URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [or1ksim/] [testsuite/] [test-code-or1k/] [mycompress/] [mycompress.c] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
/* mycompress.c. Test of Or1ksim compression program Copyright (C) 1999-2006 OpenCores Copyright (C) 2010 Embecosm Limited Contributors various OpenCores participants Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> This file is part of OpenRISC 1000 Architectural Simulator. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http: www.gnu.org/licenses/>. */ /* ---------------------------------------------------------------------------- This code is commented throughout for use with Doxygen. --------------------------------------------------------------------------*/ #include <stdarg.h> #include "support.h" #define BYTES_TO_COMPRESS 1000 /* * Compress - data compression program */ #define min(a,b) ((a>b) ? b : a) /* * machine variants which require cc -Dmachine: pdp11, z8000, pcxt */ /* * Set USERMEM to the maximum amount of physical user memory available * in bytes. USERMEM is used to determine the maximum BITS that can be used * for compression. * * SACREDMEM is the amount of physical memory saved for others; compress * will hog the rest. */ #ifndef SACREDMEM #define SACREDMEM 0 #endif /* #ifndef USERMEM */ #define USERMEM 60000 /* default user memory */ /* #endif */ #ifdef interdata /* (Perkin-Elmer) */ #define SIGNED_COMPARE_SLOW /* signed compare is slower than unsigned */ #endif #ifdef USERMEM # if USERMEM >= (433484+SACREDMEM) # define PBITS 16 # else # if USERMEM >= (229600+SACREDMEM) # define PBITS 15 # else # if USERMEM >= (127536+SACREDMEM) # define PBITS 14 # else # if USERMEM >= (73464+SACREDMEM) # define PBITS 13 # else # define PBITS 12 # endif # endif # endif # endif # undef USERMEM #endif /* USERMEM */ #ifdef PBITS /* Preferred BITS for this memory size */ # ifndef BITS # define BITS PBITS # endif /* BITS */ #endif /* PBITS */ #if BITS == 16 # define HSIZE 69001 /* 95% occupancy */ #endif #if BITS == 15 # define HSIZE 35023 /* 94% occupancy */ #endif #if BITS == 14 # define HSIZE 18013 /* 91% occupancy */ #endif #if BITS == 13 # define HSIZE 9001 /* 91% occupancy */ #endif #if BITS <= 12 # define HSIZE 5003 /* 80% occupancy */ #endif /* * a code_int must be able to hold 2**BITS values of type int, and also -1 */ #if BITS > 15 typedef long int code_int; #else typedef int code_int; #endif #ifdef SIGNED_COMPARE_SLOW typedef unsigned long int count_int; typedef unsigned short int count_short; #else typedef long int count_int; #endif #ifdef NO_UCHAR typedef char char_type; #else typedef unsigned char char_type; #endif /* UCHAR */ char_type magic_header[] = { "\037\235" }; /* 1F 9D */ /* Defines for third byte of header */ #define BIT_MASK 0x1f #define BLOCK_MASK 0x80 /* Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is a fourth header byte (for expansion). */ #define INIT_BITS 9 /* initial number of bits/code */ /* * compress.c - File compression ala IEEE Computer, June 1984. * * Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) * Jim McKie (decvax!mcvax!jim) * Steve Davies (decvax!vax135!petsd!peora!srd) * Ken Turkowski (decvax!decwrl!turtlevax!ken) * James A. Woods (decvax!ihnp4!ames!jaw) * Joe Orost (decvax!vax135!petsd!joe) * */ #if i386 #include <stdio.h> #include <stdio.h> #include <ctype.h> #include <signal.h> #include <sys/types.h> #include <sys/stat.h> #endif #define ARGVAL() (*++(*argv) || (--argc && *++argv)) int n_bits; /* number of bits/code */ int maxbits = BITS; /* user settable max # bits/code */ code_int maxcode; /* maximum code, given n_bits */ code_int maxmaxcode = 1L << BITS; /* should NEVER generate this code */ #ifdef COMPATIBLE /* But wrong! */ # define MAXCODE(n_bits) (1L << (n_bits) - 1) #else # define MAXCODE(n_bits) ((1L << (n_bits)) - 1) #endif /* COMPATIBLE */ # ifdef sel /* support gould base register problems */ /*NOBASE*/ count_int htab [HSIZE]; unsigned short codetab [HSIZE]; /*NOBASE*/ # else /* !gould */ count_int htab [HSIZE]; unsigned short codetab [HSIZE]; # endif /* !gould */ #define htabof(i) htab[i] #define codetabof(i) codetab[i] code_int hsize = HSIZE; /* for dynamic table sizing */ count_int fsize; /* * To save much memory, we overlay the table used by compress() with those * used by decompress(). The tab_prefix table is the same size and type * as the codetab. The tab_suffix table needs 2**BITS characters. We * get this from the beginning of htab. The output stack uses the rest * of htab, and contains characters. There is plenty of room for any * possible stack (stack used to be 8000 characters). */ #define tab_prefixof(i) codetabof(i) #ifdef XENIX_16 # define tab_suffixof(i) ((char_type *)htab[(i)>>15])[(i) & 0x7fff] # define de_stack ((char_type *)(htab2)) #else /* Normal machine */ # define tab_suffixof(i) ((char_type *)(htab))[i] # define de_stack ((char_type *)&tab_suffixof(1<<BITS)) #endif /* XENIX_16 */ code_int free_ent = 0; /* first unused entry */ int exit_stat = 0; code_int getcode(); int nomagic = 0; /* Use a 3-byte magic number header, unless old file */ int zcat_flg = 0; /* Write output on stdout, suppress messages */ int quiet = 1; /* don't tell me about compression */ /* * block compression parameters -- after all codes are used up, * and compression rate changes, start over. */ int block_compress = BLOCK_MASK; int clear_flg = 0; long int ratio = 0; #define CHECK_GAP 10000 /* ratio check interval */ count_int checkpoint = CHECK_GAP; /* * the next two codes should not be changed lightly, as they must not * lie within the contiguous general code space. */ #define FIRST 257 /* first free entry */ #define CLEAR 256 /* table clear output code */ int force = 0; char ofname [100]; int (*bgnd_flag)(); /* reset code table */ void cl_hash(register count_int hsize); /* table clear for block compress */ void cl_block (); void output(code_int code); int do_decomp = 0; static int offset; long int in_count = 1; /* length of input */ long int bytes_out; /* length of compressed output */ long int out_count = 0; /* # of codes output (for debugging) */ /* * compress stdin to stdout * * Algorithm: use open addressing double hashing (no chaining) on the * prefix code / next character combination. We do a variant of Knuth's * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime * secondary probe. Here, the modular division first probe is gives way * to a faster exclusive-or manipulation. Also do block compression with * an adaptive reset, whereby the code table is cleared when the compression * ratio decreases, but after the table fills. The variable-length output * codes are re-sized at this point, and a special CLEAR code is generated * for the decompressor. Late addition: construct the table according to * file size for noticeable speed improvement on small files. Please direct * questions about this implementation to ames!jaw. */ int main() { register long fcode; register code_int i = 0; register int c; register code_int ent; #ifdef XENIX_16 register code_int disp; #else /* Normal machine */ register int disp; #endif register code_int hsize_reg; register int hshift; #ifndef COMPATIBLE if (nomagic == 0) { /* putchar(magic_header[0]); putchar(magic_header[1]); putchar((char)(maxbits | block_compress)); */ } #endif /* COMPATIBLE */ offset = 0; bytes_out = 3; /* includes 3-byte header mojo */ out_count = 0; clear_flg = 0; ratio = 0; in_count = 1; printf("main: bytes_out %d... hsize %d\n", (int)bytes_out, (int)hsize); checkpoint = CHECK_GAP; maxcode = MAXCODE(n_bits = INIT_BITS); free_ent = ((block_compress) ? FIRST : 256 ); ent = '\0'; /* getchar (); */ hshift = 0; for ( fcode = (long) hsize; fcode < 65536L; fcode *= 2L ) hshift++; hshift = 8 - hshift; /* set hash code range bound */ printf("main: hshift %d...\n", hshift); hsize_reg = hsize; cl_hash( (count_int) hsize_reg); /* clear hash table */ /*#ifdef SIGNED_COMPARE_SLOW while ( (c = getchar()) != (unsigned) EOF ) { #else while ( (c = getchar()) != EOF ) { #endif*/ printf("main: bytes_out %d...\n", (int)bytes_out); printf("main: hsize_reg %d...\n", (int)hsize_reg); printf("main: before compress %d...\n", (int)in_count); while (in_count < BYTES_TO_COMPRESS) { c = in_count % 255; printf("main: compressing %d...\n", (int)in_count); in_count++; fcode = (long) (((long) c << maxbits) + ent); i = (((long)c << hshift) ^ ent); /* xor hashing */ if ( htabof (i) == fcode ) { ent = codetabof (i); continue; } else if ( (long)htabof (i) < 0 ) /* empty slot */ goto nomatch; disp = hsize_reg - i; /* secondary hash (after G. Knott) */ if ( i == 0 ) disp = 1; probe: if ( (i -= disp) < 0 ) i += hsize_reg; if ( htabof (i) == fcode ) { ent = codetabof (i); continue; } if ( (long)htabof (i) > 0 ) goto probe; nomatch: output ( (code_int) ent ); out_count++; ent = c; #ifdef SIGNED_COMPARE_SLOW if ( (unsigned) free_ent < (unsigned) maxmaxcode) { #else if ( free_ent < maxmaxcode ) { #endif codetabof (i) = free_ent++; /* code -> hashtable */ htabof (i) = fcode; } else if ( (count_int)in_count >= checkpoint && block_compress ) cl_block (); } /* * Put out the final code. */ printf("main: output...\n"); output( (code_int)ent ); out_count++; output( (code_int)-1 ); if(bytes_out > in_count) /* exit(2) if no savings */ exit_stat = 2; printf("main: end...\n"); report (0xdeaddead); return 0; } /***************************************************************** * TAG( output ) * * Output the given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (long)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a BITS character long buffer (so that 8 codes will * fit in it exactly). Use the VAX insv instruction to insert each * code in turn. When the buffer fills up empty it and start over. */ static char buf[BITS]; #ifndef vax char_type lmask[9] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00}; char_type rmask[9] = {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; #endif /* vax */ void output( code ) code_int code; { /* * On the VAX, it is important to have the register declarations * in exactly the order given, or the asm will break. */ register int r_off = offset, bits= n_bits; register char * bp = buf; if ( code >= 0 ) { #ifdef vax /* VAX DEPENDENT!! Implementation on other machines is below. * * Translation: Insert BITS bits from the argument starting at * offset bits from the beginning of buf. */ 0; /* Work around for pcc -O bug with asm and if stmt */ asm( "insv 4(ap),r11,r10,(r9)" ); #else /* not a vax */ /* * byte/bit numbering on the VAX is simulated by the following code */ /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* * Since code is always >= 8 bits, only need to mask the first * hunk on the left. */ *bp = (*bp & rmask[r_off]) | ((code << r_off) & lmask[r_off]); bp++; bits -= (8 - r_off); code >>= 8 - r_off; /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { *bp++ = code; code >>= 8; bits -= 8; } /* Last bits. */ if(bits) *bp = code; #endif /* vax */ offset += n_bits; if ( offset == (n_bits << 3) ) { bp = buf; bits = n_bits; bytes_out += bits; /* do putchar(*bp++); */ while(--bits); offset = 0; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. */ if ( free_ent > maxcode || (clear_flg > 0)) { /* * Write the whole buffer, because the input side won't * discover the size increase until after it has read it. */ if ( offset > 0 ) { /* if( fwrite( buf, 1, n_bits, stdout ) != n_bits) writeerr(); */ bytes_out += n_bits; } offset = 0; if ( clear_flg ) { maxcode = MAXCODE (n_bits = INIT_BITS); clear_flg = 0; } else { n_bits++; if ( n_bits == maxbits ) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } } else { /* * At EOF, write the rest of the buffer. */ /* if ( offset > 0 ) fwrite( buf, 1, (offset + 7) / 8, stdout ); */ bytes_out += (offset + 7) / 8; offset = 0; /* fflush( stdout ); */ /* if( ferror( stdout ) ) writeerr(); */ } } /* * Decompress stdin to stdout. This routine adapts to the codes in the * file building the "string" table on-the-fly; requiring no table to * be stored in the compressed file. The tables used herein are shared * with those of the compress() routine. See the definitions above. */ void decompress() { register char_type *stackp; register int finchar; register code_int code, oldcode, incode; /* * As above, initialize the first 256 entries in the table. */ maxcode = MAXCODE(n_bits = INIT_BITS); for ( code = 255; code >= 0; code-- ) { tab_prefixof(code) = 0; tab_suffixof(code) = (char_type)code; } free_ent = ((block_compress) ? FIRST : 256 ); finchar = oldcode = getcode(); if(oldcode == -1) /* EOF already? */ return; /* Get out of here */ /* putchar( (char)finchar ); */ /* first code must be 8 bits = char */ /* if(ferror(stdout)) writeerr(); */ stackp = de_stack; while ( (code = getcode()) > -1 ) { if ( (code == CLEAR) && block_compress ) { for ( code = 255; code >= 0; code-- ) tab_prefixof(code) = 0; clear_flg = 1; free_ent = FIRST - 1; if ( (code = getcode ()) == -1 ) /* O, untimely death! */ break; } incode = code; /* * Special case for KwKwK string. */ if ( code >= free_ent ) { *stackp++ = finchar; code = oldcode; } /* * Generate output characters in reverse order */ #ifdef SIGNED_COMPARE_SLOW while ( ((unsigned long)code) >= ((unsigned long)256) ) { #else while ( code >= 256 ) { #endif *stackp++ = tab_suffixof(code); code = tab_prefixof(code); } *stackp++ = finchar = tab_suffixof(code); /* * And put them out in forward order */ /* do putchar ( *--stackp ); while ( stackp > de_stack );*/ /* * Generate the new entry. */ if ( (code=free_ent) < maxmaxcode ) { tab_prefixof(code) = (unsigned short)oldcode; tab_suffixof(code) = finchar; free_ent = code+1; } /* * Remember previous code. */ oldcode = incode; } /* fflush( stdout ); */ /* if(ferror(stdout)) writeerr(); */ } /***************************************************************** * TAG( getcode ) * * Read one code from the standard input. If EOF, return -1. * Inputs: * stdin * Outputs: * code or -1 is returned. */ code_int getcode() { /* * On the VAX, it is important to have the register declarations * in exactly the order given, or the asm will break. */ register code_int code; static int offset = 0, size = 0; static char_type buf[BITS]; register int r_off, bits; register char_type *bp = buf; if ( clear_flg > 0 || offset >= size || free_ent > maxcode ) { /* * If the next entry will be too big for the current code * size, then we must increase the size. This implies reading * a new buffer full, too. */ if ( free_ent > maxcode ) { n_bits++; if ( n_bits == maxbits ) maxcode = maxmaxcode; /* won't get any bigger now */ else maxcode = MAXCODE(n_bits); } if ( clear_flg > 0) { maxcode = MAXCODE (n_bits = INIT_BITS); clear_flg = 0; } /* size = fread( buf, 1, n_bits, stdin ); */ if ( size <= 0 ) return -1; /* end of file */ offset = 0; /* Round size down to integral number of codes */ size = (size << 3) - (n_bits - 1); } r_off = offset; bits = n_bits; #ifdef vax asm( "extzv r10,r9,(r8),r11" ); #else /* not a vax */ /* * Get to the first byte. */ bp += (r_off >> 3); r_off &= 7; /* Get first part (low order bits) */ #ifdef NO_UCHAR code = ((*bp++ >> r_off) & rmask[8 - r_off]) & 0xff; #else code = (*bp++ >> r_off); #endif /* NO_UCHAR */ bits -= (8 - r_off); r_off = 8 - r_off; /* now, offset into code word */ /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */ if ( bits >= 8 ) { #ifdef NO_UCHAR code |= (*bp++ & 0xff) << r_off; #else code |= *bp++ << r_off; #endif /* NO_UCHAR */ r_off += 8; bits -= 8; } /* high order bits. */ code |= (*bp & rmask[bits]) << r_off; #endif /* vax */ offset += n_bits; return code; } /* For those who don't have it in libc.a */ char * rindex(const char *s, int c) { const char *p; for (p = NULL; *s; s++) if (*s == c) p = s; return((char *)p); } /* writeerr() { perror ( ofname ); unlink ( ofname ); exit ( 1 ); } */ void cl_block () /* table clear for block compress */ { register long int rat; checkpoint = in_count + CHECK_GAP; if(in_count > 0x007fffff) { /* shift will overflow */ rat = bytes_out >> 8; if(rat == 0) { /* Don't divide by zero */ rat = 0x7fffffff; } else { rat = in_count / rat; } } else { rat = (in_count << 8) / bytes_out; /* 8 fractional bits */ } if ( rat > ratio ) { ratio = rat; } else { ratio = 0; cl_hash ( (count_int) hsize ); free_ent = FIRST; clear_flg = 1; output ( (code_int) CLEAR ); } } void cl_hash(hsize) /* reset code table */ register count_int hsize; { #ifndef XENIX_16 /* Normal machine */ register count_int *htab_p = htab+hsize; #else register j; register long k = hsize; register count_int *htab_p; #endif register long i; register long m1 = -1; #ifdef XENIX_16 for(j=0; j<=8 && k>=0; j++,k-=8192) { i = 8192; if(k < 8192) { i = k; } htab_p = &(htab[j][i]); i -= 16; if(i > 0) { #else i = hsize - 16; #endif do { /* might use Sys V memset(3) here */ *(htab_p-16) = m1; *(htab_p-15) = m1; *(htab_p-14) = m1; *(htab_p-13) = m1; *(htab_p-12) = m1; *(htab_p-11) = m1; *(htab_p-10) = m1; *(htab_p-9) = m1; *(htab_p-8) = m1; *(htab_p-7) = m1; *(htab_p-6) = m1; *(htab_p-5) = m1; *(htab_p-4) = m1; *(htab_p-3) = m1; *(htab_p-2) = m1; *(htab_p-1) = m1; htab_p -= 16; } while ((i -= 16) >= 0); #ifdef XENIX_16 } } #endif for ( i += 16; i > 0; i-- ) *--htab_p = m1; }
Go to most recent revision | Compare with Previous | Blame | View Log