URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [bench/] [sysc/] [src/] [DebugUnitSC.cpp] - Rev 755
Go to most recent revision | Compare with Previous | Blame | View Log
// ---------------------------------------------------------------------------- // SystemC OpenRISC 1000 Debug Unit: implementation // Copyright (C) 2008 Embecosm Limited <info@embecosm.com> // Copyright (C) 2009 ORSoC // Contributor Jeremy Bennett <jeremy.bennett@embecosm.com> // Contributor Julius Baxter <julius@orsoc.se> // This file is part of the GDB interface to the cycle accurate model of the // OpenRISC 1000 based system-on-chip, ORPSoC, built using Verilator. // This program is free software: you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or (at your // option) any later version. // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public // License for more details. // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // ---------------------------------------------------------------------------- // $Id$ #include <iostream> #include <iomanip> #include "DebugUnitSC.h" #include "Utils.h" using sc_core::sc_event; using sc_core::sc_fifo; using sc_core::sc_module_name; //----------------------------------------------------------------------------- //! Constructor for the Debug Unit //! This module is entirely subservient to the GDB server. It has no SystemC //! processes of its own. It provides services via calls to its API. //! The current scan chain is marked as undefined, and the current JTAG scan //! chain is maked as undefined. //! Caches for SPR and memory access are initialized. //! This makes use of the Embecosm cycle accurate SystemC JTAG interface. //! @see Embecosm Application Note 5 "Using JTAG with SystemC: Implementation //! of a Cycle Accurate Interface" //! (http://www.embecosm.com/download/ean5.html) //! @param[in] name Name of this module, passed to the parent //! constructor. //! @param[in] _tapActionQueue Pointer to fifo of actions to be performed by //! the JTAG interface //----------------------------------------------------------------------------- DebugUnitSC::DebugUnitSC(sc_module_name name, sc_fifo < TapAction * >*_tapActionQueue): sc_module(name), tapActionQueue(_tapActionQueue), stallState(UNKNOWN), currentScanChain(OR1K_SC_UNDEF) { #ifdef NOCACHE npcCacheIsValid = false; // Always cache NPC #else sprCache = new SprCache(); memCache = new MemCache(); #endif } // DebugUnitSC () //----------------------------------------------------------------------------- //! Destructor //! Free up data structures //----------------------------------------------------------------------------- DebugUnitSC::~DebugUnitSC() { #ifndef NOCACHE delete memCache; delete sprCache; #endif } // ~DebugUnitSC //----------------------------------------------------------------------------- //! Reset the Debug Unit //! This is just a reset of the JTAG. It is quite possible to reset the debug //! unit without resetting the whole target. //! @note Must be called from a SystemC thread, because of the use of wait() //----------------------------------------------------------------------------- void DebugUnitSC::resetDebugUnit() { sc_event *done = new sc_event(); TapActionReset *resetAction; // Create and queue the reset action and wait for it to complete resetAction = new TapActionReset(done); tapActionQueue->write(resetAction); wait(*done); delete resetAction; delete done; } // resetDebugUnit () //----------------------------------------------------------------------------- //! Reset the processor //! Read the RISCOP register, OR in the reset bit and write it back. //! After reset, the processor is known to be unstalled. //----------------------------------------------------------------------------- void DebugUnitSC::reset() { writeRiscop(readRiscop() | RISCOP_RESET); stallState = UNKNOWN; } // reset () //----------------------------------------------------------------------------- //! Stall the processor //! Read the RISCOP register, OR in the stall bit and write it back. //----------------------------------------------------------------------------- void DebugUnitSC::stall() { writeRiscop( /*readRiscop () | */ RISCOP_STALL); stallState = STALLED; } // stall () //----------------------------------------------------------------------------- //! Unstall the processor //! Read the RISCOP register, AND out the stall bit and write it back. After //! this the NPC cache will be invalid. //! @note Don't be tempted to read back for confirmation. Single stepping //! will already have stalled the processor again! //----------------------------------------------------------------------------- void DebugUnitSC::unstall() { writeRiscop( /*readRiscop () & ~RISCOP_STALL */ 0); stallState = UNKNOWN; #ifdef NOCACHE npcCacheIsValid = false; // Always cache NPC #else // Clear the caches sprCache->clear(); memCache->clear(); #endif } // unstall () //----------------------------------------------------------------------------- //! Report if the processor is stalled. //! A stalled processor cannot spontaneously "unstall", so if the stallState //! flag is STALLED, that value is returned. Otherwise the target is //! interrogated to determine the status. //! @return TRUE if the processor is known to be stalled //----------------------------------------------------------------------------- bool DebugUnitSC::isStalled() { if (STALLED == stallState) { return true; } uint32_t riscop = readRiscop(); /* For some reason the reset bit is skipped over somewhere, so we should just get riscop = 1 if it's stalled */ //stallState = (RISCOP_STALL == (riscop & RISCOP_STALL)) ? STALLED : UNKNOWN; stallState = riscop ? STALLED : UNKNOWN; return STALLED == stallState; } // isStalled () //----------------------------------------------------------------------------- //! Read the value of an OpenRISC 1000 Special Purpose Register //! First see if we have the value in the cache, and if so return //! it. Otherwise, select the RISC_DEBUG scan chain and read from JTAG, //! storing the result in the cache. //! @param[in] sprNum The SPR to read //! @return The value of the SPR //----------------------------------------------------------------------------- uint32_t DebugUnitSC::readSpr(uint16_t sprNum) { uint32_t cachedValue; #ifdef NOCACHE // Always check NPC cache if ((STALLED == stallState) && (sprNum == SPR_NPC) && npcCacheIsValid) { return npcCachedValue; } #else // Use any cached value if we are stalled. if ((STALLED == stallState) && sprCache->read(sprNum, cachedValue)) { return cachedValue; // Already there, no more to do } #endif // Read the value selectDebugModule(OR1K_SC_CPU0); cachedValue = readJtagReg(sprNum); #ifdef NOCACHE // Always update the NPC cache if ((STALLED == stallState) && (sprNum == SPR_NPC)) { npcCachedValue = cachedValue; npcCacheIsValid = true; } #else // Update the cache if we are stalled if (STALLED == stallState) { sprCache->write(sprNum, cachedValue, sprNum == SPR_NPC); } #endif return cachedValue; } // readSpr () //----------------------------------------------------------------------------- //! Write the value of an OpenRISC 1000 Special Purpose Register //! First look to see if we are stalled and the value is cached. If the value //! has not changed, then we need to no more. Otherwise cache the value prior //! to writing it. //! Select the RISC_DEBUG scan chain and write to JTAG //! @param[in] sprNum The SPR to write //! @param[in] value The value to write //----------------------------------------------------------------------------- void DebugUnitSC::writeSpr(uint16_t sprNum, uint32_t value) { #ifdef NOCACHE // Always cache the NPC if ((STALLED == stallState) && (SPR_NPC == sprNum)) { // Have we already cached this NPC value? if (npcCacheIsValid && (value == npcCachedValue)) { return; } else { npcCachedValue = value; npcCacheIsValid = true; } } #else if (STALLED == stallState) { // Have we already cached this value? uint32_t cachedValue; if (sprCache->read(sprNum, cachedValue) && (value == cachedValue)) { return; // Already there, no more to do } else { sprCache->write(sprNum, value, sprNum == SPR_NPC); } } #endif // Write the SPR selectDebugModule(OR1K_SC_CPU0); writeJtagReg(sprNum, value); } // writeSpr () //----------------------------------------------------------------------------- //! AND the contents of an SPR with a value //! A convenience combination of read and write //! @param[in] sprNum The SPR to write //! @param[in] value The value to AND into the register //----------------------------------------------------------------------------- void DebugUnitSC::andSpr(uint16_t sprNum, uint32_t value) { writeSpr(sprNum, readSpr(sprNum) & value); } // andSpr () //----------------------------------------------------------------------------- //! OR the contents of an SPR with a value //! A convenience combination of read and write //! @param[in] sprNum The SPR to write //! @param[in] value The value to OR into the register //----------------------------------------------------------------------------- void DebugUnitSC::orSpr(uint16_t sprNum, uint32_t value) { writeSpr(sprNum, readSpr(sprNum) | value); } // orSpr () //----------------------------------------------------------------------------- //! Read a 32-bit word from the OpenRISC 1000 memory //! Select the WISHBONE scan chain, then write the register. The data is in //! model endianness and passed on without modification. //! @todo Provide code to check if the read was from a valid address. //! @param[in] addr The address to read from //! @return The 32-bit value read //----------------------------------------------------------------------------- uint32_t DebugUnitSC::readMem32(uint32_t addr) { uint32_t cachedValue; #ifndef NOCACHE // Use any cached value if we are stalled. if ((STALLED == stallState) && memCache->read(addr, cachedValue)) { return cachedValue; // Already there, no more to do } #endif // Read the value selectDebugModule(OR1K_SC_WISHBONE); cachedValue = readJtagReg(addr); #ifndef NOCACHE // Update the cache if we are stalled if (STALLED == stallState) { memCache->write(addr, cachedValue); } #endif return cachedValue; } // readMem32 () //----------------------------------------------------------------------------- //! Write a 32-bit word to the OpenRISC 1000 memory //! Select the WISHBONE scan chain, then write the register. The data is in //! model endianness and passed on without modification. //! @todo Provide code to check if the write was to a valid address. //! @param[in] addr The address to write to //! @param[in] value The 32-bit value to write //! @return True if the write was successful. For now all writes are // successful. //----------------------------------------------------------------------------- bool DebugUnitSC::writeMem32(uint32_t addr, uint32_t value) { #ifndef NOCACHE if (STALLED == stallState) { // Have we already cached this value? uint32_t cachedValue; if (memCache->read(addr, cachedValue) && (value == cachedValue)) { return true; // Already there, no more to do } else { memCache->write(addr, value); // Write for the future } } #endif // Write the memory selectDebugModule(OR1K_SC_WISHBONE); writeJtagReg(addr, value); return true; } // writeMem32 () //----------------------------------------------------------------------------- //! Read a byte from the OpenRISC 1000 main memory //! All we can get are 32-bits words, so we have to unpick the value. //! The underlying 32-bit routines take target endian arguments and return //! target endian results. We need to convert to host endianness to access the //! relevant byte. //! @todo Provide code to check if the read was from a valid address. //! @note Read bytes from memory mapped devices at your peril! //! @param[in] addr The address to read from //! @return The byte read //----------------------------------------------------------------------------- uint8_t DebugUnitSC::readMem8(uint32_t addr) { uint32_t word = Utils::ttohl(readMem32(addr & 0xfffffffc)); uint8_t *bytes = (uint8_t *) (&word); int offset = addr & 0x3; return bytes[offset]; } // readMem8 () //----------------------------------------------------------------------------- //! Write a byte to the OpenRISC 1000 main memory //! All we can get are 32-bits words, so we have to read the current value and //! construct the new value to write back. //! The underlying 32-bit routines take target endian arguments and return //! target endian results. We need to convert to host endianness to alter the //! relevant byte. //! @note Write bytes to memory mapped devices at your peril! //! @todo Provide code to check if the write was to a valid address. //! @param[in] addr The address to write to //! @param[in] value The byte to write //! @return True if the write was successful. For now all writes are // successful. //----------------------------------------------------------------------------- bool DebugUnitSC::writeMem8(uint32_t addr, uint8_t value) { uint32_t currWord = Utils::ttohl(readMem32(addr & 0xfffffffc)); uint8_t *currBytes = (uint8_t *) (&currWord); int offset = addr & 0x3; currBytes[offset] = value; return writeMem32(addr & 0xfffffffc, Utils::htotl(currWord)); } // writeMem8 () //----------------------------------------------------------------------------- //! Get the debug interface CPU0 control register value //! @return The value in the RISCOP register //----------------------------------------------------------------------------- uint32_t DebugUnitSC::readRiscop() { selectDebugModule(OR1K_SC_CPU0); int drLen; // Size of the data register uint32_t calc_recv_crc = 0, recv_crc, status_ret; drLen = 1 + 4 + 32 + 52 + 4 + 32; // Initialize the register fields uint64_t *dRegIn = new uint64_t[(drLen + 63) / 64]; uint64_t *dRegOut = new uint64_t[(drLen + 63) / 64]; // Write the READ command clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, BITREV(0x3, 4)); // We're reading CPU0 control reg uint32_t crc32_send = crc32(dRegIn, 0 + 1 + 4, 0); packBits(dRegIn, 0 + 1 + 4, 32, BITREV(crc32_send, 32)); // Allocate a SystemC completion event sc_event *done = new sc_event(); // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, drLen); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, 1 + 4 + 32 + 52, 4); calc_recv_crc = crc32(dRegOut, 52 + 4, 1 + 4 + 32); recv_crc = BITREV(unpackBits(dRegOut, 1 + 4 + 32 + 52 + 4, 32), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); // All done uint32_t res = BITREV(unpackBits(dRegOut, (1 + 4 + 32), 2), 2); delete[]dRegIn; delete[]dRegOut; delete done; return res; } // readRiscop () //----------------------------------------------------------------------------- //! Set the RISCOP control register //! Convenience function. Select the REGISTER scan chain, write the new value. //! @param[in] value The value to write into the RISCOP register //----------------------------------------------------------------------------- void DebugUnitSC::writeRiscop(uint32_t value) { selectDebugModule(OR1K_SC_CPU0); int drLen; // Size of the data register uint32_t calc_recv_crc = 0, recv_crc, status_ret; drLen = 1 + 4 + 32 + 52 + 4 + 32; // Initialize the register fields uint64_t *dRegIn = new uint64_t[(drLen + 63) / 64]; uint64_t *dRegOut = new uint64_t[(drLen + 63) / 64]; // Write the READ command clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, BITREV(0x4, 4)); // We're writing CPU0 control reg packBits(dRegIn, 5, 1, value & RISCOP_RESET); // First bit is reset packBits(dRegIn, 6, 1, (value & RISCOP_STALL) >> 1); // Next bit is stall /* Next 50 bits should be zero */ uint32_t crc32_send = crc32(dRegIn, 1 + 4 + 52, 0); packBits(dRegIn, 1 + 4 + 52, 32, BITREV(crc32_send, 32)); // Allocate a SystemC completion event sc_event *done = new sc_event(); // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, drLen); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, 1 + 4 + 32 + 52, 4); calc_recv_crc = crc32(dRegOut, 4, 1 + 4 + 52 + 32); recv_crc = BITREV(unpackBits(dRegOut, 1 + 4 + 52 + 32 + 4, 32), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); delete[]dRegIn; delete[]dRegOut; delete done; } // writeRiscop () //----------------------------------------------------------------------------- //! Select a module attached to the debug module //! @note Must be called from a SystemC thread, because of the use of wait() //! @param[in] chain The desired module //----------------------------------------------------------------------------- void DebugUnitSC::selectDebugModule(int module) { if (module == currentScanChain) { return; } else { currentScanChain = module; } sc_event *done = new sc_event(); TapActionIRScan *iRScan; TapActionDRScan *dRScan; // Create and queue the IR-Scan action for DEBUG (no CRC) iRScan = new TapActionIRScan(done, DEBUG_IR, JTAG_IR_LEN); tapActionQueue->write(iRScan); wait(*done); delete iRScan; // Initialize the register fields uint64_t *dRegIn = new uint64_t[(DUSEL_DR_LEN + 63) / 64]; uint64_t *dRegOut = new uint64_t[(DUSEL_DR_LEN + 63) / 64]; clearBits(dRegIn, DUSEL_DR_LEN); packBits(dRegIn, DUSEL_SEL_OFF, DUSEL_SEL_LEN, 0x1); packBits(dRegIn, DUSEL_OPCODE_OFF, DUSEL_OPCODE_LEN, bit_reverse_data(module, 4)); uint32_t crc32_send = crc32(dRegIn, DUSEL_CRC_OFF, 0); packBits(dRegIn, DUSEL_CRC_OFF, DUSEL_CRC_LEN, bit_reverse_data(crc32_send, 32)); uint32_t calc_recv_crc = 0, recv_crc, status_ret; // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, DUSEL_DR_LEN); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, DUSEL_RESP_STATUS_OFF, DUSEL_RESP_STATUS_LEN); calc_recv_crc = crc32(dRegOut, DUSEL_RESP_STATUS_LEN, DUSEL_RESP_STATUS_OFF); recv_crc = bit_reverse_data(unpackBits (dRegOut, DUSEL_RESP_CRC_OFF, DUSEL_RESP_CRC_LEN), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); delete[]dRegIn; delete[]dRegOut; delete done; } // selectDebugModule() //----------------------------------------------------------------------------- //! Read a 32-bit value via the debug interface //! @note Must be called from a SystemC thread, because of the use of wait() //! @param[in] addr The address of the register //! @return The register value read //----------------------------------------------------------------------------- uint32_t DebugUnitSC::readJtagReg(uint32_t addr) { int drLen; // Size of the data register uint32_t calc_recv_crc = 0, recv_crc, status_ret; drLen = 125; // Size of write command command (bigger than data read) // Initialize the register fields uint64_t *dRegIn = new uint64_t[(drLen + 63) / 64]; uint64_t *dRegOut = new uint64_t[(drLen + 63) / 64]; // Write the READ command clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, BITREV(0x2, 4)); // We're writing a command packBits(dRegIn, 1 + 4, 4, BITREV(0x6, 4)); // Access type, 0x6 = 32-bit READ packBits(dRegIn, 1 + 4 + 4, 32, BITREV(addr, 32)); // Address packBits(dRegIn, 1 + 4 + 4 + 32, 16, BITREV(0x3, 16)); // Length (always 32-bit,n=(32/8)-1=3) uint32_t crc32_send = crc32(dRegIn, 1 + 4 + 4 + 32 + 16, 0); packBits(dRegIn, 1 + 4 + 4 + 32 + 16, 32, BITREV(crc32_send, 32)); // Allocate a SystemC completion event sc_event *done = new sc_event(); // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, 125); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, 1 + 4 + 4 + 32 + 16 + 32, 4); calc_recv_crc = crc32(dRegOut, 4, 1 + 4 + 4 + 32 + 16 + 32); recv_crc = BITREV(unpackBits (dRegOut, 1 + 4 + 4 + 32 + 16 + 32 + 4, 32), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, 0x0); // We're GO'ing command crc32_send = crc32(dRegIn, 1 + 4, 0); packBits(dRegIn, 1 + 4, 32, BITREV(crc32_send, 32)); // CRC uint32_t result; // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, (1 + 4 + 32 + 36 + ((3 + 1) * 8))); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = BITREV(unpackBits(dRegOut, 1 + 4 + 32 + ((3 + 1) * 8), 4), 4); if (status_ret) { printf("readJtagReg(): Addr: 0x%.8x Status err: 0x%x\n", addr, status_ret); result = 0; break; } calc_recv_crc = crc32(dRegOut, ((3 + 1) * 8) + 4, 1 + 4 + 32); recv_crc = BITREV(unpackBits (dRegOut, 1 + 4 + 32 + ((3 + 1) * 8) + 4, 32), 32); result = BITREV(unpackBits(dRegOut, (1 + 4 + 32), ((3 + 1) * 8)), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); // All done delete[]dRegIn; delete[]dRegOut; delete done; return result; } // readJtagReg () //----------------------------------------------------------------------------- //! Write a 32-bit value via the debug interface //! @note Must be called from a SystemC thread, because of the use of wait() //! @param[in] addr The address of the register //! @param[in] data The register data to write //----------------------------------------------------------------------------- void DebugUnitSC::writeJtagReg(uint32_t addr, uint32_t data) { int drLen; // Size of the data register uint32_t calc_recv_crc = 0, recv_crc, status_ret; drLen = 125; // Size of write command command (bigger than data read) // Initialize the register fields uint64_t *dRegIn = new uint64_t[(drLen + 63) / 64]; uint64_t *dRegOut = new uint64_t[(drLen + 63) / 64]; // Write the READ command clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, BITREV(0x2, 4)); // We're writing a command packBits(dRegIn, 1 + 4, 4, BITREV(0x2, 4)); // Access type, 0x2 = 32-bit WRITE packBits(dRegIn, 1 + 4 + 4, 32, BITREV(addr, 32)); // Address packBits(dRegIn, 1 + 4 + 4 + 32, 16, BITREV(0x3, 16)); // Length (always 32-bit,n=(32/8)-1=3) uint32_t crc32_send = crc32(dRegIn, 1 + 4 + 4 + 32 + 16, 0); packBits(dRegIn, 1 + 4 + 4 + 32 + 16, 32, BITREV(crc32_send, 32)); // Allocate a SystemC completion event sc_event *done = new sc_event(); // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, 125); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, 1 + 4 + 4 + 32 + 16 + 32, 4); calc_recv_crc = crc32(dRegOut, 4, 1 + 4 + 4 + 32 + 16 + 32); recv_crc = BITREV(unpackBits (dRegOut, 1 + 4 + 4 + 32 + 16 + 32 + 4, 32), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); clearBits(dRegIn, drLen); packBits(dRegIn, 0, 1, 0); packBits(dRegIn, 0 + 1, 4, 0x0); // We're GO'ing command packBits(dRegIn, 0 + 1 + 4, 32, BITREV(data, 32)); // Add in data crc32_send = crc32(dRegIn, 1 + 4 + 32, 0); packBits(dRegIn, 1 + 4 + 32, 32, BITREV(crc32_send, 32)); // CRC // Loop until status is OK and CRCs match. do { TapActionDRScan *dRScan = new TapActionDRScan(done, dRegIn, (1 + 4 + ((3 + 1) * 8) + 32 + 36)); tapActionQueue->write(dRScan); wait(*done); dRScan->getDRegOut(dRegOut); delete dRScan; status_ret = unpackBits(dRegOut, 1 + 4 + 32 + 32, 4); calc_recv_crc = crc32(dRegOut, 4, 1 + 4 + 32 + 32); recv_crc = BITREV(unpackBits(dRegOut, 1 + 4 + 32 + 32 + 4, 32), 32); } while ((0 != status_ret) || (calc_recv_crc != recv_crc)); delete[]dRegIn; delete[]dRegOut; delete done; } // writeJtagReg () //----------------------------------------------------------------------------- //! Clear the bits in a data register //! We always clear whole 64-bit words, not just the minimum number of //! bytes. It saves all sorts of confusion when debugging code. //! @note It is the caller's responsibility to make sure the date register //! array is large enough. //! @param[in,out] regArray The data register to clear //! @param[in] regBits Size of the data register (in bits) //----------------------------------------------------------------------------- void DebugUnitSC::clearBits(uint64_t regArray[], int regBits) { memset((char *)regArray, 0, ((regBits + 63) / 64) * 8); } // clearBits () //----------------------------------------------------------------------------- //! Set a bit field in a data register //! The field is cleared, the supplied value masked and then ored into the //! vector. //! @note It is the caller's responsibility to make sure the date register //! array is large enough. //! @param[in,out] regArray The data register //! @param[in] fieldOffset Start of the field (in bits) //! @param[in] fieldBits Size of the field (in bits) //! @param[in] fieldVal Value to set in the field //----------------------------------------------------------------------------- void DebugUnitSC::packBits(uint64_t regArray[], int fieldOffset, int fieldBits, uint64_t fieldVal) { fieldVal &= (1ULL << fieldBits) - 1ULL; // Mask the supplied value int startWord = fieldOffset / 64; int endWord = (fieldOffset + fieldBits - 1) / 64; fieldOffset = fieldOffset % 64; // Now refers to target word // Deal with the startWord. Get enough bits for the mask and put them in the // right place uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset; regArray[startWord] &= ~startMask; regArray[startWord] |= fieldVal << fieldOffset; // If we were all in one word, we can give up now. if (startWord == endWord) { return; } // Deal with the endWord. Get enough bits for the mask. No need to shift // these up - they're always at the bottom of the word int bitsToDo = (fieldOffset + fieldBits) % 64; uint64_t endMask = (1ULL << bitsToDo) - 1ULL; regArray[endWord] &= ~endMask; regArray[endWord] |= fieldVal >> (fieldBits - bitsToDo); } // packBits () //----------------------------------------------------------------------------- //! Extract a bit field from a data register //! The field is cleared, the supplied value masked and then ored into the //! vector. //! @note It is the caller's responsibility to make sure the date register //! array is large enough. //! @param[in,out] regArray The data register //! @param[in] fieldOffset Start of the field (in bits) //! @param[in] fieldBits Size of the field (in bits) //! @return The value in the field //----------------------------------------------------------------------------- uint64_t DebugUnitSC::unpackBits(uint64_t regArray[], int fieldOffset, int fieldBits) { int startWord = fieldOffset / 64; int endWord = (fieldOffset + fieldBits - 1) / 64; fieldOffset = fieldOffset % 64; // Now refers to target word // Deal with the startWord. Get enough bits for the mask and put them in the // right place uint64_t startMask = ((1ULL << fieldBits) - 1ULL) << fieldOffset; uint64_t res = (regArray[startWord] & startMask) >> fieldOffset; // If we were all in one word, we can give up now. if (startWord == endWord) { res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits return res; } // Deal with the endWord. Get enough bits for the mask. No need to shift // these up - they're always at the bottom of the word int bitsToDo = (fieldOffset + fieldBits) % 64; uint64_t endMask = (1ULL << bitsToDo) - 1ULL; res = res | ((regArray[endWord] & endMask) << (fieldBits - bitsToDo)); res &= (1ULL << fieldBits) - 1ULL; // Mask off any unwanted bits return res; } // unpackBits () //----------------------------------------------------------------------------- //! Compute CRC-8-ATM //! The data is in an array of uint64_t, for which we use the first size bits //! to compute the CRC. //! @Note I am using the same algorithm as the ORPSoC debug unit, but I //! believe its function is broken! I don't believe the data bit should //! feature in the computation of bits 2 & 1 of the new CRC. //! @Note I've realized that this is an algorithm for LSB first, so maybe it //! is correct! //! @param dataArray The array of data whose CRC is desired //! @param size The number of bits in the data //----------------------------------------------------------------------------- uint8_t DebugUnitSC::crc8(uint64_t dataArray[], int size) { uint8_t crc = 0; for (int i = 0; i < size; i++) { uint8_t d = (dataArray[i / 64] >> (i % 64)) & 1; uint8_t oldCrc7 = (crc >> 7) & 1; uint8_t oldCrc1 = (crc >> 1) & 1; uint8_t oldCrc0 = (crc >> 0) & 1; uint8_t newCrc2 = d ^ oldCrc1 ^ oldCrc7; // Why d? uint8_t newCrc1 = d ^ oldCrc0 ^ oldCrc7; // Why d? uint8_t newCrc0 = d ^ oldCrc7; crc = ((crc << 1) & 0xf8) | (newCrc2 << 2) | (newCrc1 << 1) | newCrc0; } return crc; } // crc8 () /* Crc of current read or written data. */ uint32_t crc_r, crc_w = 0; /* Generates new crc, sending in new bit input_bit */ uint32_t DebugUnitSC::crc32(uint64_t dataArray[], int size, int offset) { uint32_t crc = 0xffffffff; for (int i = offset; i < size + offset; i++) { uint32_t d = ((dataArray[i / 64] >> (i % 64)) & 1) ? 0xfffffff : 0x0000000; uint32_t crc_32 = ((crc >> 31) & 1) ? 0xfffffff : 0x0000000; crc <<= 1; crc = crc ^ ((d ^ crc_32) & DBG_CRC32_POLY); } return crc; } uint32_t DebugUnitSC::bit_reverse_swar_2(uint32_t x) { return (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); } uint32_t DebugUnitSC::bit_reverse_swar_4(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); return x; } uint32_t DebugUnitSC::bit_reverse_swar_8(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); return x; } uint32_t DebugUnitSC::bit_reverse_swar_16(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return x; } uint32_t DebugUnitSC::bit_reverse_swar_32(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); x = (((x & 0xffff0000) >> 16) | ((x & 0x0000ffff) << 16)); // We could be on 64-bit arch! return x; } uint32_t DebugUnitSC::bit_reverse_data(uint32_t data, int length) { if (length == 2) return bit_reverse_swar_2(data); if (length == 4) return bit_reverse_swar_4(data); if (length == 8) return bit_reverse_swar_8(data); if (length == 16) return bit_reverse_swar_16(data); if (length == 32) return bit_reverse_swar_32(data); // Long and laborious way - hopefully never gets called anymore! uint32_t reverse = 0; for (int i = 0; i < length; i++) reverse |= (((data >> i) & 1) << (length - 1 - i)); return reverse; }
Go to most recent revision | Compare with Previous | Blame | View Log