URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [or1ksim/] [peripheral/] [mc.c] - Rev 78
Go to most recent revision | Compare with Previous | Blame | View Log
/* mc.c -- Simulation of Memory Controller Copyright (C) 2001 by Marko Mlinar, markom@opencores.org Copyright (C) 2008 Embecosm Limited Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> This file is part of Or1ksim, the OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This program is commented throughout in a fashion suitable for processing with Doxygen. */ /* Enable memory controller, via: section mc enable = 1 POC = 0x13243545 end Limitations: - memory refresh is not simulated */ /* Autoconf and/or portability configuration */ #include "config.h" #include "port.h" /* System includes */ #include <stdlib.h> /* Package includes */ #include "arch.h" #include "abstract.h" #include "sim-config.h" #include "toplevel-support.h" #include "sim-cmd.h" #define N_CE 8 #define MC_CSR 0x00 #define MC_POC 0x04 #define MC_BA_MASK 0x08 #define MC_CSC(i) (0x10 + (i) * 8) #define MC_TMS(i) (0x14 + (i) * 8) #define MC_ADDR_SPACE (MC_CSC(N_CE)) /* POC register field definition */ #define MC_POC_EN_BW_OFFSET 0 #define MC_POC_EN_BW_WIDTH 2 #define MC_POC_EN_MEMTYPE_OFFSET 2 #define MC_POC_EN_MEMTYPE_WIDTH 2 /* CSC register field definition */ #define MC_CSC_EN_OFFSET 0 #define MC_CSC_MEMTYPE_OFFSET 1 #define MC_CSC_MEMTYPE_WIDTH 2 #define MC_CSC_BW_OFFSET 4 #define MC_CSC_BW_WIDTH 2 #define MC_CSC_MS_OFFSET 6 #define MC_CSC_MS_WIDTH 2 #define MC_CSC_WP_OFFSET 8 #define MC_CSC_BAS_OFFSET 9 #define MC_CSC_KRO_OFFSET 10 #define MC_CSC_PEN_OFFSET 11 #define MC_CSC_SEL_OFFSET 16 #define MC_CSC_SEL_WIDTH 8 #define MC_CSC_MEMTYPE_SDRAM 0 #define MC_CSC_MEMTYPE_SSRAM 1 #define MC_CSC_MEMTYPE_ASYNC 2 #define MC_CSC_MEMTYPE_SYNC 3 #define MC_CSR_VALID 0xFF000703LU #define MC_POC_VALID 0x0000000FLU #define MC_BA_MASK_VALID 0x000003FFLU #define MC_CSC_VALID 0x00FF0FFFLU #define MC_TMS_SDRAM_VALID 0x0FFF83FFLU #define MC_TMS_SSRAM_VALID 0x00000000LU #define MC_TMS_ASYNC_VALID 0x03FFFFFFLU #define MC_TMS_SYNC_VALID 0x01FFFFFFLU #define MC_TMS_VALID 0xFFFFFFFFLU /* reg test compat. */ /* TMS register field definition SDRAM */ #define MC_TMS_SDRAM_TRFC_OFFSET 24 #define MC_TMS_SDRAM_TRFC_WIDTH 4 #define MC_TMS_SDRAM_TRP_OFFSET 20 #define MC_TMS_SDRAM_TRP_WIDTH 4 #define MC_TMS_SDRAM_TRCD_OFFSET 17 #define MC_TMS_SDRAM_TRCD_WIDTH 4 #define MC_TMS_SDRAM_TWR_OFFSET 15 #define MC_TMS_SDRAM_TWR_WIDTH 2 #define MC_TMS_SDRAM_WBL_OFFSET 9 #define MC_TMS_SDRAM_OM_OFFSET 7 #define MC_TMS_SDRAM_OM_WIDTH 2 #define MC_TMS_SDRAM_CL_OFFSET 4 #define MC_TMS_SDRAM_CL_WIDTH 3 #define MC_TMS_SDRAM_BT_OFFSET 3 #define MC_TMS_SDRAM_BL_OFFSET 0 #define MC_TMS_SDRAM_BL_WIDTH 3 /* TMS register field definition ASYNC */ #define MC_TMS_ASYNC_TWWD_OFFSET 20 #define MC_TMS_ASYNC_TWWD_WIDTH 6 #define MC_TMS_ASYNC_TWD_OFFSET 16 #define MC_TMS_ASYNC_TWD_WIDTH 4 #define MC_TMS_ASYNC_TWPW_OFFSET 12 #define MC_TMS_ASYNC_TWPW_WIDTH 4 #define MC_TMS_ASYNC_TRDZ_OFFSET 8 #define MC_TMS_ASYNC_TRDZ_WIDTH 4 #define MC_TMS_ASYNC_TRDV_OFFSET 0 #define MC_TMS_ASYNC_TRDV_WIDTH 8 /* TMS register field definition SYNC */ #define MC_TMS_SYNC_TTO_OFFSET 16 #define MC_TMS_SYNC_TTO_WIDTH 9 #define MC_TMS_SYNC_TWR_OFFSET 12 #define MC_TMS_SYNC_TWR_WIDTH 4 #define MC_TMS_SYNC_TRDZ_OFFSET 8 #define MC_TMS_SYNC_TRDZ_WIDTH 4 #define MC_TMS_SYNC_TRDV_OFFSET 0 #define MC_TMS_SYNC_TRDV_WIDTH 8 struct mc_area { struct dev_memarea *mem; unsigned int cs; int mc; struct mc_area *next; }; struct mc { uint32_t csr; uint32_t poc; uint32_t ba_mask; uint32_t csc[N_CE]; uint32_t tms[N_CE]; oraddr_t baseaddr; int enabled; /* Index of this memory controler amongst all the memory controlers */ int index; /* List of memory devices under this mc's control */ struct mc_area *mc_areas; struct mc *next; }; static struct mc *mcs = NULL; /* List used to temporarily hold memory areas registered with the mc, while the * mc configureation has not been loaded */ static struct mc_area *mc_areas = NULL; void set_csc_tms (int cs, uint32_t csc, uint32_t tms, struct mc *mc) { struct mc_area *cur = mc->mc_areas; while (cur) { if (cur->cs == cs) { /* FIXME: No peripheral should _ever_ acess a dev_memarea structure * directly */ cur->mem->addr_mask = mc->ba_mask << 22; cur->mem->addr_compare = ((csc >> MC_CSC_SEL_OFFSET) /* & 0xff */ ) << 22; set_mem_valid (cur->mem, (csc >> MC_CSC_EN_OFFSET) & 0x01); if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_ASYNC) { adjust_rw_delay (cur->mem, (tms & 0xff) + ((tms >> 8) & 0x0f), ((tms >> 12) & 0x0f) + ((tms >> 16) & 0x0f) + ((tms >> 20) & 0x3f)); } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SDRAM) { adjust_rw_delay (cur->mem, 3 + ((tms >> 4) & 0x03), 3 + ((tms >> 4) & 0x03)); } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SSRAM) { adjust_rw_delay (cur->mem, 2, 2); } else if ((csc >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SYNC) { adjust_rw_delay (cur->mem, 2, 2); } return; } cur = cur->next; } } /* Set a specific MC register with value. */ void mc_write_word (oraddr_t addr, uint32_t value, void *dat) { struct mc *mc = dat; int chipsel; switch (addr) { case MC_CSR: mc->csr = value; break; case MC_POC: fprintf (stderr, "Warning: write to MC's POC register!"); break; case MC_BA_MASK: mc->ba_mask = value & MC_BA_MASK_VALID; for (chipsel = 0; chipsel < N_CE; chipsel++) set_csc_tms (chipsel, mc->csc[chipsel], mc->tms[chipsel], mc); break; default: if (addr >= MC_CSC (0) && addr <= MC_TMS (N_CE - 1)) { addr -= MC_CSC (0); if ((addr >> 2) & 1) mc->tms[addr >> 3] = value; else mc->csc[addr >> 3] = value; set_csc_tms (addr >> 3, mc->csc[addr >> 3], mc->tms[addr >> 3], mc); break; } } } /* Read a specific MC register. */ uint32_t mc_read_word (oraddr_t addr, void *dat) { struct mc *mc = dat; uint32_t value = 0; switch (addr) { case MC_CSR: value = mc->csr; break; case MC_POC: value = mc->poc; break; case MC_BA_MASK: value = mc->ba_mask; break; default: if (addr >= MC_CSC (0) && addr <= MC_TMS (N_CE - 1)) { addr -= MC_CSC (0); if ((addr >> 2) & 1) value = mc->tms[addr >> 3]; else value = mc->csc[addr >> 3]; } break; } return value; } /* Read POC register and init memory controler regs. */ void mc_reset (void *dat) { struct mc *mc = dat; struct mc_area *cur, *prev, *tmp; PRINTF ("Resetting memory controller.\n"); memset (mc->csc, 0, sizeof (mc->csc)); memset (mc->tms, 0, sizeof (mc->tms)); mc->csr = 0; mc->ba_mask = 0; /* Set CS0 */ mc->csc[0] = (((mc->poc & 0x0c) >> 2) << MC_CSC_MEMTYPE_OFFSET) | ((mc-> poc & 0x03) << MC_CSC_BW_OFFSET) | 1; if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_ASYNC) { mc->tms[0] = MC_TMS_ASYNC_VALID; } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SDRAM) { mc->tms[0] = MC_TMS_SDRAM_VALID; } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SSRAM) { mc->tms[0] = MC_TMS_SSRAM_VALID; } else if ((mc->csc[0] >> MC_CSC_MEMTYPE_OFFSET) && 0x07 == MC_CSC_MEMTYPE_SYNC) { mc->tms[0] = MC_TMS_SYNC_VALID; } /* Grab control over all the devices we are destined to control */ cur = mc_areas; prev = NULL; while (cur) { if (cur->mc == mc->index) { if (prev) prev->next = cur->next; else mc_areas = cur->next; prev = cur; tmp = cur->next; cur->next = mc->mc_areas; mc->mc_areas = cur; cur = tmp; } else { prev = cur; cur = cur->next; } } for (cur = mc->mc_areas; cur; cur = cur->next) set_mem_valid (cur->mem, 0); set_csc_tms (0, mc->csc[0], mc->tms[0], mc); } /*---------------------------------------------------------------------------*/ /*!Free all allocated memory */ /*---------------------------------------------------------------------------*/ void mc_done () { while (NULL != mc_areas) { struct mc_area *next = mc_areas->next; free (mc_areas); mc_areas = next; } } /* mc_done () */ void mc_status (void *dat) { struct mc *mc = dat; int i; PRINTF ("\nMemory Controller at 0x%" PRIxADDR ":\n", mc->baseaddr); PRINTF ("POC: 0x%" PRIx32 "\n", mc->poc); PRINTF ("BAS: 0x%" PRIx32 "\n", mc->ba_mask); PRINTF ("CSR: 0x%" PRIx32 "\n", mc->csr); for (i = 0; i < N_CE; i++) { PRINTF ("CE %02d - CSC: 0x%" PRIx32 " TMS: 0x%" PRIx32 "\n", i, mc->csc[i], mc->tms[i]); } } /*--------------------------------------------[ Peripheral<->MC interface ]---*/ /* Registers some memory to be under the memory controllers control */ void mc_reg_mem_area (struct dev_memarea *mem, unsigned int cs, int mc) { struct mc_area *new = malloc (sizeof (struct mc_area)); if (NULL == new) { fprintf (stderr, "Out-of-memory\n"); exit (-1); } new->cs = cs; new->mem = mem; new->mc = mc; new->next = mc_areas; mc_areas = new; } /*-----------------------------------------------------[ MC configuration ]---*/ static void mc_enabled (union param_val val, void *dat) { struct mc *mc = dat; mc->enabled = val.int_val; } static void mc_baseaddr (union param_val val, void *dat) { struct mc *mc = dat; mc->baseaddr = val.addr_val; } /*---------------------------------------------------------------------------*/ /*!Set the power on configuration state Only the bottom 4 bits are signficant. Other bits are truncated with a warning. @param[in] val The value to use @param[in] dat The config data structure */ /*---------------------------------------------------------------------------*/ static void mc_poc (union param_val val, void *dat) { struct mc *mc = dat; if (val.int_val > 0xf) { fprintf (stderr, "Warning: memory controller PoC > 4 bits: truncated\n"); } mc->poc = val.int_val & 0xf; } /* mc_poc() */ static void mc_index (union param_val val, void *dat) { struct mc *mc = dat; mc->index = val.int_val; } /*---------------------------------------------------------------------------*/ /*!Initialize a new memory controller configuration ALL parameters are set explicitly to default values. */ /*---------------------------------------------------------------------------*/ static void * mc_sec_start () { struct mc *new = malloc (sizeof (struct mc)); if (!new) { fprintf (stderr, "Peripheral MC: Run out of memory\n"); exit (-1); } new->enabled = 1; new->baseaddr = 0; new->poc = 0; new->index = 0; new->mc_areas = NULL; return new; } static void mc_sec_end (void *dat) { struct mc *mc = dat; struct mem_ops ops; if (!mc->enabled) { free (dat); return; } /* FIXME: Check to see that the index given to this mc is unique */ mc->next = mcs; mcs = mc; memset (&ops, 0, sizeof (struct mem_ops)); ops.readfunc32 = mc_read_word; ops.writefunc32 = mc_write_word; ops.write_dat32 = dat; ops.read_dat32 = dat; /* FIXME: Correct delays? */ ops.delayr = 2; ops.delayw = 2; reg_mem_area (mc->baseaddr, MC_ADDR_SPACE, 1, &ops); reg_sim_reset (mc_reset, dat); reg_sim_stat (mc_status, dat); } void reg_mc_sec (void) { struct config_section *sec = reg_config_sec ("mc", mc_sec_start, mc_sec_end); reg_config_param (sec, "enabled", paramt_int, mc_enabled); reg_config_param (sec, "baseaddr", paramt_addr, mc_baseaddr); reg_config_param (sec, "POC", paramt_int, mc_poc); reg_config_param (sec, "index", paramt_int, mc_index); }
Go to most recent revision | Compare with Previous | Blame | View Log