OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [orpsocv2/] [bench/] [sysc/] [src/] [Or1200MonitorSC.cpp] - Rev 57

Go to most recent revision | Compare with Previous | Blame | View Log

// ----------------------------------------------------------------------------
 
// SystemC OpenRISC 1200 Monitor: implementation
 
// Copyright (C) 2008  Embecosm Limited <info@embecosm.com>
 
// Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
// Contributor Julius Baxter <jb@orsoc.se>
 
// This file is part of the cycle accurate model of the OpenRISC 1000 based
// system-on-chip, ORPSoC, built using Verilator.
 
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
 
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
 
// You should have received a copy of the GNU Lesser General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
// ----------------------------------------------------------------------------
 
// $Id$
 
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sys/types.h>
#include <netinet/in.h>
using namespace std;
 
#include "Or1200MonitorSC.h"
#include "OrpsocMain.h"
 
 
SC_HAS_PROCESS( Or1200MonitorSC );
 
//! Constructor for the OpenRISC 1200 monitor
 
//! @param[in] name  Name of this module, passed to the parent constructor.
//! @param[in] accessor  Accessor class for this Verilated ORPSoC model
 
Or1200MonitorSC::Or1200MonitorSC (sc_core::sc_module_name   name,
				  OrpsocAccess             *_accessor,
				  MemoryLoad               *_memoryload,
				  int argc, 
				  char *argv[]) :
  sc_module (name),
  accessor (_accessor),
  memoryload(_memoryload)
{
 
  // If not -log option, then don't log
 
  string logfileDefault("vlt-executed.log");
  string logfileNameString;
  profiling_enabled = 0; 
  string profileFileName(DEFAULT_PROF_FILE); 
  memdumpFileName = (DEFAULT_MEMDUMP_FILE);
  int memdump_start = 0; int memdump_end = 0;
  do_memdump = 0; // Default is not to do a dump of RAM at finish
 
  insn_count=0;
  cycle_count=0;
 
  exit_perf_summary_enabled = 1; // Simulation exit performance summary is 
                                 // on by default. Turn off with "-q" on the cmd line
 
  // Parse the command line options
  int cmdline_name_found=0;
  if (argc > 1)
    {
      // Search through the command line parameters for the "-log" option
      for(int i=1; i < argc; i++)
	{
	  if ((strcmp(argv[i], "-l")==0) ||
	      (strcmp(argv[i], "--log")==0))
	    {
	      logfileNameString = (argv[i+1]);
	      cmdline_name_found=1;
	    }
	  else if ((strcmp(argv[i], "-q")==0) ||
		   (strcmp(argv[i], "--quiet")==0))
	    {
	      exit_perf_summary_enabled = 0;
	    }
	  else if ((strcmp(argv[i], "-p")==0) ||
		   (strcmp(argv[i], "--profile")==0))
	    {
	      profiling_enabled = 1;
	      // Check for !end of command line and that next thing is not a command
	      if ((i+1 < argc)){
		if(argv[i+1][0] != '-')
		  profileFileName = (argv[i+1]);
	      }
	    }
	  else if ((strcmp(argv[i], "-m")==0) ||
		   (strcmp(argv[i], "--memdump")==0))
	    {
	      do_memdump = 1;
	      // Check for !end of command line and that next thing is not a command
	      // or a memory address
	      if (i+1 < argc)
		{
		  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) != 0))
		    {
		      // Hopefully this is the filename we want to use.
		      // All addresses should have preceeding hex identifier 0x
		      memdumpFileName = argv[i+1];
		      // We've used this next index, can safely increment i
		      i++;
		    }
		}
	      if (i+1 < argc)
		{
		  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
		    {
		      // Hopefully this is is the start address
		      // All addresses should have preceeding hex identifier 0x
		      sscanf( argv[i+1], "0x%x", &memdump_start);		
		      i++;
		    }
		}
	      if (i+1 < argc) 
		{
		  if((argv[i+1][0] != '-') && (strncmp("0x", argv[i+1],2) == 0))
		    {
		      // Hopefully this is is the end address
		      // All addresses should have preceeding hex identifier 0x
		      sscanf( argv[i+1], "0x%x", &memdump_end);
		      i++;
		    }
		}
	    }
	}
    }
 
 
 
  // checkInstruction monitors the bus for special NOP instructionsl
  SC_METHOD (checkInstruction);
  sensitive << clk.pos();
  dont_initialize();
 
 
  if (profiling_enabled)
    {
      profileFile.open(profileFileName.c_str(), ios::out); // Open profiling log file
      if(profileFile.is_open())
	{
	  // If the file was opened OK, then enabled logging and print a message.
	  profiling_enabled = 1;
	  cout << "* Execution profiling enabled. Logging to " << profileFileName << endl;
	}
 
      // Setup profiling function
      SC_METHOD (callLog);
      sensitive << clk.pos();
      dont_initialize();
      start = clock();
    }
 
 
  if(cmdline_name_found==1) // No -log option specified so don't turn on logging
    {      
 
      logging_enabled = 0; // Default is logging disabled      
      statusFile.open(logfileNameString.c_str(), ios::out ); // open file to write to it
 
      if(statusFile.is_open())
	{
	  // If we could open the file then turn on logging
	  logging_enabled = 1;
	  cout << "* Processor execution logged to file: " << logfileNameString << endl;
	}
 
    }  
  if (logging_enabled)
    {  
      SC_METHOD (displayState);
      sensitive << clk.pos();
      dont_initialize();
      start = clock();
    }
 
  // Check sizes we were given from memory dump command line options first
  if (do_memdump)
    {
      if ((memdump_start > ORPSOC_SRAM_SIZE) || (memdump_end > ORPSOC_SRAM_SIZE) || 
	  ((memdump_start > memdump_end) && (memdump_end != 0)))
	{
	  do_memdump = 0;
	  cout << "* Memory dump addresses range incorrect. Limit of memory is 0x" << hex <<  ORPSOC_SRAM_SIZE << ". Memory dumping disabled." << endl;
	}
    }
 
  if (do_memdump)
    {
      // Were we given dump addresses? If not, we dump all of the memory
      // Size of memory isn't clearly defined in any one place. This could lead to
      // big problems when changing size of the RAM in simulation.
 
      if (memdump_start == 0 && memdump_end == 0)
	memdump_end = ORPSOC_SRAM_SIZE;
 
      if (memdump_start != 0 && memdump_end == 0)
	{
	  // Probably just got the single memorydump param
	  // Interpet as a length from 0
	  memdump_end = memdump_start;
	  memdump_start = 0;
	}
 
      if (memdump_start & 0x3) memdump_start &= ~0x3; // word-align the start address      
      if (memdump_end & 0x3) memdump_end = (memdump_end+4) & ~0x3; // word-align the start address
 
      memdump_start_addr = memdump_start;
      memdump_end_addr = memdump_end;      
    }     
 
}	// Or1200MonitorSC ()
 
//! Print command line switches for the options of this module
void 
Or1200MonitorSC::printSwitches()
{
  printf(" [-l <file>] [-q] [-p [<file>]] [-m [<file>] [<0xstardaddr> <0xendaddr>]]");
}
 
//! Print usage for the options of this module
void 
Or1200MonitorSC::printUsage()
{
  printf("  -p, --profile\t\tEnable execution profiling output to file (default "DEFAULT_PROF_FILE")\n");
  printf("  -l, --log\t\tLog processor execution to file\n");
  printf("  -q, --quiet\t\tDisable the performance summary at end of simulation\n");
  printf("  -m, --memdump\t\tDump data from the system's RAM to a file on finish\n\n");
}
 
//! Method to handle special instrutions
 
//! These are l.nop instructions with constant values. At present the
//! following are implemented:
 
//! - l.nop 1  Terminate the program
//! - l.nop 2  Report the value in R3
//! - l.nop 3  Printf the string with the arguments in R3, etc
//! - l.nop 4  Print a character
 
//#define OR1200_OR32_NOP_BITS_31_TO_26               6'b000101
#define OR1200_OR32_NOP               0x14000000
 
extern int SIM_RUNNING;
void
Or1200MonitorSC::checkInstruction()
{
  uint32_t  r3;
  double    ts;
 
  cycle_count++;  
 
  /* Check if this counts as an "executed" instruction */
  if (!accessor->getWbFreeze())
    if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))	
      insn_count++;
    else
      // Exception version
      if (accessor->getExceptFlushpipe())
	insn_count++;
 
  // Check the instruction when the freeze signal is low.
  //if (!accessor->getWbFreeze())
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
    {
      // Do something if we have l.nop
      switch (accessor->getWbInsn())
	{
	case NOP_EXIT:
	  r3 = accessor->getGpr (3);
	  ts = sc_time_stamp().to_seconds() * 1000000000.0;
	  std::cout << std::fixed << std::setprecision (2) << ts;
	  std::cout << " ns: Exiting (" << r3 << ")" << std::endl;
	  perfSummary();
	  if (logging_enabled) statusFile.close();
	  if (profiling_enabled) profileFile.close();
	  memdump();
	  SIM_RUNNING=0;
	  sc_stop();
	  break;
 
	case NOP_REPORT:
	  ts = sc_time_stamp().to_seconds() * 1000000000.0;
	  r3 = accessor->getGpr (3);
	  std::cout << std::fixed << std::setprecision (2) << ts;
	  std::cout << " ns: report (" << hex << r3 << ")" << std::endl;
	  break;
 
	case NOP_PRINTF:
	  ts = sc_time_stamp().to_seconds() * 1000000000.0;
	  std::cout << std::fixed << std::setprecision (2) << ts;
	  std::cout << " ns: printf" << std::endl;
	  break;
 
	case NOP_PUTC:
	  r3 = accessor->getGpr (3);
	  std::cout << (char)r3 << std::flush;
	  break;
 
	default:
	  break;
	}
    }
 
}	// checkInstruction()
 
 
//! Method to log execution in terms of calls and returns
 
void
Or1200MonitorSC::callLog()
{
  uint32_t  exinsn, delaypc; 
  uint32_t o_a; // operand a
  uint32_t o_b; // operand b
  struct label_entry *tmp;
 
  // Instructions should be valid when freeze is low and there are no exceptions
  //if (!accessor->getExFreeze())
  if ((!accessor->getWbFreeze()) && (accessor->getExceptType() == 0))
    {
      //exinsn = accessor->getExInsn();// & 0x3ffffff;
      exinsn = accessor->getWbInsn();
      // Check the instruction
      switch((exinsn >> 26) & 0x3f) { // Check Opcode - top 6 bits
      case 0x1:
	/* Instruction: l.jal */
	o_a = (exinsn >> 0) & 0x3ffffff;
	if(o_a & 0x02000000) o_a |= 0xfe000000;
 
	//delaypc = accessor->getExPC() + (o_a * 4); // PC we're jumping to
	delaypc = accessor->getWbPC() + (o_a * 4); // PC we're jumping to
	// Now we have info about where we're jumping to. Output the info, with label if possible
	// We print the PC we're jumping from + 8 which is the return address
	if ( tmp = memoryload->get_label (delaypc) )
	  profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
	else
	  profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
 
	break;
      case 0x11:
	/* Instruction: l.jr */
	// Bits 15-11 contain register number
	o_b = (exinsn >> 11) & 0x1f;
	if (o_b == 9) // l.jr r9 is typical return
	  {
	    // Now get the value in this register
	    delaypc = accessor->getGpr(o_b);
	    // Output this jump
	    profileFile << "-" << std::setfill('0') << hex << std::setw(8) << cycle_count << " "  << hex << std::setw(8) << delaypc << endl;
	  }
	break;
      case 0x12:
	/* Instruction: l.jalr */
	o_b = (exinsn >> 11) & 0x1f;
	// Now get the value in this register
	delaypc = accessor->getGpr(o_b);
	// Now we have info about where we're jumping to. Output the info, with label if possible
	// We print the PC we're jumping from + 8 which is the return address
	if ( tmp = memoryload->get_label (delaypc) )
	  profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " " << tmp->name << endl;
	else
	  profileFile << "+" << std::setfill('0') << hex << std::setw(8) << cycle_count << " " << hex << std::setw(8) << accessor->getWbPC() + 8 << " " << hex << std::setw(8) << delaypc << " @" << hex << std::setw(8) << delaypc << endl;
 
	break;
 
      }
    }
}	// callLog()
 
 
//! Method to output the state of the processor
 
//! This function will output to a file, if enabled, the status of the processor
//! This copies what the verilog testbench module, or1200_monitor does in it its
//! process which calls the display_arch_state tasks. This is designed to be 
//! identical to that process, so the output is identical
#define PRINT_REGS 1
void
Or1200MonitorSC::displayState()
{
  bool printregs = false;
  // Output the state if we're not frozen and not flushing during a delay slot
  if (!accessor->getWbFreeze())
    {
      if ((((accessor->getWbInsn() & 0xfc000000) != (uint32_t) OR1200_OR32_NOP) || !(accessor->getWbInsn() & (1<<16))) && !(accessor->getExceptFlushpipe() && accessor->getExDslot()))
	{
	  // Print PC, instruction
	  statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getWbPC() << ":  " << hex << std::setw(8) << accessor->getWbInsn() <<  endl;
#if PRINT_REGS
	  printregs = true;
#endif
	}
      else
	{
	  // Exception version
	  if (accessor->getExceptFlushpipe())
	    {
	      // Print PC, instruction, indicate it caused an exception
	      statusFile << "\nEXECUTED("<< std::setfill(' ') << std::setw(11) << dec << insn_count << "): " << std::setfill('0') << hex << std::setw(8) << accessor->getExPC() << ":  " << hex << std::setw(8) << accessor->getExInsn() << "  (exception)" << endl;
#if PRINT_REGS
	      printregs = true;
#endif
 
	    }
	}
 
      if (printregs)
	{
	  // Print general purpose register contents
	  for (int i=0; i<32; i++)
	    {
	      if ((i%4 == 0)&&(i>0)) statusFile << endl;
	      statusFile << std::setfill('0');
	      statusFile << "GPR" << dec << std::setw(2) << i << ": " <<  hex << std::setw(8) << (uint32_t) accessor->getGpr(i) << "  ";		
	    }
	  statusFile << endl;
 
	  statusFile << "SR   : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprSr() << "  ";
	  statusFile << "EPCR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEpcr() << "  ";
	  statusFile << "EEAR0: " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEear() << "  ";	
	  statusFile << "ESR0 : " <<  hex << std::setw(8) << (uint32_t) accessor->getSprEsr() << endl;
 
	}
    }
 
  return;
 
}	// displayState()
 
//! Function to calculate the number of instructions performed and the time taken
void 
Or1200MonitorSC::perfSummary()
{
  if (exit_perf_summary_enabled) 
    {
      double ts;
      ts = sc_time_stamp().to_seconds() * 1000000000.0;
      int cycles = ts / (BENCH_CLK_HALFPERIOD*2); // Number of clock cycles we had
 
      clock_t finish = clock();
      double elapsed_time = (double(finish)-double(start))/CLOCKS_PER_SEC;
      // It took elapsed_time seconds to do insn_count instructions. Divide insn_count by the time to get instructions/second.
      double ips = (insn_count/elapsed_time);
      double mips = (insn_count/elapsed_time)/1000000;
      int hertz = (int) ((cycles/elapsed_time)/1000);
      std::cout << "* Or1200Monitor: simulated " << sc_time_stamp() << ", time elapsed: " << elapsed_time << " seconds" << endl;
      std::cout << "* Or1200Monitor: simulated " << dec << cycles << " clock cycles, executed at approx " << hertz << "kHz" << endl;
      std::cout << "* Or1200Monitor: simulated " << insn_count << " instructions, insn/sec. = " << ips << ", mips = " << mips << endl;
    }
  return;
} 	// perfSummary
 
 
//! Dump contents of simulation's RAM to file
void 
Or1200MonitorSC::memdump()
{
  if (!do_memdump) return;
  uint32_t current_word;
  int size_words = (memdump_end_addr/4) - (memdump_start_addr/4);
  if (!(size_words > 0)) return;
 
  // First try opening the file
  memdumpFile.open(memdumpFileName.c_str(), ios::binary); // Open memorydump file
  if(memdumpFile.is_open())
    {
      // If we could open the file then turn on logging
      cout << "* Dumping system RAM from  0x" << hex << memdump_start_addr << "-0x" << hex << memdump_end_addr << " to file " << memdumpFileName << endl;
 
      // Convert memdump_start_addr to word address
      memdump_start_addr = memdump_start_addr / 4;
      while (size_words)
	{
	  // Read the data from the simulation memory
	  current_word = accessor->get_mem(memdump_start_addr);
	  //cout << hex << current_word << " ";
	  /*
	  cout << hex << ((current_word >> 24 ) & 0xff) << " ";
	  cout << hex << ((current_word >> 16) & 0xff) << " ";
	  cout << hex << ((current_word >> 8 ) & 0xff) << " " ; 
	  cout << hex << ((current_word >> 0 ) & 0xff) << " ";
	  */
	  // Change from whatever endian the host is (most
	  // cases little) to big endian
	  current_word = htonl(current_word);
	  memdumpFile.write((char*) &current_word, 4);
	  memdump_start_addr++; size_words--;
	}
 
      // Ideally we've now finished piping out the data
      // not 100% about the endianess of this.
    }
  memdumpFile.close();
 
}
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.