URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [or1ksim/] [cpu/] [or1k/] [except.c] - Rev 161
Go to most recent revision | Compare with Previous | Blame | View Log
/* except.c -- Simulation of OR1K exceptions Copyright (C) 1999 Damjan Lampret, lampret@opencores.org Copyright (C) 2008 Embecosm Limited Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This program is commented throughout in a fashion suitable for processing with Doxygen. */ /* Autoconf and/or portability configuration */ #include "config.h" /* Package includes */ #include "except.h" #include "sim-config.h" #include "arch.h" #include "debug.h" #include "spr-defs.h" #include "execute.h" #include "debug-unit.h" #if DYNAMIC_EXECUTION #include "sched.h" #include "op-support.h" #endif extern void op_join_mem_cycles(void); int except_pending = 0; /* Asserts OR1K exception. */ /* WARNING: Don't expect except_handle to return. Sometimes it _may_ return at * other times it may not. */ void except_handle (oraddr_t except, oraddr_t ea) { oraddr_t except_vector; if (debug_ignore_exception (except)) return; #if !(DYNAMIC_EXECUTION) /* In the dynamic recompiler, this function never returns, so this is not * needed. Ofcourse we could set it anyway, but then all code that checks * this variable would break, since it is never reset */ except_pending = 1; #endif except_vector = except + (cpu_state.sprs[SPR_SR] & SPR_SR_EPH ? 0xf0000000 : 0x00000000); #if !(DYNAMIC_EXECUTION) pcnext = except_vector; #endif cpu_state.sprs[SPR_EEAR_BASE] = ea; cpu_state.sprs[SPR_ESR_BASE] = cpu_state.sprs[SPR_SR]; cpu_state.sprs[SPR_SR] &= ~SPR_SR_OVE; /* Disable overflow flag exception. */ cpu_state.sprs[SPR_SR] |= SPR_SR_SM; /* SUPV mode */ cpu_state.sprs[SPR_SR] &= ~(SPR_SR_IEE | SPR_SR_TEE); /* Disable interrupts. */ /* Address translation is always disabled when starting exception. */ cpu_state.sprs[SPR_SR] &= ~SPR_SR_DME; #if DYNAMIC_EXECUTION /* If we were called from do_scheduler and there were more jobs scheduled to * run after this, they won't run unless the following call is made since this * function never returns. (If we weren't called from do_scheduler, then the * job at the head of the queue will still have some time remaining) */ if (scheduler.job_queue->time <= 0) do_scheduler (); #endif switch (except) { /* EPCR is irrelevent */ case EXCEPT_RESET: break; /* EPCR is loaded with address of instruction that caused the exception */ case EXCEPT_ITLBMISS: case EXCEPT_IPF: cpu_state.sprs[SPR_EPCR_BASE] = ea - (cpu_state.delay_insn ? 4 : 0); #if DYNAMIC_EXECUTION op_join_mem_cycles (); #endif break; case EXCEPT_BUSERR: case EXCEPT_DPF: case EXCEPT_ALIGN: case EXCEPT_ILLEGAL: case EXCEPT_DTLBMISS: case EXCEPT_RANGE: case EXCEPT_TRAP: /* All these exceptions happen during a simulated instruction */ #if DYNAMIC_EXECUTION /* Since these exceptions happen during a simulated instruction and this * function jumps out to the exception vector the scheduler would never have * a chance to run, therefore run it now */ run_sched_out_of_line (); #endif cpu_state.sprs[SPR_EPCR_BASE] = cpu_state.pc - (cpu_state.delay_insn ? 4 : 0); break; /* EPCR is loaded with address of next not-yet-executed instruction */ case EXCEPT_SYSCALL: cpu_state.sprs[SPR_EPCR_BASE] = (cpu_state.pc + 4) - (cpu_state.delay_insn ? 4 : 0); break; /* These exceptions happen AFTER (or before) an instruction has been * simulated, therefore the pc already points to the *next* instruction */ case EXCEPT_TICK: case EXCEPT_INT: cpu_state.sprs[SPR_EPCR_BASE] = cpu_state.pc - (cpu_state.delay_insn ? 4 : 0); #if !(DYNAMIC_EXECUTION) /* If we don't update the pc now, then it will only happen *after* the next * instruction (There would be serious problems if the next instruction just * happens to be a branch), when it should happen NOW. */ cpu_state.pc = pcnext; pcnext += 4; #endif break; } /* Address trnaslation is here because run_sched_out_of_line calls * eval_insn_direct which checks out the immu for the address translation but * if it would be disabled above then there would be not much point... */ cpu_state.sprs[SPR_SR] &= ~SPR_SR_IME; /* Complex/simple execution strictly don't need this because of the * next_delay_insn thingy but in the dynamic execution modell that doesn't * exist and thus cpu_state.delay_insn would stick in the exception handler * causeing grief if the first instruction of the exception handler is also in * the delay slot of the previous instruction */ cpu_state.delay_insn = 0; #if DYNAMIC_EXECUTION do_jump (except_vector); #endif }
Go to most recent revision | Compare with Previous | Blame | View Log