URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [or1ksim/] [libtoplevel.c] - Rev 178
Go to most recent revision | Compare with Previous | Blame | View Log
/* libtoplevel.c -- Top level simulator library source file Copyright (C) 1999 Damjan Lampret, lampret@opencores.org Copyright (C) 2008 Embecosm Limited Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> This file is part of OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This program is commented throughout in a fashion suitable for processing with Doxygen. */ /* Autoconf and/or portability configuration */ #include "config.h" /* System includes */ #include <stdlib.h> #include <unistd.h> #include <signal.h> /* Package includes */ #include "or1ksim.h" #include "sim-config.h" #include "toplevel-support.h" #include "sched.h" #include "execute.h" #include "pic.h" #include "jtag.h" /* Indices of GDB registers that are not GPRs. Must match GDB settings! */ #define MAX_GPRS 32 /*!< Maximum GPRs */ #define PPC_REGNUM (MAX_GPRS + 0) /*!< Previous PC */ #define NPC_REGNUM (MAX_GPRS + 1) /*!< Next PC */ #define SR_REGNUM (MAX_GPRS + 2) /*!< Supervision Register */ /*---------------------------------------------------------------------------*/ /*!Initialize the simulator. Allows specification of an (optional) config file and an image file. Builds up dummy argc/argv to pass to the existing argument parser. @param[in] config_file Or1ksim configuration file name @param[in] image_file The program image to execute @param[in] class_ptr Pointer to a C++ class instance (for use when called by C++) @param[in] upr Upcall routine for reads @param[in] upw Upcall routine for writes @return 0 on success and an error code on failure */ /*---------------------------------------------------------------------------*/ int or1ksim_init (const char *config_file, const char *image_file, void *class_ptr, int (*upr) (void *class_ptr, unsigned long int addr, unsigned char mask[], unsigned char rdata[], int data_len), int (*upw) (void *class_ptr, unsigned long int addr, unsigned char mask[], unsigned char wdata[], int data_len)) { int dummy_argc; char *dummy_argv[4]; /* Dummy argv array. Varies depending on whether an image file is specified. */ dummy_argv[0] = "libsim"; dummy_argv[1] = "-f"; dummy_argv[2] = (char *) ((NULL != config_file) ? config_file : "sim.cfg"); dummy_argv[3] = (char *) image_file; dummy_argc = (NULL == image_file) ? 3 : 4; /* Initialization copied from existing main() */ srand (getpid ()); init_defconfig (); reg_config_secs (); if (parse_args (dummy_argc, dummy_argv)) { return OR1KSIM_RC_BADINIT; } config.sim.is_library = 1; /* Library operation */ config.sim.profile = 0; /* No profiling */ config.sim.mprofile = 0; config.ext.class_ptr = class_ptr; /* SystemC linkage */ config.ext.read_up = upr; config.ext.write_up = upw; print_config (); /* Will go eventually */ signal (SIGINT, ctrl_c); /* Not sure we want this really */ runtime.sim.hush = 1; /* Not sure if this is needed */ do_stats = config.cpu.superscalar || config.cpu.dependstats || config.sim.history || config.sim.exe_log; sim_init (); runtime.sim.ext_int_set = 0; /* No interrupts pending to be set */ runtime.sim.ext_int_clr = 0; /* No interrupts pending to be cleared */ return OR1KSIM_RC_OK; } /* or1ksim_init () */ /*---------------------------------------------------------------------------*/ /*!Run the simulator The argument is a time in seconds, which is converted to a number of cycles, if positive. A negative value means "run for ever". With the JTAG interface, it is possible to stall the processor between calls of this function (but not during upcalls). In which case we return immediately. @todo Is it possible (or desirable) to permit JTAG activity during upcalls, in which case we could stall mid-run. @todo Should the JTAG functionality require enabling? The semantics are that the duration for which the run may occur may be changed mid-run by a call to or1ksim_reset_duration(). This is to allow for the upcalls to generic components adding time, and reducing the time permitted for ISS execution before synchronization of the parent SystemC wrapper. This is over-ridden if the call was for a negative duration, which means run forever! Uses a simplified version of the old main program loop. Returns success if the requested number of cycles were run and an error code otherwise. @param[in] duration Time to execute for (seconds) @return OR1KSIM_RC_OK if we run to completion, OR1KSIM_RC_BRKPT if we hit a breakpoint (not clear how this can be set without CLI access) */ /*---------------------------------------------------------------------------*/ int or1ksim_run (double duration) { const int num_ints = sizeof (runtime.sim.ext_int_set) * 8; /* If we are stalled we can't do anything. We treat this as hitting a breakpoint or halting. */ if(runtime.cpu.stalled) { return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT; } /* Reset the duration */ or1ksim_reset_duration (duration); /* Loop until we have done enough cycles (or forever if we had a negative duration) */ while (duration < 0.0 || (runtime.sim.cycles < runtime.sim.end_cycles)) { long long int time_start = runtime.sim.cycles; int i; /* Interrupt # */ /* Each cycle has counter of mem_cycles; this value is joined with cycles * at the end of the cycle; no sim originated memory accesses should be * performed in between. */ runtime.sim.mem_cycles = 0; if (cpu_clock ()) { /* This is probably wrong. This is an Or1ksim breakpoint, not a GNU one. */ return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT; } /* If we are stalled we can't do anything. We treat this as hitting a breakpoint or halting. */ if(runtime.cpu.stalled) { return runtime.cpu.halted ? OR1KSIM_RC_HALTED : OR1KSIM_RC_BRKPT; } runtime.sim.cycles += runtime.sim.mem_cycles; /* Take any external interrupts. Outer test is for the common case for efficiency. */ if (0 != runtime.sim.ext_int_set) { for (i = 0; i < num_ints; i++) { if (0x1 == ((runtime.sim.ext_int_set >> i) & 0x1)) { report_interrupt (i); runtime.sim.ext_int_set &= ~(1 << i); /* Clear req flag */ } } } /* Clear any interrupts as requested. For edge triggered interrupts this will happen in the same cycle. For level triggered, it must be an explicit call. */ if (0 != runtime.sim.ext_int_clr) { for (i = 0; i < num_ints; i++) { /* Only clear interrupts that have been explicitly cleared */ if(0x1 == ((runtime.sim.ext_int_clr >> i) & 0x1)) { clear_interrupt(i); runtime.sim.ext_int_clr &= ~(1 << i); /* Clear clr flag */ } } } /* Update the scheduler queue */ scheduler.job_queue->time -= (runtime.sim.cycles - time_start); if (scheduler.job_queue->time <= 0) { do_scheduler (); } } return OR1KSIM_RC_OK; } /* or1ksim_run () */ /*---------------------------------------------------------------------------*/ /*!Step the simulator This is just a wrapper for the run function, specifying a time corresponding to a single cycle. This will in fact mean that a single instruction is executed, even if takes more than one cycle to execute. @todo What happens if an event is triggered - that may mean multiple instructions. @return OR1KSIM_RC_OK if we step to completion, OR1KSIM_RC_BRKPT if we hit a breakpoint (not clear how this can be set without CLI access) */ /*---------------------------------------------------------------------------*/ int or1ksim_step () { return or1ksim_run ((double) config.sim.clkcycle_ps / 1e12); } /* or1ksim_step () */ /*---------------------------------------------------------------------------*/ /*!Reset the run-time simulation end point Reset the time for which the simulation should run to the specified duration from NOW (i.e. NOT from when the run started). @param[in] duration Time to run for in seconds */ /*---------------------------------------------------------------------------*/ void or1ksim_reset_duration (double duration) { runtime.sim.end_cycles = runtime.sim.cycles + (long long int) (duration * 1.0e12 / (double) config.sim.clkcycle_ps); } /* or1ksim_reset_duration () */ /*---------------------------------------------------------------------------*/ /*!Return time executed so far Internal utility to return the time executed so far. Note that this is a re-entrant routine. @return Time executed so far in seconds */ /*---------------------------------------------------------------------------*/ static double internal_or1ksim_time () { return (double) runtime.sim.cycles * (double) config.sim.clkcycle_ps / 1.0e12; } // or1ksim_cycle_count() /*---------------------------------------------------------------------------*/ /*!Mark a time point in the simulation Sets the internal parameter recording this point in the simulation */ /*---------------------------------------------------------------------------*/ void or1ksim_set_time_point () { runtime.sim.time_point = internal_or1ksim_time (); } /* or1ksim_set_time_point () */ /*---------------------------------------------------------------------------*/ /*!Return the time since the time point was set Get the value from the internal parameter */ /*---------------------------------------------------------------------------*/ double or1ksim_get_time_period () { return internal_or1ksim_time () - runtime.sim.time_point; } /* or1ksim_get_time_period () */ /*---------------------------------------------------------------------------*/ /*!Return the endianism of the model Note that this is a re-entrant routine. @return 1 if the model is little endian, 0 otherwise. */ /*---------------------------------------------------------------------------*/ int or1ksim_is_le () { #ifdef OR32_BIG_ENDIAN return 0; #else return 1; #endif } /* or1ksim_is_le () */ /*---------------------------------------------------------------------------*/ /*!Return the clock rate Value is part of the configuration @return Clock rate in Hz. */ /*---------------------------------------------------------------------------*/ unsigned long int or1ksim_clock_rate () { return (unsigned long int) (1000000000000ULL / (unsigned long long int) (config.sim. clkcycle_ps)); } /* or1ksim_clock_rate () */ /*---------------------------------------------------------------------------*/ /*!Trigger an edge triggered interrupt This function is appropriate for edge triggered interrupts, which are taken and then immediately cleared. @note There is no check that the specified interrupt number is reasonable (i.e. <= 31). @param[in] i The interrupt number */ /*---------------------------------------------------------------------------*/ void or1ksim_interrupt (int i) { if (!config.pic.edge_trigger) { fprintf (stderr, "Warning: or1ksim_interrupt should not be used for " "level triggered interrupts. Ignored\n"); } else { runtime.sim.ext_int_set |= 1 << i; // Better not be > 31! runtime.sim.ext_int_clr |= 1 << i; // Better not be > 31! } } /* or1ksim_interrupt () */ /*---------------------------------------------------------------------------*/ /*!Set a level triggered interrupt This function is appropriate for level triggered interrupts, which must be explicitly cleared in a separate call. @note There is no check that the specified interrupt number is reasonable (i.e. <= 31). @param[in] i The interrupt number to set */ /*---------------------------------------------------------------------------*/ void or1ksim_interrupt_set (int i) { if (config.pic.edge_trigger) { fprintf (stderr, "Warning: or1ksim_interrupt_set should not be used for " "edge triggered interrupts. Ignored\n"); } else { runtime.sim.ext_int_set |= 1 << i; // Better not be > 31! } } /* or1ksim_interrupt () */ /*---------------------------------------------------------------------------*/ /*!Clear a level triggered interrupt This function is appropriate for level triggered interrupts, which must be explicitly set first in a separate call. @note There is no check that the specified interrupt number is reasonable (i.e. <= 31). @param[in] i The interrupt number to clear */ /*---------------------------------------------------------------------------*/ void or1ksim_interrupt_clear (int i) { if (config.pic.edge_trigger) { fprintf (stderr, "Warning: or1ksim_interrupt_clear should not be used " "for edge triggered interrupts. Ignored\n"); } else { runtime.sim.ext_int_clr |= 1 << i; // Better not be > 31! } } /* or1ksim_interrupt () */ /*---------------------------------------------------------------------------*/ /*!Reset the JTAG interface @note Like all the JTAG interface functions, this must not be called re-entrantly while a call to any other function (e.g. or1kim_run ()) is in progress. It is the responsibility of the caller to ensure this constraint is met, for example by use of a SystemC mutex. @return The time in seconds which the reset took. */ /*---------------------------------------------------------------------------*/ double or1ksim_jtag_reset () { /* Number of JTAG clock cycles a reset sequence takes */ const double JTAG_RESET_CYCLES = 5.0; jtag_reset (); return JTAG_RESET_CYCLES * (double) config.debug.jtagcycle_ps / 1.0e12; } /* or1ksim_jtag_reset () */ /*---------------------------------------------------------------------------*/ /*!Shift a JTAG instruction register @note Like all the JTAG interface functions, this must not be called re-entrantly while a call to any other function (e.g. or1kim_run ()) is in progress. It is the responsibility of the caller to ensure this constraint is met, for example by use of a SystemC mutex. The register is represented as a vector of bytes, with the byte at offset zero being shifted first, and the least significant bit in each byte being shifted first. Where the register will not fit in an exact number of bytes, the odd bits are in the highest numbered byte, shifted to the low end. The only JTAG instruction for which we have any significant behavior in this model is DEBUG. For completeness the register is parsed and a warning given if any register other than DEBUG is shifted. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits in the register. Just for sanity check (it should always be 4). @return The time in seconds which the shift took. */ /*---------------------------------------------------------------------------*/ double or1ksim_jtag_shift_ir (unsigned char *jreg, int num_bits) { jtag_shift_ir (jreg, num_bits); return (double) num_bits * (double) config.debug.jtagcycle_ps / 1.0e12; } /* or1ksim_jtag_shift_ir () */ /*---------------------------------------------------------------------------*/ /*!Shift a JTAG data register @note Like all the JTAG interface functions, this must not be called re-entrantly while a call to any other function (e.g. or1kim_run ()) is in progress. It is the responsibility of the caller to ensure this constraint is met, for example by use of a SystemC mutex. The register is represented as a vector of bytes, with the byte at offset zero being shifted first, and the least significant bit in each byte being shifted first. Where the register will not fit in an exact number of bytes, the odd bits are in the highest numbered byte, shifted to the low end. The register is parsed to determine which of the six possible register types it could be. - MODULE_SELECT - WRITE_COMMNAND - READ_COMMAND - GO_COMMAND - WRITE_CONTROL - READ_CONTROL @note In practice READ_COMMAND is not used. However the functionality is provided for future compatibility. @param[in,out] jreg The register to shift in, and the register shifted back out. @param[in] num_bits The number of bits in the register. This is essential to prevent bugs where the size of register supplied is incorrect. @return The time in seconds which the shift took. */ /*---------------------------------------------------------------------------*/ double or1ksim_jtag_shift_dr (unsigned char *jreg, int num_bits) { jtag_shift_dr (jreg, num_bits); return (double) num_bits * (double) config.debug.jtagcycle_ps / 1.0e12; } /* or1ksim_jtag_shift_dr () */ /*---------------------------------------------------------------------------*/ /*!Read a block of memory. @param[out] buf Where to put the data. @param[in] addr The address to read from. @param[in] len The number of bytes to read. @return Number of bytes read, or zero if error. */ /*---------------------------------------------------------------------------*/ int or1ksim_read_mem (unsigned char *buf, unsigned int addr, int len) { int off; /* Offset into the memory */ /* Fill the buffer with data */ for (off = 0; off < len; off++) { /* Check memory area is valid */ if (NULL == verify_memoryarea (addr + off)) { /* Fail silently - others can raise any error message. */ return 0; } else { /* Get the memory direct - no translation. */ buf[off] = eval_direct8 (addr + off, 0, 0); } } return len; } /* or1ksim_read_mem () */ /*---------------------------------------------------------------------------*/ /*!Write a block of memory. @param[in] buf Where to get the data from. @param[in] addr The address to write to. @param[in] len The number of bytes to write. @return Number of bytes written, or zero if error. */ /*---------------------------------------------------------------------------*/ int or1ksim_write_mem (unsigned char *buf, unsigned int addr, int len) { int off; /* Offset into the memory */ /* Write the bytes to memory */ for (off = 0; off < len; off++) { if (NULL == verify_memoryarea (addr + off)) { /* Fail silently - others can raise any error message. */ return 0; } else { /* circumvent the read-only check usually done for mem accesses data is in host order, because that's what set_direct32 needs */ set_program8 (addr + off, buf[off]); } } return len; } /* or1ksim_write_mem () */ /*---------------------------------------------------------------------------*/ /*!Read a single register The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC (i.e. SPR NPC) and SR (i.e. SPR SR). @param[out] buf Where to put the data. @param[in] regnum The register to read. @param[in] len Size of the register in bytes @return Size of the register, or zero if error. */ /*---------------------------------------------------------------------------*/ int or1ksim_read_reg (unsigned char *buf, int regnum, int len) { unsigned long int *regbuf = (unsigned long *) buf; if (4 != len) { return 0; /* Not 32-bit reg */ } /* Get the relevant register */ if (regnum < MAX_GPRS) { *regbuf = cpu_state.reg[regnum]; } else if (PPC_REGNUM == regnum) { *regbuf = cpu_state.sprs[SPR_PPC]; } else if (NPC_REGNUM == regnum) { *regbuf = cpu_state.pc; } else if (SR_REGNUM == regnum) { *regbuf = cpu_state.sprs[SPR_SR]; } else { /* Silent error response if we don't know the register */ return 0; } return len; } /* or1ksim_read_reg () */ /*---------------------------------------------------------------------------*/ /*!Write a single register The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC (i.e. SPR NPC) and SR (i.e. SPR SR). The register is specified as a sequence of bytes in target endian order. Each byte is packed as a pair of hex digits. @param[in] buf Where to get the data from. @param[in] regnum The register to write. @param[in] len Size of the register in bytes @return Size of the register, or zero if error. */ /*---------------------------------------------------------------------------*/ int or1ksim_write_reg (unsigned char *buf, int regnum, int len) { unsigned long int *regbuf = (unsigned long *) buf; unsigned long int regval = *regbuf; if (4 != len) { return 0; /* Not 32-bit reg */ } /* Set the relevant register */ if (regnum < MAX_GPRS) { cpu_state.reg[regnum] =regval; } else if (PPC_REGNUM == regnum) { cpu_state.sprs[SPR_PPC] = regval; } else if (NPC_REGNUM == regnum) { if (cpu_state.pc != regval) { cpu_state.pc = regval; cpu_state.delay_insn = 0; pcnext = regval + 4; } } else if (SR_REGNUM == regnum) { cpu_state.sprs[SPR_SR] = regval; } else { /* Silent error response if we don't know the register */ return 0; } return len; } /* or1ksim_write_reg () */
Go to most recent revision | Compare with Previous | Blame | View Log