OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [or1ksim/] [cpu/] [or32/] [insnset.c] - Rev 113

Go to most recent revision | Compare with Previous | Blame | View Log

/* insnset.c -- Instruction specific functions.
 
   Copyright (C) 1999 Damjan Lampret, lampret@opencores.org
                 2000-2002 Marko Mlinar, markom@opencores.org
   Copyright (C) 2008 Embecosm Limited
   Copyright (C) 2009 Jungsook yang, jungsook.yang@uci.edu
 
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
   Contributor Julius Baxter julius@orsoc.se  
 
   This file is part of OpenRISC 1000 Architectural Simulator.
 
   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3 of the License, or (at your option)
   any later version.
 
   This program is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
   more details.
 
   You should have received a copy of the GNU General Public License along
   with this program.  If not, see <http://www.gnu.org/licenses/>. */
 
/* This program is commented throughout in a fashion suitable for processing
   with Doxygen. */
 
 
INSTRUCTION (l_add) {
  orreg_t temp1, temp2, temp3;
  int8_t temp4;
 
  temp2 = (orreg_t)PARAM2;
  temp3 = (orreg_t)PARAM1;
  temp1 = temp2 + temp3;
  SET_PARAM0(temp1);
 
  /* Set overflow if two negative values gave a positive sum, or if two
     positive values gave a negative sum. Otherwise clear it */
  if ((((long int) temp2 <  0) && 
       ((long int) temp3 <  0) &&
       ((long int) temp1 >= 0)) ||
      (((long int) temp2 >= 0) && 
       ((long int) temp3 >= 0) &&
       ((long int) temp1 <  0)))
    {
      cpu_state.sprs[SPR_SR] |= SPR_SR_OV;
    }
  else
    {
      cpu_state.sprs[SPR_SR] &= ~SPR_SR_OV;
    }
 
  /* Set the carry flag if (as unsigned values) the result is smaller than
     either operand (if it smaller than one, it will be smaller than both, so
     we need only test one). */
  if ((uorreg_t) temp1 < (uorreg_t) temp2)
    {
      cpu_state.sprs[SPR_SR] |= SPR_SR_CY;
    }
  else
    {
      cpu_state.sprs[SPR_SR] &= ~SPR_SR_CY;
    }
 
  /* Trigger a range exception if the overflow flag is set and the SR[OVE] bit
     is set. */
  if (((cpu_state.sprs[SPR_SR] & SPR_SR_OVE) == SPR_SR_OVE) &&
      ((cpu_state.sprs[SPR_SR] & SPR_SR_OV)  == SPR_SR_OV))
    {
      except_handle (EXCEPT_RANGE, cpu_state.pc);
    }
 
  temp4 = temp1;
  if (temp4 == temp1)
    or1k_mstats.byteadd++;
}
INSTRUCTION (l_addc) {
  orreg_t temp1, temp2, temp3;
  int8_t temp4;
 
  temp2 = (orreg_t)PARAM2;
  temp3 = (orreg_t)PARAM1;
  temp1 = temp2 + temp3;
  if(cpu_state.sprs[SPR_SR] & SPR_SR_CY)
    temp1++;
  SET_PARAM0(temp1);
  SET_OV_FLAG_FN (temp1);
  if (ARITH_SET_FLAG) {
    if(!temp1)
      cpu_state.sprs[SPR_SR] |= SPR_SR_F;
    else
      cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  }
  if ((uorreg_t) temp1 < (uorreg_t) temp2)
    cpu_state.sprs[SPR_SR] |= SPR_SR_CY;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_CY;
 
  temp4 = temp1;
  if (temp4 == temp1)
    or1k_mstats.byteadd++;
}
INSTRUCTION (l_sw) {
  int old_cyc = 0;
  if (config.cpu.sbuf_len) old_cyc = runtime.sim.mem_cycles;
  set_mem32(PARAM0, PARAM1, &breakpoint);
  if (config.cpu.sbuf_len) {
    int t = runtime.sim.mem_cycles;
    runtime.sim.mem_cycles = old_cyc;
    sbuf_store (t - old_cyc);
  }
}
INSTRUCTION (l_sb) {
  int old_cyc = 0;
  if (config.cpu.sbuf_len) old_cyc = runtime.sim.mem_cycles;
  set_mem8(PARAM0, PARAM1, &breakpoint);
  if (config.cpu.sbuf_len) {
    int t = runtime.sim.mem_cycles;
    runtime.sim.mem_cycles = old_cyc;
    sbuf_store (t- old_cyc);
  }
}
INSTRUCTION (l_sh) {
  int old_cyc = 0;
  if (config.cpu.sbuf_len) old_cyc = runtime.sim.mem_cycles;
  set_mem16(PARAM0, PARAM1, &breakpoint);
  if (config.cpu.sbuf_len) {
    int t = runtime.sim.mem_cycles;
    runtime.sim.mem_cycles = old_cyc;
    sbuf_store (t - old_cyc);
  }
}
INSTRUCTION (l_lws) {
  uint32_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem32(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_lwz) {
  uint32_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem32(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_lbs) {
  int8_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem8(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_lbz) {  
  uint8_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem8(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_lhs) {  
  int16_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem16(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_lhz) {  
  uint16_t val;
  if (config.cpu.sbuf_len) sbuf_load ();
  val = eval_mem16(PARAM1, &breakpoint);
  /* If eval operand produced exception don't set anything. JPB changed to
     trigger on breakpoint, as well as except_pending (seemed to be a bug). */
  if (!(except_pending || breakpoint))
    SET_PARAM0(val);
}
INSTRUCTION (l_movhi) {
  SET_PARAM0(PARAM1 << 16);
}
INSTRUCTION (l_and) {
  uorreg_t temp1;
  temp1 = PARAM1 & PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  if (ARITH_SET_FLAG) {
    if(!temp1)
      cpu_state.sprs[SPR_SR] |= SPR_SR_F;
    else
      cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  }
}
INSTRUCTION (l_or) {
  uorreg_t temp1;
  temp1 = PARAM1 | PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
}
INSTRUCTION (l_xor) {
  uorreg_t temp1;
  temp1 = PARAM1 ^ PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
}
INSTRUCTION (l_sub) {
  orreg_t temp1;
  temp1 = (orreg_t)PARAM1 - (orreg_t)PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
}
/*int mcount = 0;*/
INSTRUCTION (l_mul) {
  orreg_t temp1;
 
  temp1 = (orreg_t)PARAM1 * (orreg_t)PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  /*if (!(mcount++ & 1023)) {
    PRINTF ("[%i]\n",mcount);
    }*/
}
INSTRUCTION (l_div) {
  orreg_t temp3, temp2, temp1;
 
  temp3 = PARAM2;
  temp2 = PARAM1;
  if (temp3)
    temp1 = temp2 / temp3;
  else {
    cpu_state.sprs[SPR_SR] |= SPR_SR_CY;	/* Div by zero sets carry */
    except_handle (EXCEPT_RANGE, cpu_state.pc);
    return;
  }
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
}
INSTRUCTION (l_divu) {
  uorreg_t temp3, temp2, temp1;
 
  temp3 = PARAM2;
  temp2 = PARAM1;
  if (temp3)
    temp1 = temp2 / temp3;
  else {
    cpu_state.sprs[SPR_SR] |= SPR_SR_CY;	/* Div by zero sets carry */
    except_handle(EXCEPT_RANGE, cpu_state.pc);
    return;
  }
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  /* runtime.sim.cycles += 16; */
}
INSTRUCTION (l_sll) {
  uorreg_t temp1;
 
  temp1 = PARAM1 << PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  /* runtime.sim.cycles += 2; */
}
INSTRUCTION (l_sra) {
  orreg_t temp1;
 
  temp1 = (orreg_t)PARAM1 >> PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  /* runtime.sim.cycles += 2; */
}
INSTRUCTION (l_srl) {
  uorreg_t temp1;
  temp1 = PARAM1 >> PARAM2;
  SET_OV_FLAG_FN (temp1);
  SET_PARAM0(temp1);
  /* runtime.sim.cycles += 2; */
}
INSTRUCTION (l_bf) {
  if (config.bpb.enabled) {
    int fwd = (PARAM0 >= cpu_state.pc) ? 1 : 0;
    or1k_mstats.bf[cpu_state.sprs[SPR_SR] & SPR_SR_F ? 1 : 0][fwd]++;
    bpb_update(current->insn_addr, cpu_state.sprs[SPR_SR] & SPR_SR_F ? 1 : 0);
  }
  if(cpu_state.sprs[SPR_SR] & SPR_SR_F) {
    cpu_state.pc_delay = cpu_state.pc + (orreg_t)PARAM0 * 4;
    btic_update(pcnext);
    next_delay_insn = 1;
  } else {
    btic_update(cpu_state.pc);
  }
}
INSTRUCTION (l_bnf) {
  if (config.bpb.enabled) {
    int fwd = (PARAM0 >= cpu_state.pc) ? 1 : 0;
    or1k_mstats.bnf[cpu_state.sprs[SPR_SR] & SPR_SR_F ? 0 : 1][fwd]++;
    bpb_update(current->insn_addr, cpu_state.sprs[SPR_SR] & SPR_SR_F ? 0 : 1);
  }
  if (!(cpu_state.sprs[SPR_SR] & SPR_SR_F)) {
    cpu_state.pc_delay = cpu_state.pc + (orreg_t)PARAM0 * 4;
    btic_update(pcnext);
    next_delay_insn = 1;
  } else {
    btic_update(cpu_state.pc);
  }
}
INSTRUCTION (l_j) {
  cpu_state.pc_delay = cpu_state.pc + (orreg_t)PARAM0 * 4;
  next_delay_insn = 1;
}
INSTRUCTION (l_jal) {
  cpu_state.pc_delay = cpu_state.pc + (orreg_t)PARAM0 * 4;
 
  setsim_reg(LINK_REGNO, cpu_state.pc + 8);
  next_delay_insn = 1;
  if (config.sim.profile) {
    struct label_entry *tmp;
    if (verify_memoryarea(cpu_state.pc_delay) && (tmp = get_label (cpu_state.pc_delay)))
      fprintf (runtime.sim.fprof, "+%08llX %"PRIxADDR" %"PRIxADDR" %s\n",
               runtime.sim.cycles, cpu_state.pc + 8, cpu_state.pc_delay,
               tmp->name);
    else
      fprintf (runtime.sim.fprof, "+%08llX %"PRIxADDR" %"PRIxADDR" @%"PRIxADDR"\n",
               runtime.sim.cycles, cpu_state.pc + 8, cpu_state.pc_delay,
               cpu_state.pc_delay);
  }
}
INSTRUCTION (l_jalr) {
  cpu_state.pc_delay = PARAM0;
  setsim_reg(LINK_REGNO, cpu_state.pc + 8);
  next_delay_insn = 1;
}
INSTRUCTION (l_jr) {
  cpu_state.pc_delay = PARAM0;
  next_delay_insn = 1;
  if (config.sim.profile)
    fprintf (runtime.sim.fprof, "-%08llX %"PRIxADDR"\n", runtime.sim.cycles,
             cpu_state.pc_delay);
}
INSTRUCTION (l_rfe) {
  pcnext = cpu_state.sprs[SPR_EPCR_BASE];
  mtspr(SPR_SR, cpu_state.sprs[SPR_ESR_BASE]);
}
INSTRUCTION (l_nop) {
  uint32_t k = PARAM0;
  switch (k) {
    case NOP_NOP:
      break;
    case NOP_EXIT:
      PRINTF("exit(%"PRIdREG")\n", evalsim_reg (3));
      fprintf(stderr, "@reset : cycles %lld, insn #%lld\n",
              runtime.sim.reset_cycles, runtime.cpu.reset_instructions);
      fprintf(stderr, "@exit  : cycles %lld, insn #%lld\n", runtime.sim.cycles,
              runtime.cpu.instructions);
      fprintf(stderr, " diff  : cycles %lld, insn #%lld\n",
              runtime.sim.cycles - runtime.sim.reset_cycles,
              runtime.cpu.instructions - runtime.cpu.reset_instructions);
      if (config.debug.gdb_enabled)
        set_stall_state (1);
      else
        sim_done();
      break;
    case NOP_CNT_RESET:
      PRINTF("****************** counters reset ******************\n");
      PRINTF("cycles %lld, insn #%lld\n", runtime.sim.cycles, runtime.cpu.instructions); 
      PRINTF("****************** counters reset ******************\n");
      runtime.sim.reset_cycles = runtime.sim.cycles;
      runtime.cpu.reset_instructions = runtime.cpu.instructions;
      break;    
    case NOP_PUTC:		/*JPB */
      printf( "%c", (char)(evalsim_reg( 3 ) & 0xff));
      fflush( stdout );
      break;
    case NOP_GET_TICKS:
      cpu_state.reg[11] = runtime.sim.cycles & 0xffffffff;
      cpu_state.reg[12] = runtime.sim.cycles >> 32;
      break;
    case NOP_GET_PS:
      cpu_state.reg[11] = config.sim.clkcycle_ps;
      break;
    case NOP_REPORT:
      PRINTF("report(0x%"PRIxREG");\n", evalsim_reg(3));
    default:
      if (k >= NOP_REPORT_FIRST && k <= NOP_REPORT_LAST)
      PRINTF("report %" PRIdREG " (0x%"PRIxREG");\n", k - NOP_REPORT_FIRST,
             evalsim_reg(3));
      break;
  }
}
INSTRUCTION (l_sfeq) {
  if(PARAM0 == PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfne) {
  if(PARAM0 != PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfgts) {
  if((orreg_t)PARAM0 > (orreg_t)PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfges) {
  if((orreg_t)PARAM0 >= (orreg_t)PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sflts) {
  if((orreg_t)PARAM0 < (orreg_t)PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfles) {
  if((orreg_t)PARAM0 <= (orreg_t)PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfgtu) {
  if(PARAM0 > PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfgeu) {
  if(PARAM0 >= PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfltu) {
  if(PARAM0 < PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_sfleu) {
  if(PARAM0 <= PARAM1)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
}
INSTRUCTION (l_extbs) {
  int8_t x;
  x = PARAM1;
  SET_PARAM0((orreg_t)x);
}
INSTRUCTION (l_extbz) {
  uint8_t x;
  x = PARAM1;
  SET_PARAM0((uorreg_t)x);
}
INSTRUCTION (l_exths) {
  int16_t x;
  x = PARAM1;
  SET_PARAM0((orreg_t)x);
}
INSTRUCTION (l_exthz) {
  uint16_t x;
  x = PARAM1;
  SET_PARAM0((uorreg_t)x);
}
INSTRUCTION (l_extws) {
  int32_t x;
  x = PARAM1;
  SET_PARAM0((orreg_t)x);
}
INSTRUCTION (l_extwz) {
  uint32_t x;
  x = PARAM1;
  SET_PARAM0((uorreg_t)x);
}
INSTRUCTION (l_mtspr) {
  uint16_t regno = PARAM0 + PARAM2;
  uorreg_t value = PARAM1;
 
  if (cpu_state.sprs[SPR_SR] & SPR_SR_SM)
    mtspr(regno, value);
  else {
    PRINTF("WARNING: trying to write SPR while SR[SUPV] is cleared.\n");
    sim_done();
  }
}
INSTRUCTION (l_mfspr) {
  uint16_t regno = PARAM1 + PARAM2;
  uorreg_t value = mfspr(regno);
 
  if (cpu_state.sprs[SPR_SR] & SPR_SR_SM)
    SET_PARAM0(value);
  else {
    SET_PARAM0(0);
    PRINTF("WARNING: trying to read SPR while SR[SUPV] is cleared.\n");
    sim_done();
  }
}
INSTRUCTION (l_sys) {
  except_handle(EXCEPT_SYSCALL, cpu_state.sprs[SPR_EEAR_BASE]);
}
INSTRUCTION (l_trap) {
  /* TODO: some SR related code here! */
  except_handle(EXCEPT_TRAP, cpu_state.sprs[SPR_EEAR_BASE]);
}
INSTRUCTION (l_mac) {
  uorreg_t lo, hi;
  LONGEST l;
  orreg_t x, y;
 
  lo = cpu_state.sprs[SPR_MACLO];
  hi = cpu_state.sprs[SPR_MACHI];
  x = PARAM0;
  y = PARAM1;
/*   PRINTF ("[%"PRIxREG",%"PRIxREG"]\t", x, y); */
  l = (ULONGEST)lo | ((LONGEST)hi << 32);
  l += (LONGEST) x * (LONGEST) y;
 
  /* This implementation is very fast - it needs only one cycle for mac.  */
  lo = ((ULONGEST)l) & 0xFFFFFFFF;
  hi = ((LONGEST)l) >> 32;
  cpu_state.sprs[SPR_MACLO] = lo;
  cpu_state.sprs[SPR_MACHI] = hi;
/*   PRINTF ("(%"PRIxREG",%"PRIxREG"\n", hi, lo); */
}
INSTRUCTION (l_msb) {
  uorreg_t lo, hi;  
  LONGEST l;
  orreg_t x, y;
 
  lo = cpu_state.sprs[SPR_MACLO];
  hi = cpu_state.sprs[SPR_MACHI];
  x = PARAM0;
  y = PARAM1;
 
/*   PRINTF ("[%"PRIxREG",%"PRIxREG"]\t", x, y); */
 
  l = (ULONGEST)lo | ((LONGEST)hi << 32);
  l -= x * y;
 
  /* This implementation is very fast - it needs only one cycle for msb.  */
  lo = ((ULONGEST)l) & 0xFFFFFFFF;
  hi = ((LONGEST)l) >> 32;
  cpu_state.sprs[SPR_MACLO] = lo;
  cpu_state.sprs[SPR_MACHI] = hi;
/*   PRINTF ("(%"PRIxREG",%"PRIxREG")\n", hi, lo); */
}
INSTRUCTION (l_macrc) {
  uorreg_t lo, hi;
  LONGEST l;
  /* No need for synchronization here -- all MAC instructions are 1 cycle long.  */
  lo =  cpu_state.sprs[SPR_MACLO];
  hi =  cpu_state.sprs[SPR_MACHI];
  l = (ULONGEST) lo | ((LONGEST)hi << 32);
  l >>= 28;
  //PRINTF ("<%08x>\n", (unsigned long)l);
  SET_PARAM0((orreg_t)l);
  cpu_state.sprs[SPR_MACLO] = 0;
  cpu_state.sprs[SPR_MACHI] = 0;
}
INSTRUCTION (l_cmov) {
  SET_PARAM0(cpu_state.sprs[SPR_SR] & SPR_SR_F ? PARAM1 : PARAM2);
}
INSTRUCTION (l_ff1) {
  SET_PARAM0(ffs(PARAM1));
}
/******* Floating point instructions *******/
/* Single precision */
INSTRUCTION (lf_add_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1, param2;
  param1.hval = (uorreg_t)PARAM1;
  param2.hval = (uorreg_t)PARAM2;
  param0.fval = param1.fval + param2.fval;
  SET_PARAM0(param0.hval);
  } else l_invalid();
}
INSTRUCTION (lf_div_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1, param2;
  param1.hval = (uorreg_t)PARAM1;
  param2.hval = (uorreg_t)PARAM2;
  param0.fval = param1.fval / param2.fval;
  SET_PARAM0(param0.hval);
  } else l_invalid();
}
INSTRUCTION (lf_ftoi_s) {
  if (config.cpu.hardfloat) {
    // no other way appeared to work --jb
    float tmp_f; memcpy((void*)&tmp_f, (void*)&PARAM1, sizeof(float));
    SET_PARAM0((int)tmp_f);
  } else l_invalid();
}
INSTRUCTION (lf_itof_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0;
  param0.fval = (float)((int)PARAM1);
  SET_PARAM0(param0.hval);
  } else l_invalid();
}
INSTRUCTION (lf_madd_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0,param1, param2;
  param0.hval = (uorreg_t)PARAM0;
  param1.hval = (uorreg_t)PARAM1;
  param2.hval = PARAM2;
  param0.fval += param1.fval * param2.fval; 
  SET_PARAM0(param0.hval);
  } else l_invalid();
}
INSTRUCTION (lf_mul_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1, param2;
  param1.hval = (uorreg_t)PARAM1;
  param2.hval = (uorreg_t)PARAM2;
  param0.fval = param1.fval * param2.fval;
  SET_PARAM0(param0.hval); 
  } else l_invalid();
}
INSTRUCTION (lf_rem_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1, param2;
  param1.hval = PARAM1;
  param2.hval = PARAM2;
  param0.fval = fmodf (param1.fval, param2.fval);
  SET_PARAM0(param0.hval);
  } else l_invalid();
}
INSTRUCTION (lf_sfeq_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval == param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sfge_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval >= param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sfgt_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval > param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sfle_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval <= param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sflt_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval < param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sfne_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1;
  param0.hval = PARAM0;
  param1.hval = PARAM1;
  if(param0.fval != param1.fval)
    cpu_state.sprs[SPR_SR] |= SPR_SR_F;
  else
    cpu_state.sprs[SPR_SR] &= ~SPR_SR_F;
  } else l_invalid();
}
INSTRUCTION (lf_sub_s) {
  if (config.cpu.hardfloat) {
  FLOAT param0, param1, param2;
  param1.hval = PARAM1;
  param2.hval = PARAM2;
  param0.fval = param1.fval - param2.fval;
  SET_PARAM0(param0.hval); 
  } else l_invalid();
}
 
/******* Custom instructions *******/
INSTRUCTION (l_cust1) {
  /*int destr = current->insn >> 21;
    int src1r = current->insn >> 15;
    int src2r = current->insn >> 9;*/
}
INSTRUCTION (l_cust2) {
}
INSTRUCTION (l_cust3) {
}
INSTRUCTION (l_cust4) {
}
INSTRUCTION (lf_cust1) {
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.