologies and //// //// independent of target memory. //// //// //// //// Supported ASIC RAMs are: //// //// - Artisan Double-Port Sync RAM //// //// - Avant! Two-Port Sync RAM (*) //// //// - Virage 2-port Sync RAM //// //// //// //// Supported FPGA RAMs are: //// //// - Xilinx Virtex RAMB16 //// //// - Xilinx Virtex RAMB4 //// //// - Altera LPM //// //// //// //// To Do: //// //// - fix Avant! //// //// - xilinx rams need external tri-state logic //// //// - add additional RAMs (VS etc) //// //// //// //// Author(s): //// //// - Damjan Lampret, lampret@opencores.org //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2000 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.4 2004/06/08 18:15:48 lampret // Changed behavior of the simulation generic models // // Revision 1.3 2004/04/05 08:29:57 lampret // Merged branch_qmem into main tree. // // Revision 1.2.4.1 2003/07/08 15:36:37 lampret // Added embedded memory QMEM. // // Revision 1.2 2003/04/07 01:19:07 lampret // Added Altera LPM RAMs. Changed generic RAM output when OE inactive. // // Revision 1.1 2002/01/03 08:16:15 lampret // New prefixes for RTL files, prefixed module names. Updated cache controllers and MMUs. // // Revision 1.7 2001/10/21 17:57:16 lampret // Removed params from generic_XX.v. Added translate_off/on in sprs.v and id.v. Removed spr_addr from dc.v and ic.v. Fixed CR+LF. // // Revision 1.6 2001/10/14 13:12:09 lampret // MP3 version. // // Revision 1.1.1.1 2001/10/06 10:18:36 igorm // no message // // Revision 1.1 2001/08/09 13:39:33 lampret // Major clean-up. // // Revision 1.2 2001/07/30 05:38:02 lampret // Adding empty directories required by HDL coding guidelines // // // synopsys translate_off `include "timescale.v" // synopsys translate_on `include "or1200_defines.v" module or1200_tpram_32x32( // Generic synchronous two-port RAM interface clk_a, rst_a, ce_a, we_a, oe_a, addr_a, di_a, do_a, clk_b, rst_b, ce_b, we_b, oe_b, addr_b, di_b, do_b ); // // Default address and data buses width // parameter aw = 5; parameter dw = 32; // // Generic synchronous two-port RAM interface // input clk_a; // Clock input rst_a; // Reset input ce_a; // Chip enable input input we_a; // Write enable input input oe_a; // Output enable input input [aw-1:0] addr_a; // address bus inputs input [dw-1:0] di_a; // input data bus output [dw-1:0] do_a; // output data bus input clk_b; // Clock input rst_b; // Reset input ce_b; // Chip enable input input we_b; // Write enable input input oe_b; // Output enable input input [aw-1:0] addr_b; // address bus inputs input [dw-1:0] di_b; // input data bus output [dw-1:0] do_b; // output data bus // // Internal wires and registers // `ifdef OR1200_ARTISAN_SDP // // Instantiation of ASIC memory: // // Artisan Synchronous Double-Port RAM (ra2sh) // `ifdef UNUSED art_hsdp_32x32 #(dw, 1<<aw, aw) artisan_sdp( `else art_hsdp_32x32 artisan_sdp( `endif .qa(do_a), .clka(clk_a), .cena(~ce_a), .wena(~we_a), .aa(addr_a), .da(di_a), .oena(~oe_a), .qb(do_b), .clkb(clk_b), .cenb(~ce_b), .wenb(~we_b), .ab(addr_b), .db(di_b), .oenb(~oe_b) ); `else `ifdef OR1200_AVANT_ATP // // Instantiation of ASIC memory: // // Avant! Asynchronous Two-Port RAM // avant_atp avant_atp( .web(~we), .reb(), .oeb(~oe), .rcsb(), .wcsb(), .ra(addr), .wa(addr), .di(di), .doq(doq) ); `else `ifdef OR1200_VIRAGE_STP // // Instantiation of ASIC memory: // // Virage Synchronous 2-port R/W RAM // virage_stp virage_stp( .QA(do_a), .QB(do_b), .ADRA(addr_a), .DA(di_a), .WEA(we_a), .OEA(oe_a), .MEA(ce_a), .CLKA(clk_a), .ADRB(adr_b), .DB(di_b), .WEB(we_b), .OEB(oe_b), .MEB(ce_b), .CLKB(clk_b) ); `else `ifdef OR1200_XILINX_RAMB4 // // Instantiation of FPGA memory: // // Virtex/Spartan2 // // // Block 0 // RAMB4_S16_S16 ramb4_s16_s16_0( .CLKA(clk_a), .RSTA(rst_a), .ADDRA(addr_a), .DIA(di_a[15:0]), .ENA(ce_a), .WEA(we_a), .DOA(do_a[15:0]), .CLKB(clk_b), .RSTB(rst_b), .ADDRB(addr_b), .DIB(di_b[15:0]), .ENB(ce_b), .WEB(we_b), .DOB(do_b[15:0]) ); // // Block 1 // RAMB4_S16_S16 ramb4_s16_s16_1( .CLKA(clk_a), .RSTA(rst_a), .ADDRA(addr_a), .DIA(di_a[31:16]), .ENA(ce_a), .WEA(we_a), .DOA(do_a[31:16]), .CLKB(clk_b), .RSTB(rst_b), .ADDRB(addr_b), .DIB(di_b[31:16]), .ENB(ce_b), .WEB(we_b), .DOB(do_b[31:16]) ); `else `ifdef OR1200_XILINX_RAMB16 // // Instantiation of FPGA memory: // // Virtex4/Spartan3E // // Added By Nir Mor // RAMB16_S36_S36 ramb16_s36_s36( .CLKA(clk_a), .SSRA(rst_a), .ADDRA({4'b0000,addr_a}), .DIA(di_a), .DIPA(4'h0), .ENA(ce_a), .WEA(we_a), .DOA(do_a), .DOPA(), .CLKB(clk_b), .SSRB(rst_b), .ADDRB({4'b0000,addr_b}), .DIB(di_b), .DIPB(4'h0), .ENB(ce_b), .WEB(we_b), .DOB(do_b), .DOPB() ); `else `ifdef OR1200_ALTERA_LPM_XXX // // Instantiation of FPGA memory: // // Altera LPM // // Added By Jamil Khatib // altqpram altqpram_component ( .wraddress_a (addr_a), .inclocken_a (ce_a), .wraddress_b (addr_b), .wren_a (we_a), .inclocken_b (ce_b), .wren_b (we_b), .inaclr_a (rst_a), .inaclr_b (rst_b), .inclock_a (clk_a), .inclock_b (clk_b), .data_a (di_a), .data_b (di_b), .q_a (do_a), .q_b (do_b) ); defparam altqpram_component.operation_mode = "BIDIR_DUAL_PORT", altqpram_component.width_write_a = dw, altqpram_component.widthad_write_a = aw, altqpram_component.numwords_write_a = dw, altqpram_component.width_read_a = dw, altqpram_component.widthad_read_a = aw, altqpram_component.numwords_read_a = dw, altqpram_component.width_write_b = dw, altqpram_component.widthad_write_b = aw, altqpram_component.numwords_write_b = dw, altqpram_component.width_read_b = dw, altqpram_component.widthad_read_b = aw, altqpram_component.numwords_read_b = dw, altqpram_component.indata_reg_a = "INCLOCK_A", altqpram_component.wrcontrol_wraddress_reg_a = "INCLOCK_A", altqpram_component.outdata_reg_a = "INCLOCK_A", altqpram_component.indata_reg_b = "INCLOCK_B", altqpram_component.wrcontrol_wraddress_reg_b = "INCLOCK_B", altqpram_component.outdata_reg_b = "INCLOCK_B", altqpram_component.indata_aclr_a = "INACLR_A", altqpram_component.wraddress_aclr_a = "INACLR_A", altqpram_component.wrcontrol_aclr_a = "INACLR_A", altqpram_component.outdata_aclr_a = "INACLR_A", altqpram_component.indata_aclr_b = "NONE", altqpram_component.wraddress_aclr_b = "NONE", altqpram_component.wrcontrol_aclr_b = "NONE", altqpram_component.outdata_aclr_b = "INACLR_B", altqpram_component.lpm_hint = "USE_ESB=ON"; //examplar attribute altqpram_component NOOPT TRUE `else // // Generic two-port synchronous RAM model // // // Generic RAM's registers and wires // reg [dw-1:0] mem [(1<<aw)-1:0]; // RAM content reg [aw-1:0] addr_a_reg; // RAM read address register reg [aw-1:0] addr_b_reg; // RAM read address register // // Data output drivers // assign do_a = (oe_a) ? mem[addr_a_reg] : {dw{1'b0}}; assign do_b = (oe_b) ? mem[addr_b_reg] : {dw{1'b0}}; // // RAM write // always @(posedge clk_a) if (ce_a && we_a) mem[addr_a] <= #1 di_a; // // RAM write // always @(posedge clk_b) if (ce_b && we_b) mem[addr_b] <= #1 di_b; // // RAM read address register // always @(posedge clk_a or posedge rst_a) if (rst_a) addr_a_reg <= #1 {aw{1'b0}}; else if (ce_a) addr_a_reg <= #1 addr_a; // // RAM read address register // always @(posedge clk_b or posedge rst_b) if (rst_b) addr_b_reg <= #1 {aw{1'b0}}; else if (ce_b) addr_b_reg <= #1 addr_b; `endif // !OR1200_ALTERA_LPM `endif // !OR1200_XILINX_RAMB16 `endif // !OR1200_XILINX_RAMB4 `endif // !OR1200_VIRAGE_STP `endif // !OR1200_AVANT_ATP `endif // !OR1200_ARTISAN_SDP endmodule
Go to most recent revision | Compare with Previous | Blame | View Log