URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [or1ksim/] [debug/] [jtag.c] - Rev 240
Go to most recent revision | Compare with Previous | Blame | View Log
/* jtag.c -- JTAG modeling Copyright (C) 2008 Embecosm Limited Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This program is commented throughout in a fashion suitable for processing with Doxygen. */ /* Autoconf and/or portability configuration */ #include "config.h" #include "port.h" /* System includes */ #include <stdlib.h> #include <unistd.h> #include <stddef.h> #include <stdint.h> #include <string.h> /* Package includes */ #include "sim-config.h" #include "sprs.h" #include "debug-unit.h" #include "spr-defs.h" #include "jtag.h" #include "abstract.h" #include "toplevel-support.h" /*---------------------------------------------------------------------------*/ /*!Calculate an ongoing 32-bit CRC for a value Utility function. This is for a CRC, where the value is presented in normal order (i.e its most significant bit is at the most significant positions, it has not been reversed for incorporating ina JTAG register). The function can be used for values with more than 64 bits, but will treat the supplied value as the most-significant 64 bits, with all other bits zero. In practice this is only of use when shifting in a large number of zeros. The CRC used is the IEEE 802.3 32-bit CRC using the polynomial: x^32 + x^26 + x^23 +x^22 +x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1 In this implementation, the CRC is initialized to all ones (outside this function), to catch leading zeros. The function is designed to be used in a continuing calculation if desired. It takes a partially computed CRC and shifts in the appropriate new bits for the value supplied. For a new calculation, this value should be 0xffffffff. @param[in] value The number whose CRC is wanted (MSB first) @param[in] num_bits The number of bits to use from value @param[in] crc_in The value of the CRC computed so far @return The updated CRC value */ /*---------------------------------------------------------------------------*/ static uint32_t crc32 (uint64_t value, int num_bits, uint32_t crc_in) { static const uint32_t CRC32_POLY = 0x04c11db7; /* Incorporate the bits, MS bit first. */ int i; for (i = num_bits - 1; i >= 0; i--) { uint32_t d = (1 == ((value >> i) & 1)) ? 0xfffffff : 0x0000000; uint32_t t = (1 == ((crc_in >> 31) & 1)) ? 0xfffffff : 0x0000000; crc_in <<= 1; crc_in ^= (d ^ t) & CRC32_POLY; } return crc_in; } /* crc32 () */ /*---------------------------------------------------------------------------*/ /*!Reverse up to 64 bits in a word Utility function. Uses the "reverse" algorithm from the University of Kentucky Aggregate Magic Algorithms. @param[in] val The long word to reverse @param[in] numBits Number of bits to reverse @return The reversed word. */ /*---------------------------------------------------------------------------*/ static uint64_t reverse_bits (uint64_t val, int numBits) { val = (((val & 0xaaaaaaaaaaaaaaaaULL) >> 1) | ((val & 0x5555555555555555ULL) << 1)); val = (((val & 0xccccccccccccccccULL) >> 2) | ((val & 0x3333333333333333ULL) << 2)); val = (((val & 0xf0f0f0f0f0f0f0f0ULL) >> 4) | ((val & 0x0f0f0f0f0f0f0f0fULL) << 4)); val = (((val & 0xff00ff00ff00ff00ULL) >> 8) | ((val & 0x00ff00ff00ff00ffULL) << 8)); val = (((val & 0xffff0000ffff0000ULL) >> 16) | ((val & 0x0000ffff0000ffffULL) << 16)); val = ((val >> 32) | (val << 32)); return val >> (64 - numBits); /* Only the bits we want */ } /* reverse_bits () */ /*---------------------------------------------------------------------------*/ /*!Reverse a byte Utility function. Uses the "reverse" algorithm from the University of Kentucky Aggregate Magic Algorithms. @param[in] byte The byte to reverse @return The reversed byte. */ /*---------------------------------------------------------------------------*/ static uint8_t reverse_byte (uint8_t byte) { byte = (((byte & 0xaa) >> 1) | ((byte & 0x55) << 1)); byte = (((byte & 0xcc) >> 2) | ((byte & 0x33) << 2)); return ((byte >> 4) | (byte << 4)); } /* reverse_byte () */ /*---------------------------------------------------------------------------*/ /*!Construct a response register to shift out. The generic format is: +-------+--------+---------+---------+ | | | | | TDI -> | CRC | Status | XX..XX | 00..00 | -> TDO | | | | | +-------+--------+---------+---------+ 32 4 "ignored" "zero" bits bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC is on the 4 status bits. Only the "zero" bits are zeroed. This allows for other fields to be specified in the "ignored" bits region, which are guaranteed to be left untouched. @param[out] jreg The buffer for the constructed register @param[in] status The status bits @param[in] crc_in CRC computed so far (set to 0xffffffff if none) @param[in] ign_bits The number of bits to ignore @param[in] zero_bits The number of bits to zero */ /*---------------------------------------------------------------------------*/ static void construct_response (unsigned char *jreg, uint8_t status, uint32_t crc_in, unsigned int ign_bits, unsigned int zero_bits) { /* Construct the outgoing CRC */ uint32_t crc_out = crc32 (status, 4, crc_in); /* Reversed versions of fields ready for insertion */ uint8_t status_r = reverse_bits (status, 4); uint32_t crc_out_r = reverse_bits (crc_out, 32); /* Construct the response register */ unsigned int zero_bytes = zero_bits / 8; unsigned int zero_off = zero_bits % 8; /* Clear the zero bits */ if (zero_bytes > 0) { memset (jreg, 0, zero_bytes); } jreg[zero_bytes] >>= zero_off; jreg[zero_bytes] <<= zero_off; /* Determine how much to skip in total */ unsigned int skip_bytes = (ign_bits + zero_bits) / 8; unsigned int bit_off = (ign_bits + zero_bits) % 8; /* Simplify by dealing separately with two cases: - the bit offset is less than or equal to 4, so the status goes in the first free byte, with some CRC. - the bit offset is greater than 4 but less than 8, so the status goes in the first and second free bytes. For completeness we deal with what should be the impossible case of bit_off > 7. */ if (bit_off <= 4) { /* Note that this works even if bit_off == 4, since there will be no CRC remaining to OR into the first byte. */ jreg[skip_bytes] |= ((status_r & 0xf) << bit_off) | ((crc_out_r << (4 + bit_off)) & 0xff); jreg[skip_bytes + 1] = (crc_out_r >> ( 4 - bit_off)) & 0xff; jreg[skip_bytes + 2] = (crc_out_r >> (12 - bit_off)) & 0xff; jreg[skip_bytes + 3] = (crc_out_r >> (20 - bit_off)) & 0xff; jreg[skip_bytes + 4] = (crc_out_r >> (28 - bit_off)) & 0xff; } else if (bit_off < 8) { jreg[skip_bytes] |= status_r << bit_off; jreg[skip_bytes + 1] = (status_r >> (8 - bit_off)) | ((crc_out_r << (bit_off - 4)) & 0xff); jreg[skip_bytes + 2] = (crc_out_r >> (12 - bit_off)) & 0xff; jreg[skip_bytes + 3] = (crc_out_r >> (20 - bit_off)) & 0xff; jreg[skip_bytes + 4] = (crc_out_r >> (28 - bit_off)) & 0xff; jreg[skip_bytes + 5] = (crc_out_r >> (36 - bit_off)) & 0xff; } else { fprintf (stderr, "*** ABORT ***: construct_response: impossible bit " "offset: %u.\n", bit_off); abort (); } } /* construct_response () */ /*---------------------------------------------------------------------------*/ /*!Select a module for debug Process a module selection register. The format is: +---------+-------+--------+---+ | | | | | TDI -> | Ignored | CRC | Module | 1 | -> TDO | | | ID | | +---------+-------+--------+---+ 36 32 4 bits bits bits The returned register has the format: +-------+--------+---------+ | | | | TDI -> | CRC | Status | 00..00 | -> TDO | | | | +-------+--------+---------+ 32 4 37 bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 5 bits, the CRC out on the 4 status bits. This is a register of a fixed size, which we verify initially. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. @return The number of cycles the shift took, which in turn is the number of bits in the register */ /*---------------------------------------------------------------------------*/ static void select_module (unsigned char *jreg, int num_bits) { /* Validate register size, which is fixed */ const int REG_BITS = 36 + 32 + 4 + 1; if (REG_BITS != num_bits) { fprintf (stderr, "ERROR: JTAG module select %d bits, when %d bits expected.\n", num_bits, REG_BITS); return; } /* Break out the fields */ uint8_t mod_id = reverse_bits ((jreg[0] >> 1) & 0xf, 4); uint32_t crc_in = reverse_bits (((uint32_t ) (jreg[0] & 0xe0) >> 5) | ((uint32_t ) jreg[1] << 3) | ((uint32_t ) jreg[2] << 11) | ((uint32_t ) jreg[3] << 19) | ((uint32_t ) (jreg[4] & 0x1f) << 27), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (1, 1, 0xffffffff); crc_computed = crc32 (mod_id, 4, crc_computed); /* Status flags */ enum jtag_status status = JS_OK; /* Validate the CRC */ if (crc_computed == crc_in) { /* Is it a valid module? */ switch (mod_id) { case JM_WISHBONE: case JM_CPU0: case JM_CPU1: /* All valid. Record the module */ runtime.debug.mod_id = mod_id; break; default: /* Bad module: record the error. Set the module to JM_UNDEFINED, which will trigger more errors in the future, rather than leaving the module unchanged, which might allow such errors to slip by undetected. */ status |= JS_MODULE_MISSING; runtime.debug.mod_id = JM_UNDEFINED; break; } } else { /* CRC Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the outgoing register and return the JTAG cycles taken (the register length) */ return construct_response (jreg, status, 0xffffffff, 0, 37); } /* select_module */ /*---------------------------------------------------------------------------*/ /*!Read WishBone data Read memory from WishBone. The WRITE_COMMAND address is updated to reflect the completed read if successful. The data follows an initial 37 bits corresponding to the incoming command and CRC. We use the smaller of the data size in the original WRITE_COMMAND and the size of the data in the GO_COMMAND_WRITE packet, so we can handle over/under-run. The result is the CRC of the data read. The status flag is supplied as a pointer, since this can also be updated if there is a problem reading the data. @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @todo For now we always read a byte a time. In the future, we ought to use 16 and 32-bit accesses for greater efficiency. @todo The algorithm for ensuring we only set the bits of interest in the register is inefficient. We should instead clear the whole area before starting. @param[out] jreg The JTAG register buffer where data is to be stored. @param[in] jreg_bytes The number of bytes expected in the JTAG register (may be different to that in the prior READ/WRITE if we have over- or under-run). @param[in] status_ptr Pointer to the status register. @return The CRC of the data read */ /*---------------------------------------------------------------------------*/ static uint32_t wishbone_read (unsigned char *jreg, unsigned long int jreg_bytes, enum jtag_status *status_ptr) { const unsigned int BIT_OFF = 37 % 8; /* Skip initial fields */ const unsigned int BYTE_OFF = 37 / 8; /* Transfer each byte in turn, computing the CRC as we go. We must supply jreg_bytes. If there is overrun, we use zero for the remaining bytes. */ uint32_t crc_out = 0xffffffff; unsigned long int i; for (i = 0; i < jreg_bytes; i++) { unsigned char byte = 0; /* Get a byte if available */ if (i < runtime.debug.size) { /* Error if we can't access this byte */ if (NULL == verify_memoryarea (runtime.debug.addr + i)) { *status_ptr |= JS_WISHBONE_ERROR; } else { /* Get the data with no cache or VM translation */ byte = eval_direct8 (runtime.debug.addr + i, 0, 0); } } /* Update the CRC, reverse, then store the byte in the register, without trampling adjacent bits. Simplified version when the bit offset is zero. */ crc_out = crc32 (byte, 8, crc_out); byte = reverse_byte (byte); /* Clear the bits (only) we are setting */ jreg[BYTE_OFF + i] <<= 8 - BIT_OFF; jreg[BYTE_OFF + i] >>= 8 - BIT_OFF; jreg[BYTE_OFF + i + 1] >>= BIT_OFF; jreg[BYTE_OFF + i + 1] <<= BIT_OFF; /* OR in the bits */ jreg[BYTE_OFF + i] |= (byte << BIT_OFF) & 0xff; jreg[BYTE_OFF + i + 1] |= (byte >> (8 - BIT_OFF)) & 0xff; } /* Only advance if there we no errors (including over/under-run. */ if (JS_OK == *status_ptr) { runtime.debug.addr += runtime.debug.size; } return crc_out; } /* wishbone_read () */ /*---------------------------------------------------------------------------*/ /*!Read SPR data Read memory from a SPR. The WRITE_COMMAND address is updated to reflect the completed read if successful. The data follows an initial 37 bits corresponding to the incoming command and CRC. We use the smaller of the data size in the original WRITE_COMMAND and the size of the data in the GO_COMMAND_WRITE packet, so we can handle over/under-run. The result is the CRC of the data read. Unlike with Wishbone, there is no concept of any errors possible when reading an SPR. @todo The algorithm for ensuring we only set the bits of interest in the register is inefficient. We should instead clear the whole area before starting. @note The address is treated as a word address of the SPR. @note The debug unit is documented as being explicitly Big Endian. However that seems to be a poor basis for modeling, and more to do with the debug unit only ever being used with big-endian architectures. We transfer the bytes in the endianness of the OR1K. @param[out] jreg The JTAG register buffer where data is to be stored. @param[in] jreg_bytes The number of bytes expected in the JTAG register (may be different to that in the prior READ/WRITE if we have over- or under-run). @param[in] status_ptr Pointer to the status register. @return The CRC of the data read */ /*---------------------------------------------------------------------------*/ static uint32_t spr_read (unsigned char *jreg, unsigned long int jreg_bytes, enum jtag_status *status_ptr) { const unsigned int BIT_OFF = 37 % 8; /* Skip initial fields */ const unsigned int BYTE_OFF = 37 / 8; /* Store the SPR in the register, without trampling adjacent bits, computing the CRC as we go. We have to fill all the JTAG register bytes. If there is overrun, we pack in zeros. */ uint32_t spr = mfspr (runtime.debug.addr); uint32_t crc_out = 0xffffffff; unsigned long int i; for (i = 0; i < jreg_bytes; i++) { unsigned char byte = 0; /* Get the byte from the SPR if available, otherwise use zero */ if (i < 4) { #ifdef OR32_BIG_ENDIAN byte = (spr >> 8 * i) & 0xff; #else /* !OR32_BIG_ENDIAN */ byte = (spr >> (24 - (8 * i))) & 0xff; #endif /* OR32_BIG_ENDIAN */ } /* Update the CRC */ crc_out = crc32 (byte, 8, crc_out); /* Reverse, then store the byte in the register, without trampling adjacent bits. */ byte = reverse_byte (byte); /* Clear the bits (only) we are setting */ jreg[BYTE_OFF + i] <<= 8 - BIT_OFF; jreg[BYTE_OFF + i] >>= 8 - BIT_OFF; jreg[BYTE_OFF + i + 1] >>= BIT_OFF; jreg[BYTE_OFF + i + 1] <<= BIT_OFF; /* OR in the bits */ jreg[BYTE_OFF + i] |= (byte << BIT_OFF) & 0xff; jreg[BYTE_OFF + i + 1] |= (byte >> (8 - BIT_OFF)) & 0xff; } /* Only advance if there we no errors (including over/under-run). */ if (JS_OK == *status_ptr) { runtime.debug.addr++; } return crc_out; } /* spr_read () */ /*---------------------------------------------------------------------------*/ /*!Set up null data. When there is an error in GO_COMMAND_READ, the data fields must be populated and the CRC set up, to ensure a correct return. The data follows an initial 37 bits corresponding to the incoming command and CRC. We use the smaller of the data size in the original WRITE_COMMAND and the size of the data in the GO_COMMAND_WRITE packet, so we can handle over/under-run. @param[out] jreg The JTAG register buffer where data is to be stored. @param[in] jreg_bytes The number of bytes expected in the JTAG register (may be different to that in the prior READ/WRITE if we have over- or under-run). @return The CRC of the data read */ /*---------------------------------------------------------------------------*/ static uint32_t null_read (unsigned char *jreg, unsigned long int jreg_bytes) { const unsigned int BIT_OFF = 37 % 8; /* Skip initial fields */ const unsigned int BYTE_OFF = 37 / 8; /* Store each null byte in turn, computing the CRC as we go */ uint32_t crc_out = 0xffffffff; unsigned long int i; for (i = 0; i < jreg_bytes; i++) { crc_out = crc32 (0, 8, crc_out); /* Compute the CRC for null byte */ /* Store null byte in the register, without trampling adjacent bits. */ jreg[BYTE_OFF + i] <<= 8 - BIT_OFF; jreg[BYTE_OFF + i] >>= 8 - BIT_OFF; jreg[BYTE_OFF + i + 1] >>= BIT_OFF; jreg[BYTE_OFF + i + 1] <<= BIT_OFF; } return crc_out; } /* null_read () */ /*---------------------------------------------------------------------------*/ /*!Carry out a read from WishBone or SPR Process a GO_COMMAND register for read. The format is: +-------------+-------+---------+---+ | | | GO | | TDI -> | Ignored | CRC | COMMAND | 0 | -> TDO | | | (0x0) | | +-------------+-------+---------+---+ 36 + 8 * size 32 4 bits bits bits The returned register has the format: +-------+--------+------------+---------+ | | | | | TDI -> | CRC | Status | Data | 00..00 | -> TDO | | | | | +-------+--------+------------+---------+ 32 4 8 * size 37 bits bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 5 bits, the CRC out on the 4 + 8 * size status and data bits. @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void go_command_read (unsigned char *jreg, int num_bits) { /* Check the length is consistent with the prior WRITE_COMMAND. If not we have overrun or underrun and flag accordingly. */ const int REG_BITS = 36 + 8 * runtime.debug.size + 32 + 4 + 1; unsigned long int jreg_bytes; enum jtag_status status; if (REG_BITS == num_bits) { jreg_bytes = runtime.debug.size; status = JS_OK; } else { /* Size will round down for safety */ jreg_bytes = (runtime.debug.size * 8 + num_bits - REG_BITS) / 8; status = JS_OVER_UNDERRUN; } /* Break out the fields */ uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) | ((uint32_t) jreg[1] << 3) | ((uint32_t) jreg[2] << 11) | ((uint32_t) jreg[3] << 19) | ((uint32_t) (jreg[4] & 0x1f) << 27), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_GO_COMMAND, 4, crc_computed); /* CRC to go out */ uint32_t crc_out = 0; /* Validate the CRC */ if (crc_computed == crc_in) { /* Read the data. Module errors will have been detected earlier, so we do nothing more here. */ switch (runtime.debug.mod_id) { case JM_WISHBONE: crc_out = wishbone_read (jreg, jreg_bytes, &status); break; case JM_CPU0: crc_out = spr_read (jreg, jreg_bytes, &status); break; default: crc_out = null_read (jreg, jreg_bytes); break; } } else { /* Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the outgoing register, skipping the data read and returning the number of JTAG cycles taken (the register length). */ construct_response (jreg, status, crc_out, 8UL * jreg_bytes, 37); } /* go_command_read () */ /*---------------------------------------------------------------------------*/ /*!Write WishBone data Write memory to WishBone. The WRITE_COMMAND address is updated to reflect the completed write if successful. The data follows an initial 5 bits specifying the command. We use the smaller of the data size in the original WRITE_COMMAND and the size of the data in the GO_COMMAND_WRITE packet, so we can handle over/under-run. @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @todo For now we always write a byte a time. In the future, we ought to use 16 and 32-bit accesses for greater efficiency and to correctly model the use of different access types. @param[in] jreg The JTAG register buffer where data is found. @param[in] jreg_bytes The number of bytes expected in the JTAG register (may be different to that in the prior READ/WRITE if we have over- or under-run). @param[out] status_ptr Pointer to the status register. */ /*---------------------------------------------------------------------------*/ static void wishbone_write (unsigned char *jreg, unsigned long int jreg_bytes, enum jtag_status *status_ptr) { const unsigned int BIT_OFF = 5; /* Skip initial command */ /* Transfer each byte in turn, computing the CRC as we go. We must supply jreg_bytes. If there is overrun, we ignore the remaining bytes. */ unsigned long int i; for (i = 0; i < jreg_bytes; i++) { /* Set a byte if available */ if (i < runtime.debug.size) { /* Error if we can't access this byte */ if (NULL == verify_memoryarea (runtime.debug.addr + i)) { *status_ptr |= JS_WISHBONE_ERROR; } else { /* Extract the byte from the register, reverse it and write it, circumventing the usual checks by pretending this is program memory. */ unsigned char byte; byte = (jreg[i] >> BIT_OFF) | (jreg[i + 1] << (8 - BIT_OFF)); byte = reverse_byte (byte); set_program8 (runtime.debug.addr + i, byte); } } } if (JS_OK == *status_ptr) { runtime.debug.addr += runtime.debug.size; } } /* wishbone_write () */ /*---------------------------------------------------------------------------*/ /*!Write SPR data Write memory to WishBone. The WRITE_COMMAND address is updated to reflect the completed write if successful. The data follows an initial 5 bits specifying the command. We use the smaller of the data size in the original WRITE_COMMAND and the size of the data in the GO_COMMAND_WRITE packet, so we can handle over/under-run. Unlike with Wishbone, there is no concept of any errors possible when writing an SPR. @todo The algorithm for ensuring we only set the bits of interest in the register is inefficient. We should instead clear the whole area before starting. @note The address is treated as a word address of the SPR. @note The debug unit is documented as being explicitly Big Endian. However that seems to be a poor basis for modeling, and more to do with the debug unit only ever being used with big-endian architectures. We transfer the bytes in the endianness of the OR1K. @param[out] jreg The JTAG register buffer where data is to be stored. @param[in] jreg_bytes The number of bytes expected in the JTAG register (may be different to that in the prior READ/WRITE if we have over- or under-run). @param[out] status_ptr Pointer to the status register. */ /*---------------------------------------------------------------------------*/ static void spr_write (unsigned char *jreg, unsigned long int jreg_bytes, enum jtag_status *status_ptr) { const unsigned int BIT_OFF = 5; /* Skip initial command */ /* Construct the SPR value one byte at a time. If there is overrun, ignore the excess bytes. */ uint32_t spr = 0; unsigned long int i; for (i = 0; i < jreg_bytes; i++) { if (i < 4) { uint8_t byte; byte = (jreg[i] >> BIT_OFF) | (jreg[i + 1] << (8 - BIT_OFF)); byte = reverse_byte (byte); #ifdef OR32_BIG_ENDIAN spr |= ((uint32_t) (byte)) << (8 * i); #else /* !OR32_BIG_ENDIAN */ spr |= ((uint32_t) (byte)) << (24 - (8 * i)); #endif /* OR32_BIG_ENDIAN */ } } /* Transfer the SPR */ mtspr (runtime.debug.addr, spr); /* Only advance if there we no errors (including over/under-run). */ if (JS_OK == *status_ptr) { runtime.debug.addr++; } } /* spr_write () */ /*---------------------------------------------------------------------------*/ /*!Carry out a write to WishBone or SPR Process a GO_COMMAND register for write. The format is: +-------------+-------+------------+---------+---+ | | | | GO | | TDI -> | Ignored | CRC | Data | COMMAND | 0 | -> TDO | | | | (0x0) | | +-------------+-------+------------+---------+---+ 36 32 8 * size 4 bits bits bits bits The returned register has the format: +-------+--------+-------------+ | | | | TDI -> | CRC | Status | 00......00 | -> TDO | | | | +-------+--------+-------------+ 32 4 8 * size + 37 bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 5 + 8 * size bits, the CRC out on the 4 status bits. @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @todo The rules say we look for errors in the WRITE_COMMAND spec here. However it would be better to do that at WRITE_COMMAND time and save the result for here, to avoid using duff data. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void go_command_write (unsigned char *jreg, int num_bits) { /* Check the length is consistent with the prior WRITE_COMMAND. If not we have overrun or underrun and flag accordingly. */ const int REG_BITS = 36 + 32 + 8 * runtime.debug.size + 4 + 1; unsigned long int real_size; enum jtag_status status; if (REG_BITS == num_bits) { real_size = runtime.debug.size; status = JS_OK; } else { /* Size will round down for safety */ real_size = (runtime.debug.size * 8UL + num_bits - REG_BITS) / 8UL; status = JS_OVER_UNDERRUN; } /* Break out the fields */ uint32_t crc_in = reverse_bits (((uint32_t) (jreg[real_size + 0] & 0xe0) >> 5) | ((uint32_t) jreg[real_size + 1] << 3) | ((uint32_t) jreg[real_size + 2] << 11) | ((uint32_t) jreg[real_size + 3] << 19) | ((uint32_t) (jreg[real_size + 4] & 0x1f) << 27), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_GO_COMMAND, 4, crc_computed); unsigned long int i; for (i = 0; i < real_size; i++) { uint8_t byte = reverse_bits (((jreg[i] & 0xe0) >> 5) | ((jreg[i + 1] & 0x1f) << 3), 8); crc_computed = crc32 (byte, 8, crc_computed); } /* Validate the CRC */ if (crc_computed == crc_in) { /* Write the data. Module errors will have been detected earlier, so we do nothing more here. */ switch (runtime.debug.mod_id) { case JM_WISHBONE: wishbone_write (jreg, real_size, &status); break; case JM_CPU0: spr_write (jreg, real_size, &status); break; default: break; } } else { /* Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the outgoing register, skipping the data read and returning the number of JTAG cycles taken (the register length). */ construct_response (jreg, status, 0xffffffff, 0, 37UL + 8UL * real_size); } /* go_command_write () */ /*---------------------------------------------------------------------------*/ /*!Invoke the action specified by a prior WRITE_COMMAND register Process a GO_COMMAND register. How this is handled depends on whether a previous WRITE_COMMAND has selected a read access type or a write access type has been selected. This function breaks this out. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void go_command (unsigned char *jreg, int num_bits) { /* Have we even had a WRITE_COMMAND? */ if (!runtime.debug.write_defined_p) { memset (jreg, 0, (num_bits + 7) / 8); fprintf (stderr, "ERROR: JTAG GO_COMMAND with no prior WRITE_COMMAND.\n"); return; } /* Whether to read or write depends on the access type. We don't put an error message if it's invalid here - we rely on the prior WRITE_COMMAND to do that. We just silently ignore. */ switch (runtime.debug.acc_type) { case JAT_WRITE8: case JAT_WRITE16: case JAT_WRITE32: go_command_write (jreg, num_bits); break; case JAT_READ8: case JAT_READ16: case JAT_READ32: go_command_read (jreg, num_bits); break; default: break; } } /* go_command () */ /*---------------------------------------------------------------------------*/ /*!Read a previouse WRITE_COMMAND register Process a READ_COMMAND register. The format is: +---------+-------+---------+---+ | | | READ | | TDI -> | Ignored | CRC | COMMAND | 0 | -> TDO | | | (0x1) | | +---------+-------+---------+---+ 88 32 4 bits bits bits The returned register has the format: +-------+--------+--------+---------+--------+---------+ | | | | | | | TDI -> | CRC | Status | Length | Address | Access | 00..00 | -> TDO | | | | | Type | | +-------+--------+--------+---------+--------+---------+ 32 4 16 32 4 37 bits bits bits bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 5 bits, the CRC out on the 56 status, length, address and access type bits. This is a register of a fixed size, which we verify initially. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void read_command (unsigned char *jreg, int num_bits) { /* Validate register size, which is fixed */ const int REG_BITS = 88 + 32 + 4 + 1; if (REG_BITS != num_bits) { fprintf (stderr, "ERROR: JTAG READ_COMMAND %d bits, when %d bits expected.\n", num_bits, REG_BITS); return; } /* Break out the fields */ uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) | ((uint32_t) jreg[1] << 3) | ((uint32_t) jreg[2] << 11) | ((uint32_t) jreg[3] << 19) | ((uint32_t) (jreg[4] & 0x1f) << 27), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_READ_COMMAND, 4, crc_computed); /* CRC to go out */ uint32_t crc_out = 0xffffffff; /* Status flags */ enum jtag_status status = JS_OK; /* Only do anything with this if the CRC's match */ if (crc_computed == crc_in) { /* If we haven't had a previous WRITE_COMMAND, then we return empty data. There is no valid status flag we can use, but we print a rude message. */ uint8_t acc_type; uint32_t addr; uint16_t len; if (runtime.debug.write_defined_p) { acc_type = runtime.debug.acc_type; addr = runtime.debug.addr; len = runtime.debug.size - 1; } else { fprintf (stderr, "ERROR: JTAG READ_COMMAND finds no data.\n"); acc_type = 0; addr = 0; len = 0; } /* Compute the CRC */ crc_out = crc32 (acc_type, 4, crc_out); crc_out = crc32 (addr, 32, crc_out); crc_out = crc32 (len, 16, crc_out); /* Reverse the bit fields */ acc_type = reverse_bits (acc_type, 4); addr = reverse_bits (addr, 32); len = reverse_bits (len, 16); /* Construct the outgoing register. */ jreg[ 4] |= (acc_type << 5) & 0xe0; jreg[ 5] |= (acc_type >> 3) & 0x01; jreg[ 5] |= (addr << 1) & 0xfe; jreg[ 6] |= (addr >> 7) & 0xff; jreg[ 7] |= (addr >> 15) & 0xff; jreg[ 8] |= (addr >> 23) & 0xff; jreg[ 9] |= (addr >> 31) & 0x01; jreg[ 9] |= (len << 1) & 0xfe; jreg[10] |= (len >> 7) & 0xff; jreg[11] |= (len >> 15) & 0x01; } else { /* CRC Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the final response with the status, skipping the fields we've just written. */ return construct_response (jreg, status, crc_out, 52, 37); } /* read_command () */ /*---------------------------------------------------------------------------*/ /*!Validate WRITE_COMMAND fields for WishBone Check that a WRITE_COMMAND's fields are valid for WishBone access. - 16 and 32-bit access must be correctly aligned. - size must be a multiple of 2 for 16-bit access, and a multiple of 4 for 32-bit access. Error messages are printed to explain any validation problems. @todo Should multiple SPR accesses be allowed in a single access? @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @param[in] acc_type The access type field @param[in] addr The address field @param[in] size The number of bytes to transfer (field is 1 less than this). @return 1 (TRUE) if validation is OK, 0 (FALSE) if validation fails. */ /*---------------------------------------------------------------------------*/ static int validate_wb_fields (unsigned char acc_type, unsigned long int addr, unsigned long int size) { int res_p = 1; /* Result */ /* Determine the size of the access */ uint32_t access_bytes = 1; switch (acc_type) { case JAT_WRITE8: case JAT_READ8: access_bytes = 1; break; case JAT_WRITE16: case JAT_READ16: access_bytes = 2; break; case JAT_WRITE32: case JAT_READ32: access_bytes = 4; break; default: fprintf (stderr, "ERROR: JTAG WRITE_COMMAND unknown access type %u.\n", acc_type); res_p = 0; break; } /* Check for alignment. This works for 8-bit and undefined access type, although the tests will always pass. */ if (0 != (addr % access_bytes)) { fprintf (stderr, "ERROR: JTAG WishBone %d-bit access must be %d-byte " "aligned.\n", access_bytes * 8, access_bytes); res_p = 0; } /* Check byte length is multiple of access width */ if (0 != (size % access_bytes)) { fprintf (stderr, "ERROR: JTAG %d-bit WishBone access must be multiple " "of %d bytes in length.\n", access_bytes * 8, access_bytes); res_p = 0; } return res_p; } /* validate_wb_fields () */ /*---------------------------------------------------------------------------*/ /*!Validate WRITE_COMMAND fields for SPR Check that a WRITE_COMMAND's fields are valid for SPR access. Only prints messages, since the protocol does not allow for any errors. - 8 and 16-bit access is not permitted. - size must be 4 bytes (1 word). Any other value is an error. - address must be less than MAX_SPRS. If a larger value is specified, it will be reduced module MAX_SPRS (which is hopefully a power of 2). This is only a warning, not an error. Error/warning messages are printed to explain any validation problems. @todo Should multiple SPR accesses be allowed in a single access? @note The size of the data is one greater than the length specified in the original WRITE_COMMAND. @param[in] acc_type The access type field @param[in] addr The address field @param[in] size The number of bytes to transfer (field is 1 less than this). @return 1 (TRUE) if we could validate (even if addr needs truncating), 0 (FALSE) otherwise. */ /*---------------------------------------------------------------------------*/ static int validate_spr_fields (unsigned char acc_type, unsigned long int addr, unsigned long int size) { int res_p = 1; /* Result */ /* Determine the size and direction of the access */ switch (acc_type) { case JAT_WRITE8: case JAT_READ8: fprintf (stderr, "ERROR: JTAG 8-bit access for SPR not supported.\n"); res_p = 0; break; case JAT_WRITE16: case JAT_READ16: fprintf (stderr, "ERROR: JTAG 16-bit access for SPR not supported.\n"); res_p = 0; break; case JAT_WRITE32: case JAT_READ32: break; default: fprintf (stderr, "ERROR: unknown JTAG SPR access type %u.\n", acc_type); res_p = 0; break; } /* Validate access size */ if (4 != size) { fprintf (stderr, "ERROR: JTAG SPR access 0x%lx bytes not supported.\n", size); res_p = 0; } /* Validate address. This will be truncated if wrong, so not an error. */ if (addr >= MAX_SPRS) { fprintf (stderr, "Warning: truncated JTAG SPR address 0x%08lx.\n", addr); } return res_p; /* Success */ } /* validate_spr_fields () */ /*---------------------------------------------------------------------------*/ /*!Specify details for a subsequent GO_COMMAND Process a WRITE_COMMAND register. The format is: +---------+-------+--------+---------+--------+---------+---+ | | | | | | WRITE | | TDI -> | Ignored | CRC | Length | Address | Access | COMMAND | 0 | -> TDO | | | | | Type | (0x2) | | +---------+-------+--------+---------+--------+---------+---+ 36 32 16 32 4 4 bits bits bits bits bits bits The returned register has the format: +-------+--------+---------+ | | | | TDI -> | CRC | Status | 00..00 | -> TDO | | | | +-------+--------+---------+ 32 4 89 bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 57 bits, the CRC out on the 4 status bits. There are no bits for reporting bit specification errors other than CRC mismatch. The subsequent GO_COMMAND will report an error in reading from Wishbone or over/under-run. We report any inconsistencies here with warning messages, correcting them if possible. All errors invalidate any prior data. This will ensure any subsequent usage continues to trigger faults, rather than a failed WRITE_COMMAND being missed. This is a register of a fixed size, which we verify initially. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void write_command (unsigned char *jreg, int num_bits) { /* Validate register size, which is fixed */ const int REG_BITS = 36 + 32 +16 + 32 + 4 + 4 + 1; if (REG_BITS != num_bits) { runtime.debug.write_defined_p = 0; fprintf (stderr, "ERROR: JTAG WRITE_COMMAND %d bits, when %d bits expected.\n", num_bits, REG_BITS); return; } /* Break out the fields */ uint8_t acc_type = reverse_bits (((jreg[0] & 0xe0) >> 5) | ((jreg[1] & 0x01) << 3) , 4); uint32_t addr = reverse_bits (((uint32_t) (jreg[ 1] & 0xfe) >> 1) | ((uint32_t) jreg[ 2] << 7) | ((uint32_t) jreg[ 3] << 15) | ((uint32_t) jreg[ 4] << 23) | ((uint32_t) (jreg[ 5] & 0x01) << 31), 32); uint16_t len = reverse_bits (((uint32_t) (jreg[ 5] & 0xfe) >> 1) | ((uint32_t) jreg[ 6] << 7) | ((uint32_t) (jreg[ 7] & 0x01) << 15), 16); uint32_t crc_in = reverse_bits (((uint32_t) (jreg[ 7] & 0xfe) >> 1) | ((uint32_t) jreg[ 8] << 7) | ((uint32_t) jreg[ 9] << 15) | ((uint32_t) jreg[10] << 23) | ((uint32_t) (jreg[11] & 0x01) << 31), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_WRITE_COMMAND, 4, crc_computed); crc_computed = crc32 (acc_type, 4, crc_computed); crc_computed = crc32 (addr, 32, crc_computed); crc_computed = crc32 (len, 16, crc_computed); /* Status flags */ enum jtag_status status = JS_OK; /* We only do anything with this packet if the CRC's match */ if (crc_computed == crc_in) { unsigned long int data_size = (unsigned long int) len + 1UL; switch (runtime.debug.mod_id) { case JM_WISHBONE: if (validate_wb_fields (acc_type, addr, data_size)) { runtime.debug.write_defined_p = 1; runtime.debug.acc_type = acc_type; runtime.debug.addr = addr; runtime.debug.size = data_size; } else { runtime.debug.write_defined_p = 0; } break; case JM_CPU0: /* Oversize addresses are permitted, but cause a validation warning and are truncated here. */ if (validate_spr_fields (acc_type, addr, data_size)) { runtime.debug.write_defined_p = 1; runtime.debug.acc_type = acc_type; runtime.debug.addr = addr % MAX_SPRS; runtime.debug.size = data_size; } else { runtime.debug.write_defined_p = 0; } break; case JM_CPU1: runtime.debug.write_defined_p = 0; fprintf (stderr, "ERROR: JTAG WRITE_COMMAND for CPU1 not supported.\n"); break; case JM_UNDEFINED: runtime.debug.write_defined_p = 0; fprintf (stderr, "ERROR: JTAG WRITE_COMMAND with no module selected.\n"); break; default: /* All other modules will have triggered an error on selection. */ runtime.debug.write_defined_p = 0; break; } } else { /* CRC Mismatch: record the error */ runtime.debug.write_defined_p = 0; status |= JS_CRC_IN_ERROR; } /* Construct the outgoing register */ construct_response (jreg, status, 0xffffffff, 0, 89); } /* write_command () */ /*---------------------------------------------------------------------------*/ /*!Read the control bits from a CPU. Process a READ_CONTROL register. The format is: +---------+-------+---------+---+ | | | READ | | TDI -> | Ignored | CRC | CONTROL | 0 | -> TDO | | | (0x3) | | +---------+-------+---------+---+ 88 32 4 bits bits bits The returned register has the format: +-------+--------+--------+---------+ | | | | | TDI -> | CRC | Status | Data | 00..00 | -> TDO | | | | | +-------+--------+--------+---------+ 32 4 52 37 bits bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 57 bits, the CRC out on the 4 status bits. This is a register of a fixed size, which we verify initially. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void read_control (unsigned char *jreg, int num_bits) { /* Validate register size, which is fixed */ const int REG_BITS = 88 + 32 + 4 + 1; if (REG_BITS != num_bits) { fprintf (stderr, "ERROR: JTAG READ_CONTROL %d bits, when %d bits expected.\n", num_bits, REG_BITS); return; } /* Break out the fields. */ uint32_t crc_in = reverse_bits (((uint32_t) (jreg[0] & 0xe0) >> 5) | ((uint32_t) jreg[1] << 3) | ((uint32_t) jreg[2] << 11) | ((uint32_t) jreg[3] << 19) | ((uint32_t) (jreg[4] & 0x1f) << 27), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_READ_CONTROL, 4, crc_computed); /* CRC to go out */ uint32_t crc_out = 0xffffffff; /* Status flags */ enum jtag_status status = JS_OK; /* Only do anything if the CRC's match */ if (crc_computed == crc_in) { uint64_t data = 0; switch (runtime.debug.mod_id) { case JM_CPU0: /* Valid module. Only bit we can sensibly read is the stall bit. Compute the CRC, reverse the data and construct the outgoing register. */ data = (uint64_t) runtime.cpu.stalled << JCB_STALL; break; case JM_UNDEFINED: fprintf (stderr, "ERROR: JTAG READ_CONTROL with no module selected.\n"); break; case JM_WISHBONE: fprintf (stderr, "ERROR: JTAG READ_CONTROL of WishBone not supported.\n"); break; case JM_CPU1: fprintf (stderr, "ERROR: JTAG READ_CONTROL of CPU1 not supported.\n"); break; default: /* All other modules will have triggered an error on selection. */ break; } /* Compute the CRC, reverse and store the data, and construct the response with the status. */ crc_out = crc32 (data, 52, crc_out); data = reverse_bits (data, 52); jreg[ 4] |= (data << 5) & 0xf8; jreg[ 5] |= (data >> 3) & 0x07; jreg[ 6] |= (data >> 11) & 0xff; jreg[ 7] |= (data >> 19) & 0xff; jreg[ 8] |= (data >> 27) & 0xff; jreg[ 9] |= (data >> 35) & 0xff; jreg[10] |= (data >> 43) & 0xff; jreg[11] |= (data >> 51) & 0x01; } else { /* CRC Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the response with the status */ return construct_response (jreg, status, crc_out, 52, 37); } /* read_control () */ /*---------------------------------------------------------------------------*/ /*!Write the control bits to a CPU. Process a WRITE_CONTROL register. The format is: +---------+-------+--------+---------+---+ | | | | WRITE | | TDI -> | Ignored | CRC | Data | CONTROL | 0 | -> TDO | | | | (0x4) | | +---------+-------+--------+---------+---+ 36 32 52 4 bits bits bits bits The returned register has the format: +-------+--------+---------+ | | | | TDI -> | CRC | Status | 00..00 | -> TDO | | | | +-------+--------+---------+ 32 4 89 bits bits bits Fields are always shifted in MS bit first, so must be reversed. The CRC in is computed on the first 57 bits, the CRC out on the 4 status bits. This is a register of a fixed size, which we verify initially. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ static void write_control (unsigned char *jreg, int num_bits) { /* Validate register size, which is fixed */ const int REG_BITS = 36 + 32 + 52 + 4 + 1; if (REG_BITS != num_bits) { fprintf (stderr, "ERROR: JTAG WRITE_CONTROL %d bits, when %d bits expected.\n", num_bits, REG_BITS); return; } /* Break out the fields. */ uint64_t data = reverse_bits (((uint64_t) (jreg[ 0] & 0xe0) >> 5) | ((uint64_t) jreg[ 1] << 3) | ((uint64_t) jreg[ 2] << 11) | ((uint64_t) jreg[ 3] << 19) | ((uint64_t) jreg[ 4] << 27) | ((uint64_t) jreg[ 5] << 35) | ((uint64_t) jreg[ 6] << 43) | ((uint64_t) (jreg[ 7] & 0x01) << 51), 52); uint32_t crc_in = reverse_bits (((uint32_t) (jreg[ 7] & 0xfe) >> 1) | ((uint32_t) jreg[ 8] << 7) | ((uint32_t) jreg[ 9] << 15) | ((uint32_t) jreg[10] << 23) | ((uint32_t) (jreg[11] & 0x01) << 31), 32); /* Compute the expected CRC */ uint32_t crc_computed; crc_computed = crc32 (0, 1, 0xffffffff); crc_computed = crc32 (JCMD_WRITE_CONTROL, 4, crc_computed); crc_computed = crc32 (data, 52, crc_computed); /* Status flags */ enum jtag_status status = JS_OK; /* Only use the data if CRC's match */ if (crc_computed == crc_in) { int reset_bit; int stall_bit; switch (runtime.debug.mod_id) { case JM_CPU0: /* Good data and valid module. Reset, stall or unstall the register as required. If reset is requested, there is no point considering stalling! */ reset_bit = (0x1 == ((data >> JCB_RESET) & 0x1)); stall_bit = (0x1 == ((data >> JCB_STALL) & 0x1)); if (reset_bit) { sim_reset (); } else { set_stall_state (stall_bit); } break; case JM_UNDEFINED: fprintf (stderr, "ERROR: JTAG WRITE_CONTROL with no module selected.\n"); break; case JM_WISHBONE: fprintf (stderr, "ERROR: JTAG WRITE_CONTROL of WishBone not supported.\n"); break; case JM_CPU1: fprintf (stderr, "ERROR: JTAG WRITE_CONTROL of CPU1 not supported.\n"); break; default: /* All other modules will have triggered an error on selection. */ break; } } else { /* CRC Mismatch: record the error */ status |= JS_CRC_IN_ERROR; } /* Construct the response with the status */ return construct_response (jreg, status, 0xffffffff, 0, 89); } /* write_control () */ /*---------------------------------------------------------------------------*/ /*!Initialize the JTAG system For now just reset the JTAG interface */ /*---------------------------------------------------------------------------*/ void jtag_init () { (void) jtag_reset (); } /* jtag_init () */ /*---------------------------------------------------------------------------*/ /*!Reset the JTAG interface Mark the current JTAG instruction as undefined. */ /*---------------------------------------------------------------------------*/ void jtag_reset () { runtime.debug.instr = JI_UNDEFINED; } /* jtag_reset () */ /*---------------------------------------------------------------------------*/ /*!Shift a JTAG instruction register @note Like all the JTAG interface functions, this must not be called re-entrantly while a call to any other function (e.g. or1kim_run ()) is in progress. It is the responsibility of the caller to ensure this constraint is met, for example by use of a SystemC mutex. The register is represented as a vector of bytes, with the byte at offset zero being shifted first, and the least significant bit in each byte being shifted first. Where the register will not fit in an exact number of bytes, the odd bits are in the highest numbered byte, shifted to the low end. The format is: +-------------+ | | TDI -> | Instruction | -> TDO | | +-------------+ 4 bits We first verify that we have received the correct number of bits. If not we put out a warning, and for consistency return the number of bits supplied as the number of cycles the shift took. With this debug interface, registers are shifted MS bit first, so we must reverse the bits to get the actual value. We record the selected instruction. For completeness the register is parsed and a warning given if any register other than DEBUG is shifted. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ void jtag_shift_ir (unsigned char *jreg, int num_bits) { if (4 != num_bits) { fprintf (stderr, "ERROR: Invalid JTAG instruction length %d bits.\n", num_bits); return; } runtime.debug.instr = reverse_bits (jreg[0] & 0xf, 4); switch (runtime.debug.instr) { case JI_EXTEST: fprintf (stderr, "Warning: JTAG EXTEST shifted.\n"); break; case JI_SAMPLE_PRELOAD: fprintf (stderr, "Warning: JTAG SAMPLE/PRELOAD shifted.\n"); break; case JI_IDCODE: fprintf (stderr, "Warning: JTAG IDCODE shifted.\n"); break; case JI_DEBUG: /* Do nothing for this one */ break; case JI_MBIST: fprintf (stderr, "Warning: JTAG MBIST shifted.\n"); break; case JI_BYPASS: fprintf (stderr, "Warning: JTAG BYPASS shifted.\n"); break; default: fprintf (stderr, "ERROR: Unknown JTAG instruction 0x%1x shifted.\n", runtime.debug.instr); break; } } /* jtag_shift_ir () */ /*---------------------------------------------------------------------------*/ /*!Shift a JTAG data register @note Like all the JTAG interface functions, this must not be called re-entrantly while a call to any other function (e.g. or1kim_run ()) is in progress. It is the responsibility of the caller to ensure this constraint is met, for example by use of a SystemC mutex. The register is represented as a vector of bytes, with the byte at offset zero being shifted first, and the least significant bit in each byte being shifted first. Where the register will not fit in an exact number of bytes, the odd bits are in the highest numbered byte, shifted to the low end. This is only meaningful if the DEBUG register instruction is already selected. If not, the data register is rejected. The register is parsed to determine which of the six possible register types it could be. - SELECT_MODULE - WRITE_COMMNAND - READ_COMMAND - GO_COMMAND - WRITE_CONTROL - READ_CONTROL @note In practice READ_COMMAND is not used. However the functionality is provided for future compatibility. The parsing is hierarchical. The first bit determines if we have SELECT_MODULE, if not, the next 4 bits determine the command. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits supplied. */ /*---------------------------------------------------------------------------*/ void jtag_shift_dr (unsigned char *jreg, int num_bits) { if (JI_DEBUG != runtime.debug.instr) { fprintf (stderr, "ERROR: Attempt to shift JTAG data register when " "DEBUG not instruction.\n"); return; } int select_module_p = (1 == (jreg[0] & 0x1)); if (select_module_p) { select_module (jreg, num_bits); } else { switch (reverse_bits ((jreg[0] >> 1) & 0xf, 4)) { case JCMD_GO_COMMAND: go_command (jreg, num_bits); break; case JCMD_READ_COMMAND: read_command (jreg, num_bits); break; case JCMD_WRITE_COMMAND: write_command (jreg, num_bits); break; case JCMD_READ_CONTROL: read_control (jreg, num_bits); break; case JCMD_WRITE_CONTROL: write_control (jreg, num_bits); break; default: /* Not a command we recognize. */ fprintf (stderr, "ERROR: DEBUG command not recognized.\n"); break; } } } /* jtag_shift_dr () */
Go to most recent revision | Compare with Previous | Blame | View Log