URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [orpsocv2/] [bench/] [verilog/] [vpi/] [c/] [gdb.c] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
/*$$HEADER*/ /******************************************************************************/ /* */ /* H E A D E R I N F O R M A T I O N */ /* */ /******************************************************************************/ // Project Name : ORPSoCv2 // File Name : gdb.c // Prepared By : jb, rmd // Project Start : 2008-10-01 /*$$COPYRIGHT NOTICE*/ /******************************************************************************/ /* */ /* C O P Y R I G H T N O T I C E */ /* */ /******************************************************************************/ /* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License, a copy of which is available from http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /*$$DESCRIPTION*/ /******************************************************************************/ /* */ /* D E S C R I P T I O N */ /* */ /******************************************************************************/ // // Implements RSP comatible GDB stub // /*$$CHANGE HISTORY*/ /******************************************************************************/ /* */ /* C H A N G E H I S T O R Y */ /* */ /******************************************************************************/ // Date Version Description //------------------------------------------------------------------------ // 081101 Imported code from "jp" project jb // 090219 Adapted code from Jeremy Bennett's RSP server // for the or1ksim project. rmb // 090304 Finished RSP server code import, added extra // functions, adding stability when debugging on // a remote target. jb // 090608 A few hacks for VPI compatibilty added jb // 090827 Fixed endianness, block accesses, byte writes. jb #ifdef CYGWIN_COMPILE #else // linux includes #include <time.h> #include <sched.h> #endif #include <stdio.h> #include <ctype.h> #include <string.h> #include <stdlib.h> #include <unistd.h> #include <stdarg.h> /* Libraries for JTAG proxy server. */ #include <sys/stat.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <sys/ioctl.h> #include <sys/select.h> #include <sys/poll.h> #include <fcntl.h> #include <netdb.h> #include <netinet/tcp.h> #include <signal.h> #include <inttypes.h> #include <errno.h> #include <arpa/inet.h> #ifndef DEBUG_GDB #define DEBUG_GDB 0 #endif #ifndef DEBUG_GDB_DUMP_DATA #define DEBUG_GDB_DUMP_DATA 0 #endif #ifndef DEBUG_GDB_BLOCK_DATA #define DEBUG_GDB_BLOCK_DATA 0 #endif #ifndef DEBUG_CMDS #define DEBUG_CMDS 0 #endif /*! Name of the Or1ksim RSP service */ #define OR1KSIM_RSP_SERVICE "or1ksim-rsp" #include "gdb.h" /* partially copied from gdb/config/or1k */ #include "rsp-rtl_sim.h" #define MAX_GPRS (32) /* Indices of GDB registers that are not GPRs. Must match GDB settings! */ #define PPC_REGNUM (MAX_GPRS + 0) /*!< Previous PC */ #define NPC_REGNUM (MAX_GPRS + 1) /*!< Next PC */ #define SR_REGNUM (MAX_GPRS + 2) /*!< Supervision Register */ #define NUM_REGS (MAX_GPRS + 3) /*!< Total GDB registers */ /* OR1k CPU registers address */ #define NPC_CPU_REG_ADD 0x10 /* Next PC */ #define SR_CPU_REG_ADD 0x11 /* Supervision Register */ #define PPC_CPU_REG_ADD 0x12 /* Previous PC */ #define DMR1_CPU_REG_ADD ((6 << 11) + 16) /* Debug Mode Register 1 (DMR1) 0x3010 */ #define DMR2_CPU_REG_ADD ((6 << 11) + 17) /* Debug Mode Register 2 (DMR2) 0x3011 */ #define DSR_CPU_REG_ADD ((6 << 11) + 20) /* Debug Stop Register (DSR) 0x3014 */ #define DRR_CPU_REG_ADD ((6 << 11) + 21) /* Debug Reason Register (DRR) 0x3015 */ /*! Trap instruction for OR32 */ #define OR1K_TRAP_INSTR 0x21000001 /*! The maximum number of characters in inbound/outbound buffers. The largest packets are the 'G' packet, which must hold the 'G' and all the registers with two hex digits per byte and the 'g' reply, which must hold all the registers, and (in our implementation) an end-of-string (0) character. Adding the EOS allows us to print out the packet as a string. So at least NUMREGBYTES*2 + 1 (for the 'G' or the EOS) are needed for register packets */ #define GDB_BUF_MAX ((NUM_REGS) * 8 + 1) #define GDB_BUF_MAX_TIMES_TWO (GDB_BUF_MAX*2) //#define GDB_BUF_MAX 1500 /*! Size of the matchpoint hash table. Largest prime < 2^10 */ #define MP_HASH_SIZE 1021 /* Definition of special-purpose registers (SPRs). */ #define MAX_SPRS (0x10000) #define SPR_DMR1_ST 0x00400000 /* Single-step trace*/ #define SPR_DMR2_WGB 0x003ff000 /* Watchpoints generating breakpoint */ #define SPR_DSR_TE 0x00002000 /* Trap exception */ #define WORDSBIGENDIAN_N /* Definition of OR1K exceptions */ #define EXCEPT_NONE 0x0000 #define EXCEPT_RESET 0x0100 #define EXCEPT_BUSERR 0x0200 #define EXCEPT_DPF 0x0300 #define EXCEPT_IPF 0x0400 #define EXCEPT_TICK 0x0500 #define EXCEPT_ALIGN 0x0600 #define EXCEPT_ILLEGAL 0x0700 #define EXCEPT_INT 0x0800 #define EXCEPT_DTLBMISS 0x0900 #define EXCEPT_ITLBMISS 0x0a00 #define EXCEPT_RANGE 0x0b00 #define EXCEPT_SYSCALL 0x0c00 #define EXCEPT_FPE 0x0d00 #define EXCEPT_TRAP 0x0e00 // Changed to #defines from static const int's due to compile error // DRR (Debug Reason Register) Bits #define SPR_DRR_RSTE 0x00000001 //!< Reset #define SPR_DRR_BUSEE 0x00000002 //!< Bus error #define SPR_DRR_DPFE 0x00000004 //!< Data page fault #define SPR_DRR_IPFE 0x00000008 //!< Insn page fault #define SPR_DRR_TTE 0x00000010 //!< Tick timer #define SPR_DRR_AE 0x00000020 //!< Alignment #define SPR_DRR_IIE 0x00000040 //!< Illegal instruction #define SPR_DRR_IE 0x00000080 //!< Interrupt #define SPR_DRR_DME 0x00000100 //!< DTLB miss #define SPR_DRR_IME 0x00000200 //!< ITLB miss #define SPR_DRR_RE 0x00000400 //!< Range fault #define SPR_DRR_SCE 0x00000800 //!< System call #define SPR_DRR_FPE 0x00001000 //!< Floating point #define SPR_DRR_TE 0x00002000 //!< Trap /* Defines for Debug Mode Register 1 bits. */ #define SPR_DMR1_CW 0x00000003 /* Mask for CW bits */ #define SPR_DMR1_CW_AND 0x00000001 /* Chain watchpoint 0 AND */ #define SPR_DMR1_CW_OR 0x00000002 /* Chain watchpoint 0 OR */ #define SPR_DMR1_CW_SZ 2 /* Number of bits for each WP */ #define SPR_DMR1_ST 0x00400000 /* Single-step trace */ #define SPR_DMR1_BT 0x00800000 /* Branch trace */ /* Defines for Debug Mode Register 2 bits. */ #define SPR_DMR2_WCE0 0x00000001 /* Watchpoint counter enable 0 */ #define SPR_DMR2_WCE1 0x00000002 /* Watchpoint counter enable 1 */ #define SPR_DMR2_AWTC_MASK 0x00000ffc /* Assign watchpoints to ctr mask */ #define SPR_DMR2_WGB_MASK 0x003ff000 /* Watchpoints generaing brk mask */ #define SPR_DMR2_WBS_MASK 0xffc00000 /* Watchpoint brkpt status mask */ #define SPR_DMR2_AWTC_OFF 2 /* Assign watchpoints to ctr offset */ #define SPR_DMR2_WGB_OFF 12 /* Watchpoints generating brk offset */ #define SPR_DMR2_WBS_OFF 22 /* Watchpoint brkpt status offset */ /*! Definition of GDB target signals. Data taken from the GDB 6.8 source. Only those we use defined here. The exact meaning of signal number is defined by the header `include/gdb/signals.h' in the GDB source code. For an explanation of what each signal means, see target_signal_to_string.*/ enum target_signal { TARGET_SIGNAL_NONE = 0, TARGET_SIGNAL_INT = 2, TARGET_SIGNAL_ILL = 4, TARGET_SIGNAL_TRAP = 5, TARGET_SIGNAL_FPE = 8, TARGET_SIGNAL_BUS = 10, TARGET_SIGNAL_SEGV = 11, TARGET_SIGNAL_ALRM = 14, TARGET_SIGNAL_USR2 = 31, TARGET_SIGNAL_PWR = 32 }; /*! String to map hex digits to chars */ static const char hexchars[]="0123456789abcdef"; //! Is the NPC cached? //! Setting the NPC flushes the pipeline, so subsequent reads will return //! zero until the processor has refilled the pipeline. This will not be //! happening if the processor is stalled (as it is when GDB had control), //! so we must cache the NPC. As soon as the processor is unstalled, this //! cached value becomes invalid. So we must track the stall state, and if //! appropriate cache the NPC. enum stallStates { STALLED, UNSTALLED, UNKNOWN } stallState; int npcIsCached; //!< Is the NPC cached - should be bool uint32_t npcCachedValue; //!< Cached value of the NPC /* Debug registers cache */ #define OR1K_MAX_MATCHPOINTS 8 enum dcr_cc { OR1K_CC_MASKED = 0, OR1K_CC_EQ = 1, OR1K_CC_LT = 2, OR1K_CC_LE = 3, OR1K_CC_GT = 4, OR1K_CC_GE = 5, OR1K_CC_NE = 6, OR1K_CC_RESERVED = 7 }; /* Compare operation */ enum dcr_ct { OR1K_CT_DISABLED = 0, /* Disabled */ OR1K_CT_FETCH = 1, /* Compare to fetch EA */ OR1K_CT_LEA = 2, /* Compare to load EA */ OR1K_CT_SEA = 3, /* Compare to store EA */ OR1K_CT_LDATA = 4, /* Compare to load data */ OR1K_CT_SDATA = 5, /* Compare to store data */ OR1K_CT_AEA = 6, /* Compare to load/store EA */ OR1K_CT_ADATA = 7 /* Compare to load/store data */ }; /* Compare to what? */ /*! Cached OR1K debug register values (ignores counters for now). */ static struct { uint32_t dvr[OR1K_MAX_MATCHPOINTS]; struct { uint32_t dp : 1; /* DVR/DCP present - Read Only */ enum dcr_cc cc : 3; /* Compare condition */ uint32_t sc : 1; /* Signed comparison? */ enum dcr_ct ct : 3; /* Compare to */ uint32_t dcr_reserved : 24; } dcr[OR1K_MAX_MATCHPOINTS]; uint32_t dmr1; uint32_t dmr2; uint32_t dcrw0; uint32_t dcrw1; uint32_t dsr; uint32_t drr; } or1k_dbg_group_regs_cache; // Value to indicate status of the registers // Init to -1, meaning we don't have a copy, 0 = clean copy, 1 = dirty copy static int dbg_regs_cache_dirty = -1; static uint32_t gpr_regs[MAX_GPRS]; // Static array to block read the GPRs into static int err = 0; /************************ JTAG Server Routines ************************/ int serverIP = 0; int serverPort = 0; int server_fd = 0; int gdb_fd = 0; static int tcp_level = 0; /* global to store what chain the debug unit is currently connected to (not the JTAG TAP, but the onchip debug module has selected) */ int gdb_chain = -1; /*! Data structure for RSP buffers. Can't be null terminated, since it may include zero bytes */ struct rsp_buf { char data[GDB_BUF_MAX]; int len; }; /*! Enumeration of different types of matchpoint. These have explicit values matching the second digit of 'z' and 'Z' packets. */ enum mp_type { BP_MEMORY = 0, // software-breakpoint Z0 break BP_HARDWARE = 1, // hardware-breakpoint Z1 hbreak WP_WRITE = 2, // write-watchpoint Z2 watch WP_READ = 3, // read-watchpoint Z3 rwatch WP_ACCESS = 4 // access-watchpoint Z4 awatch }; /*! Data structure for a matchpoint hash table entry */ struct mp_entry { enum mp_type type; /*!< Type of matchpoint */ uint32_t addr; /*!< Address with the matchpoint */ uint32_t instr; /*!< Substituted instruction */ struct mp_entry *next; /*!< Next entry with this hash */ }; /*! Central data for the RSP connection */ static struct { int client_waiting; /*!< Is client waiting a response? */ // Not used int proto_num; /*!< Number of the protocol used */ int client_fd; /*!< FD for talking to GDB */ int sigval; /*!< GDB signal for any exception */ uint32_t start_addr; /*!< Start of last run */ struct mp_entry *mp_hash[MP_HASH_SIZE]; /*!< Matchpoint hash table */ } rsp; /* Forward declarations of static functions */ static char *printTime(void); static int gdb_read(void*, int); static int gdb_write(void*, int); static void ProtocolClean(int, int32_t); static void GDBRequest(void); static void rsp_interrupt(); static char rsp_peek(); static struct rsp_buf *get_packet (void); static void rsp_init (void); static void set_npc (uint32_t addr); static uint32_t get_npc(); static void rsp_check_for_exception(); static int check_for_exception_vector(uint32_t ppc); static void rsp_exception (uint32_t except); static int get_rsp_char (void); static int hex (int c); static void rsp_get_client (void); static void rsp_client_request (void); static void rsp_client_close (void); static void client_close (char err); static void put_str_packet (const char *str); static void rsp_report_exception (void); static void put_packet (struct rsp_buf *p_buf); static void send_rsp_str (unsigned char *data, int len); static void rsp_query (struct rsp_buf *p_buf); static void rsp_vpkt (struct rsp_buf *p_buf); static void rsp_step (struct rsp_buf *p_buf); static void rsp_step_with_signal (struct rsp_buf *p_buf); static void rsp_step_generic (uint32_t addr, uint32_t except); static void rsp_continue (struct rsp_buf *p_buf); static void rsp_continue_with_signal (struct rsp_buf *p_buf); static void rsp_continue_generic (uint32_t addr, uint32_t except); static void rsp_read_all_regs (void); static void rsp_write_all_regs (struct rsp_buf *p_buf); static void rsp_read_mem (struct rsp_buf *p_buf); static void rsp_write_mem (struct rsp_buf *p_buf); static void rsp_write_mem_bin (struct rsp_buf *p_buf); static int rsp_unescape (char *data, int len); static void rsp_read_reg (struct rsp_buf *p_buf); static void rsp_write_reg (struct rsp_buf *p_buf); static void mp_hash_init (void); static void mp_hash_add (enum mp_type type, uint32_t addr, uint32_t instr); static struct mp_entry * mp_hash_lookup (enum mp_type type, uint32_t addr); static struct mp_entry * mp_hash_delete (enum mp_type type, uint32_t addr); static void get_debug_registers(void); static void put_debug_registers(void); static int find_free_dcrdvr_pair(void); static int count_free_dcrdvr_pairs(void); static int find_matching_dcrdvr_pair(uint32_t addr, uint32_t cc); static void insert_hw_watchpoint(int wp_num, uint32_t address, uint32_t cc); static void remove_hw_watchpoint(int wp_num); static void enable_hw_breakpoint(int wp_num); static void disable_hw_breakpoint(int wp_num); static void rsp_remove_matchpoint (struct rsp_buf *p_buf); static void rsp_insert_matchpoint (struct rsp_buf *p_buf); static void rsp_command (struct rsp_buf *p_buf); static void rsp_set (struct rsp_buf *p_buf); static void rsp_restart (void); static void ascii2hex (char *dest,char *src); static void hex2ascii (char *dest, char *src); static uint32_t hex2reg (char *p_buf); static void reg2hex (uint32_t val, char *p_buf); static void swap_buf(char* p_buf, int len); static void set_stall_state (int state); static void reset_or1k (void); static void gdb_ensure_or1k_stalled(); static int gdb_set_chain(int chain); static int gdb_write_byte(uint32_t adr, uint8_t data); static int gdb_write_short(uint32_t adr, uint16_t data); static int gdb_write_reg(uint32_t adr, uint32_t data); static int gdb_read_byte(uint32_t adr, uint8_t *data); static int gdb_read_reg(uint32_t adr, uint32_t *data); static int gdb_write_block(uint32_t adr, uint32_t *data, int len); static int gdb_read_block(uint32_t adr, uint32_t *data, int len); char *printTime(void) { time_t tid; struct tm *strtm; static char timeBuf[20]; time(&tid); strtm = localtime(&tid); sprintf(timeBuf,"[%.02d:%.02d:%.02d] ",strtm->tm_hour,strtm->tm_min,strtm->tm_sec); return timeBuf; } /*---------------------------------------------------------------------------*/ /*!Set the serverPort variable */ /*---------------------------------------------------------------------------*/ void set_rsp_server_port(int portNum) { serverPort = portNum; } /*---------------------------------------------------------------------------*/ /*!Initialize the Remote Serial Protocol connection Set up the central data structures. */ /*---------------------------------------------------------------------------*/ void rsp_init (void) { /* Clear out the central data structure */ rsp.client_waiting = 0; /* GDB client is not waiting for us */ rsp.client_fd = -1; /* i.e. invalid */ rsp.sigval = 0; /* No exception */ rsp.start_addr = EXCEPT_RESET; /* Default restart point */ /* Clear the debug registers cache */ bzero((char*) &or1k_dbg_group_regs_cache, sizeof(or1k_dbg_group_regs_cache)); /* Set up the matchpoint hash table */ mp_hash_init (); /* RSP always starts stalled as though we have just reset the processor. */ rsp_exception (EXCEPT_TRAP); /* Setup the NPC caching variables */ stallState = STALLED; // Force a caching of the NPC npcIsCached = 0; get_npc(); } /* rsp_init () */ /*---------------------------------------------------------------------------*/ /*!Look for action on RSP This function is called when the processor has stalled, which, except for initialization, must be due to an interrupt. If we have no RSP client, we get one. We can make no progress until the client is available. Then if the cause is an exception following a step or continue command, and the exception not been notified to GDB, a packet reporting the cause of the exception is sent. The next client request is then processed. */ /*---------------------------------------------------------------------------*/ void handle_rsp (void) { uint32_t temp_uint32; rsp_init(); while (1){ /* If we have no RSP client, wait until we get one. */ while (-1 == rsp.client_fd) { rsp_get_client (); rsp.client_waiting = 0; /* No longer waiting */ } /* If we have an unacknowledged exception tell the GDB client. If this exception was a trap due to a memory breakpoint, then adjust the NPC. */ if (rsp.client_waiting) { // Check for exception rsp_check_for_exception(); if(stallState == STALLED) // Get the PPC if we're stalled gdb_read_reg(PPC_CPU_REG_ADD, &temp_uint32); if ((TARGET_SIGNAL_TRAP == rsp.sigval) && (NULL != mp_hash_lookup (BP_MEMORY, temp_uint32))) { if (stallState != STALLED) // This is a quick fix for a strange situation seen in some of the simulators where // the sw bp would be detected, but the stalled state variable wasn't updated correctly // indicating that last time it checked, it wasn't set but the processor has now hit the // breakpoint. So run rsp_check_for_exception() to bring everything up to date. rsp_check_for_exception(); if(DEBUG_GDB) printf("Software breakpoint hit at 0x%08x. Rolling back NPC to this instruction\n", temp_uint32); set_npc (temp_uint32); rsp_report_exception(); rsp.client_waiting = 0; /* No longer waiting */ } else if(stallState == STALLED) { // If we're here, the thing has stalled, but not because of a breakpoint we set // report back the exception rsp_report_exception(); rsp.client_waiting = 0; /* No longer waiting */ } } // See if there's any incoming data from the client by peeking at the socket if (rsp_peek() > 0) { if (rsp_peek() == 0x03 && (stallState != STALLED)) // ETX, end of text control char { // Got an interrupt command from GDB, this function should // pull the packet off the socket and stall the processor. // and then send a stop reply packet with signal TARGET_SIGNAL_NONE rsp_interrupt(); rsp.client_waiting = 0; } else if (rsp.client_waiting == 0) { // Default handling of data from the client: /* Get a RSP client request */ rsp_client_request (); } } /* end if (rsp_peek() > 0) */ } } /* handle_rsp () */ /* Check if processor is stalled - if it is, read the DRR and return the target signal code */ static void rsp_check_for_exception() { unsigned char stalled; uint32_t drr; err = dbg_cpu0_read_ctrl(0, &stalled); /* check if we're stalled */ if (!(stalled & 0x01)) { // Processor not stalled. Just return; return; } if (DEBUG_GDB) printf("rsp_check_for_exception() detected processor was stalled\nChecking DRR\n"); // We're stalled stallState = STALLED; npcIsCached = 0; gdb_set_chain(SC_RISC_DEBUG); get_debug_registers(); // Now check the DRR (Debug Reason Register) //gdb_read_reg(DRR_CPU_REG_ADD, &drr); drr = or1k_dbg_group_regs_cache.drr; if (DEBUG_GDB) printf("DRR: 0x%08x\n", drr); switch (drr) { case SPR_DRR_RSTE: rsp.sigval = TARGET_SIGNAL_PWR; break; case SPR_DRR_BUSEE: rsp.sigval = TARGET_SIGNAL_BUS; break; case SPR_DRR_DPFE: rsp.sigval = TARGET_SIGNAL_SEGV; break; case SPR_DRR_IPFE: rsp.sigval = TARGET_SIGNAL_SEGV; break; case SPR_DRR_TTE: rsp.sigval = TARGET_SIGNAL_ALRM; break; case SPR_DRR_AE: rsp.sigval = TARGET_SIGNAL_BUS; break; case SPR_DRR_IIE: rsp.sigval = TARGET_SIGNAL_ILL; break; case SPR_DRR_IE: rsp.sigval = TARGET_SIGNAL_INT; break; case SPR_DRR_DME: rsp.sigval = TARGET_SIGNAL_SEGV; break; case SPR_DRR_IME: rsp.sigval = TARGET_SIGNAL_SEGV; break; case SPR_DRR_RE: rsp.sigval = TARGET_SIGNAL_FPE; break; case SPR_DRR_SCE: rsp.sigval = TARGET_SIGNAL_USR2; break; case SPR_DRR_FPE: rsp.sigval = TARGET_SIGNAL_FPE; break; case SPR_DRR_TE: rsp.sigval = TARGET_SIGNAL_TRAP; break; default: // This must be the case of single step (which does not set DRR) rsp.sigval = TARGET_SIGNAL_TRAP; break; } if (DEBUG_GDB) printf("rsp.sigval: 0x%x\n", rsp.sigval); return; } /*---------------------------------------------------------------------------*/ /*!Check if PPC is in an exception vector that halts program flow Compare the provided PPC with known exception vectors that are fatal to a program's execution. Call rsp_exception(ppc) to set the appropriate sigval and return. @param[in] ppc Value of current PPC, as read from debug unit @return: 1 if we set a sigval and should return control to GDB, else 0 */ /*---------------------------------------------------------------------------*/ static int check_for_exception_vector(uint32_t ppc) { switch(ppc) { // The following should return sigvals to GDB for processing case EXCEPT_BUSERR: case EXCEPT_ALIGN: case EXCEPT_ILLEGAL: case EXCEPT_TRAP: if(DEBUG_GDB) printf("PPC at exception address\n"); rsp_exception(ppc); return 1; default: return 0; } return 1; } /*---------------------------------------------------------------------------*/ /*!Note an exception for future processing The simulator has encountered an exception. Record it here, so that a future call to handle_exception will report it back to the client. The signal is supplied in Or1ksim form and recorded in GDB form. We flag up a warning if an exception is already pending, and ignore the earlier exception. @param[in] except The exception (Or1ksim form) */ /*---------------------------------------------------------------------------*/ void rsp_exception (uint32_t except) { int sigval; /* GDB signal equivalent to exception */ switch (except) { case EXCEPT_RESET: sigval = TARGET_SIGNAL_PWR; break; case EXCEPT_BUSERR: sigval = TARGET_SIGNAL_BUS; break; case EXCEPT_DPF: sigval = TARGET_SIGNAL_SEGV; break; case EXCEPT_IPF: sigval = TARGET_SIGNAL_SEGV; break; case EXCEPT_TICK: sigval = TARGET_SIGNAL_ALRM; break; case EXCEPT_ALIGN: sigval = TARGET_SIGNAL_BUS; break; case EXCEPT_ILLEGAL: sigval = TARGET_SIGNAL_ILL; break; case EXCEPT_INT: sigval = TARGET_SIGNAL_INT; break; case EXCEPT_DTLBMISS: sigval = TARGET_SIGNAL_SEGV; break; case EXCEPT_ITLBMISS: sigval = TARGET_SIGNAL_SEGV; break; case EXCEPT_RANGE: sigval = TARGET_SIGNAL_FPE; break; case EXCEPT_SYSCALL: sigval = TARGET_SIGNAL_USR2; break; case EXCEPT_FPE: sigval = TARGET_SIGNAL_FPE; break; case EXCEPT_TRAP: sigval = TARGET_SIGNAL_TRAP; break; default: fprintf (stderr, "Warning: Unknown RSP exception %u: Ignored\n", except); return; } if ((0 != rsp.sigval) && (sigval != rsp.sigval)) { fprintf (stderr, "Warning: RSP signal %d received while signal " "%d pending: Pending exception replaced\n", sigval, rsp.sigval); } rsp.sigval = sigval; /* Save the signal value */ } /* rsp_exception () */ /*---------------------------------------------------------------------------*/ /*!Get a new client connection. Blocks until the client connection is available. A lot of this code is copied from remote_open in gdbserver remote-utils.c. This involves setting up a socket to listen on a socket for attempted connections from a single GDB instance (we couldn't be talking to multiple GDBs at once!). The service is specified either as a port number in the Or1ksim configuration (parameter rsp_port in section debug, default 51000) or as a service name in the constant OR1KSIM_RSP_SERVICE. The protocol used for communication is specified in OR1KSIM_RSP_PROTOCOL. */ /*---------------------------------------------------------------------------*/ static void rsp_get_client (void) { int tmp_fd; /* Temporary descriptor for socket */ int optval; /* Socket options */ struct sockaddr_in sock_addr; /* Socket address */ socklen_t len; /* Size of the socket address */ /* 0 is used as the RSP port number to indicate that we should use the service name instead. */ if (0 == serverPort) { struct servent *service = getservbyname (OR1KSIM_RSP_SERVICE, "tcp"); if (NULL == service) { fprintf (stderr, "Warning: RSP unable to find service \"%s\": %s \n", OR1KSIM_RSP_SERVICE, strerror (errno)); return; } serverPort = ntohs (service->s_port); } /* Open a socket on which we'll listen for clients */ tmp_fd = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP); if (tmp_fd < 0) { fprintf (stderr, "ERROR: Cannot open RSP socket\n"); exit (0); } /* Allow rapid reuse of the port on this socket */ optval = 1; setsockopt (tmp_fd, SOL_SOCKET, SO_REUSEADDR, (char *)&optval, sizeof (optval)); /* Bind the port to the socket */ sock_addr.sin_family = PF_INET; sock_addr.sin_port = htons (serverPort); sock_addr.sin_addr.s_addr = INADDR_ANY; if (bind (tmp_fd, (struct sockaddr *) &sock_addr, sizeof (sock_addr))) { fprintf (stderr, "ERROR: Cannot bind to RSP socket\n"); exit (0); } /* Listen for (at most one) client */ if (0 != listen (tmp_fd, 1)) { fprintf (stderr, "ERROR: Cannot listen on RSP socket\n"); exit (0); } printf("Waiting for gdb connection on localhost:%d\n", serverPort); fflush (stdout); printf("Press CTRL+c and type 'finish' to exit.\n"); fflush (stdout); /* Accept a client which connects */ len = sizeof (sock_addr); rsp.client_fd = accept (tmp_fd, (struct sockaddr *)&sock_addr, &len); if (-1 == rsp.client_fd) { fprintf (stderr, "Warning: Failed to accept RSP client\n"); return; } /* Enable TCP keep alive process */ optval = 1; setsockopt (rsp.client_fd, SOL_SOCKET, SO_KEEPALIVE, (char *)&optval, sizeof (optval)); int flags; /* If they have O_NONBLOCK, use the Posix way to do it */ #if defined(O_NONBLOCK) /* Fixme: O_NONBLOCK is defined but broken on SunOS 4.1.x and AIX 3.2.5. */ if (-1 == (flags = fcntl(rsp.client_fd, F_GETFL, 0))) flags = 0; fcntl(rsp.client_fd, F_SETFL, flags | O_NONBLOCK); #else /* Otherwise, use the old way of doing it */ flags = 1; ioctl(fd, FIOBIO, &flags); #endif /* Set socket to be non-blocking */ /* We do this because when we're given a continue, or step instruction,command we set the processor stall off, then instnatly check if it's stopped. If it hasn't then we drop through and wait for input from GDB. Obviously this will cause problems when it will stop after we do the check. So now, rsp_peek() has been implemented to simply check if there's an incoming command from GDB (only interested in interrupt commands), otherwise it returns back to and poll the processor's PPC and stall bit. It can only do this if the socket is non-blocking. At first test, simply adding this line appeared to give no problems with the existing code. No "simulation" of blocking behaviour on the non-blocking socket was required (in the event that a read/write throws back a EWOULDBLOCK error, as was looked to be the case in the previous GDB handling code) -- Julius */ if (ioctl(rsp.client_fd, FIONBIO, (char *)&optval) > 0 ) { perror("ioctl() failed"); close(rsp.client_fd); close(tmp_fd); exit(0); } /* Don't delay small packets, for better interactive response (disable Nagel's algorithm) */ optval = 1; setsockopt (rsp.client_fd, IPPROTO_TCP, TCP_NODELAY, (char *)&optval, sizeof (optval)); /* Socket is no longer needed */ close (tmp_fd); /* No longer need this */ signal (SIGPIPE, SIG_IGN); /* So we don't exit if client dies */ printf ("Remote debugging from host %s\n", inet_ntoa (sock_addr.sin_addr)); } /* rsp_get_client () */ /*---------------------------------------------------------------------------*/ /*!Deal with a request from the GDB client session In general, apart from the simplest requests, this function replies on other functions to implement the functionality. */ /*---------------------------------------------------------------------------*/ static void rsp_client_request (void) { struct rsp_buf *p_buf = get_packet (); /* Message sent to us */ // Null packet means we hit EOF or the link was closed for some other // reason. Close the client and return if (NULL == p_buf) { rsp_client_close (); return; } if (DEBUG_GDB){ printf("%s-----------------------------------------------------\n", printTime()); printf ("Packet received %s: %d chars\n", p_buf->data, p_buf->len ); fflush (stdout); } switch (p_buf->data[0]) { case '!': /* Request for extended remote mode */ put_str_packet ("OK"); // OK = supports and has enabled extended mode. return; case '?': /* Return last signal ID */ rsp_report_exception(); return; case 'A': /* Initialization of argv not supported */ fprintf (stderr, "Warning: RSP 'A' packet not supported: ignored\n"); put_str_packet ("E01"); return; case 'b': /* Setting baud rate is deprecated */ fprintf (stderr, "Warning: RSP 'b' packet is deprecated and not " "supported: ignored\n"); return; case 'B': /* Breakpoints should be set using Z packets */ fprintf (stderr, "Warning: RSP 'B' packet is deprecated (use 'Z'/'z' " "packets instead): ignored\n"); return; case 'c': /* Continue */ rsp_continue (p_buf); return; case 'C': /* Continue with signal */ rsp_continue_with_signal (p_buf); return; case 'd': /* Disable debug using a general query */ fprintf (stderr, "Warning: RSP 'd' packet is deprecated (define a 'Q' " "packet instead: ignored\n"); return; case 'D': /* Detach GDB. Do this by closing the client. The rules say that execution should continue. TODO. Is this really then intended meaning? Or does it just mean that only vAttach will be recognized after this? */ put_str_packet ("OK"); // In VPI disconnect everyone and exit rsp_client_close(); client_close('0'); dbg_client_detached(); // Send message to sim that the client detached exit(0); //reset_or1k (); //set_stall_state (0); return; case 'F': /* File I/O is not currently supported */ fprintf (stderr, "Warning: RSP file I/O not currently supported: 'F' " "packet ignored\n"); return; case 'g': rsp_read_all_regs (); return; case 'G': rsp_write_all_regs (p_buf); return; case 'H': /* Set the thread number of subsequent operations. For now ignore silently and just reply "OK" */ put_str_packet ("OK"); return; case 'i': /* Single instruction step */ fprintf (stderr, "Warning: RSP cycle stepping not supported: target " "stopped immediately\n"); rsp.client_waiting = 1; /* Stop reply will be sent */ return; case 'I': /* Single instruction step with signal */ fprintf (stderr, "Warning: RSP cycle stepping not supported: target " "stopped immediately\n"); rsp.client_waiting = 1; /* Stop reply will be sent */ return; case 'k': /* Kill request. Do nothing for now. */ return; case 'm': /* Read memory (symbolic) */ rsp_read_mem (p_buf); return; case 'M': /* Write memory (symbolic) */ rsp_write_mem (p_buf); return; case 'p': /* Read a register */ rsp_read_reg (p_buf); return; case 'P': /* Write a register */ rsp_write_reg (p_buf); return; case 'q': /* Any one of a number of query packets */ rsp_query (p_buf); return; case 'Q': /* Any one of a number of set packets */ rsp_set (p_buf); return; case 'r': /* Reset the system. Deprecated (use 'R' instead) */ fprintf (stderr, "Warning: RSP 'r' packet is deprecated (use 'R' " "packet instead): ignored\n"); return; case 'R': /* Restart the program being debugged. */ rsp_restart (); return; case 's': /* Single step (one high level instruction). This could be hard without DWARF2 info */ rsp_step (p_buf); return; case 'S': /* Single step (one high level instruction) with signal. This could be hard without DWARF2 info */ rsp_step_with_signal (p_buf); return; case 't': /* Search. This is not well defined in the manual and for now we don't support it. No response is defined. */ fprintf (stderr, "Warning: RSP 't' packet not supported: ignored\n"); return; case 'T': /* Is the thread alive. We are bare metal, so don't have a thread context. The answer is always "OK". */ put_str_packet ("OK"); return; case 'v': /* Any one of a number of packets to control execution */ rsp_vpkt (p_buf); return; case 'X': /* Write memory (binary) */ rsp_write_mem_bin (p_buf); return; case 'z': /* Remove a breakpoint/watchpoint. */ rsp_remove_matchpoint (p_buf); return; case 'Z': /* Insert a breakpoint/watchpoint. */ rsp_insert_matchpoint (p_buf); return; default: /* Unknown commands are ignored */ fprintf (stderr, "Warning: Unknown RSP request %s\n", p_buf->data); return; } } /* rsp_client_request () */ /*---------------------------------------------------------------------------*/ /*!Close the connection to the client if it is open */ /*---------------------------------------------------------------------------*/ static void rsp_client_close (void) { if (-1 != rsp.client_fd) { close (rsp.client_fd); rsp.client_fd = -1; } } /* rsp_client_close () */ /*---------------------------------------------------------------------------*/ /*!Send a packet to the GDB client Modeled on the stub version supplied with GDB. Put out the data preceded by a '$', followed by a '#' and a one byte checksum. '$', '#', '*' and '}' are escaped by preceding them with '}' and then XORing the character with 0x20. @param[in] p_buf The data to send */ /*---------------------------------------------------------------------------*/ static void put_packet (struct rsp_buf *p_buf) { unsigned char data[GDB_BUF_MAX * 2]; int len; int ch; /* Ack char */ /* Construct $<packet info>#<checksum>. Repeat until the GDB client acknowledges satisfactory receipt. */ do { unsigned char checksum = 0; /* Computed checksum */ int count = 0; /* Index into the buffer */ if (DEBUG_GDB_DUMP_DATA){ printf ("Putting %s\n\n", p_buf->data); fflush (stdout); } len = 0; data[len++] = '$'; /* Start char */ /* Body of the packet */ for (count = 0; count < p_buf->len; count++) { unsigned char ch = p_buf->data[count]; /* Check for escaped chars */ if (('$' == ch) || ('#' == ch) || ('*' == ch) || ('}' == ch)) { ch ^= 0x20; checksum += (unsigned char)'}'; data[len++] = '}'; } checksum += ch; data[len++] = ch; } data[len++] = '#'; /* End char */ /* Computed checksum */ data[len++] = (hexchars[checksum >> 4]); data[len++] = (hexchars[checksum % 16]); send_rsp_str ((unsigned char *) &data, len); /* Check for ack of connection failure */ ch = get_rsp_char (); if (0 > ch) { return; /* Fail the put silently. */ } } while ('+' != ch); } /* put_packet () */ /*---------------------------------------------------------------------------*/ /*!Convenience to put a constant string packet param[in] str The text of the packet */ /*---------------------------------------------------------------------------*/ static void put_str_packet (const char *str) { struct rsp_buf buffer; int len = strlen (str); /* Construct the packet to send, so long as string is not too big, otherwise truncate. Add EOS at the end for convenient debug printout */ if (len >= GDB_BUF_MAX) { fprintf (stderr, "Warning: String %s too large for RSP packet: " "truncated\n", str); len = GDB_BUF_MAX - 1; } strncpy (buffer.data, str, len); buffer.data[len] = 0; buffer.len = len; put_packet (&buffer); } /* put_str_packet () */ /*---------------------------------------------------------------------------*/ /*!Get a packet from the GDB client Modeled on the stub version supplied with GDB. The data is in a static buffer. The data should be copied elsewhere if it is to be preserved across a subsequent call to get_packet(). Unlike the reference implementation, we don't deal with sequence numbers. GDB has never used them, and this implementation is only intended for use with GDB 6.8 or later. Sequence numbers were removed from the RSP standard at GDB 5.0. @return A pointer to the static buffer containing the data */ /*---------------------------------------------------------------------------*/ static struct rsp_buf * get_packet (void) { static struct rsp_buf buf; /* Survives the return */ /* Keep getting packets, until one is found with a valid checksum */ while (1) { unsigned char checksum; /* The checksum we have computed */ int count; /* Index into the buffer */ int ch; /* Current character */ /* Wait around for the start character ('$'). Ignore all other characters */ ch = get_rsp_char (); while (ch != '$') { if (-1 == ch) { return NULL; /* Connection failed */ } ch = get_rsp_char (); // Potentially handle an interrupt character (0x03) here } /* Read until a '#' or end of buffer is found */ checksum = 0; count = 0; while (count < GDB_BUF_MAX - 1) { ch = get_rsp_char (); if(rsp.client_waiting && DEBUG_GDB) { printf("%x\n",ch); } /* Check for connection failure */ if (0 > ch) { return NULL; } /* If we hit a start of line char begin all over again */ if ('$' == ch) { checksum = 0; count = 0; continue; } /* Break out if we get the end of line char */ if ('#' == ch) { break; } /* Update the checksum and add the char to the buffer */ checksum = checksum + (unsigned char)ch; buf.data[count] = (char)ch; count = count + 1; } /* Mark the end of the buffer with EOS - it's convenient for non-binary data to be valid strings. */ buf.data[count] = 0; buf.len = count; /* If we have a valid end of packet char, validate the checksum */ if ('#' == ch) { unsigned char xmitcsum; /* The checksum in the packet */ ch = get_rsp_char (); if (0 > ch) { return NULL; /* Connection failed */ } xmitcsum = hex (ch) << 4; ch = get_rsp_char (); if (0 > ch) { return NULL; /* Connection failed */ } xmitcsum += hex (ch); /* If the checksums don't match print a warning, and put the negative ack back to the client. Otherwise put a positive ack. */ if (checksum != xmitcsum) { fprintf (stderr, "Warning: Bad RSP checksum: Computed " "0x%02x, received 0x%02x\n", checksum, xmitcsum); ch = '-'; send_rsp_str ((unsigned char *) &ch, 1); /* Failed checksum */ } else { ch = '+'; send_rsp_str ((unsigned char *) &ch, 1); /* successful transfer */ break; } } else { fprintf (stderr, "Warning: RSP packet overran buffer\n"); } } return &buf; /* Success */ } /* get_packet () */ /*---------------------------------------------------------------------------*/ /*!Put a single character out onto the client socket This should only be called if the client is open, but we check for safety. @param[in] c The character to put out */ /*---------------------------------------------------------------------------*/ static void send_rsp_str (unsigned char *data, int len) { if (-1 == rsp.client_fd) { fprintf (stderr, "Warning: Attempt to write '%s' to unopened RSP " "client: Ignored\n", data); return; } /* Write until successful (we retry after interrupts) or catastrophic failure. */ while (1) { switch (write (rsp.client_fd, data, len)) { case -1: /* Error: only allow interrupts or would block */ if ((EAGAIN != errno) && (EINTR != errno)) { fprintf (stderr, "Warning: Failed to write to RSP client: " "Closing client connection: %s\n", strerror (errno)); rsp_client_close (); return; } break; case 0: break; /* Nothing written! Try again */ default: return; /* Success, we can return */ } } } /* send_rsp_str () */ /*---------------------------------------------------------------------------*/ /*!Get a single character from the client socket This should only be called if the client is open, but we check for safety. @return The character read, or -1 on failure */ /*---------------------------------------------------------------------------*/ static int get_rsp_char () { if (-1 == rsp.client_fd) { fprintf (stderr, "Warning: Attempt to read from unopened RSP " "client: Ignored\n"); return -1; } /* Non-blocking read until successful (we retry after interrupts) or catastrophic failure. */ while (1) { unsigned char c; switch (read (rsp.client_fd, &c, sizeof (c))) { case -1: /* Error: only allow interrupts */ if ((EAGAIN != errno) && (EINTR != errno)) { fprintf (stderr, "Warning: Failed to read from RSP client: " "Closing client connection: %s\n", strerror (errno)); rsp_client_close (); return -1; } break; case 0: // EOF rsp_client_close (); return -1; default: return c & 0xff; /* Success, we can return (no sign extend!) */ } } } /* get_rsp_char () */ /*---------------------------------------------------------------------------*/ /* !Peek at data coming into server from GDB Useful for polling for ETX (0x3) chars being sent when GDB wants to interrupt @return the char we peeked, 0 otherwise */ /*---------------------------------------------------------------------------*/ static char rsp_peek() { /* if (-1 == rsp.client_fd) { fprintf (stderr, "Warning: Attempt to read from unopened RSP " "client: Ignored\n"); return -1; } */ char c; int n; // Using recv here instead of read becuase we can pass the MSG_PEEK // flag, which lets us look at what's on the socket, without actually // taking it off //if (DEBUG_GDB) // printf("peeking at GDB socket...\n"); n = recv (rsp.client_fd, &c, sizeof (c), MSG_PEEK); //if (DEBUG_GDB) // printf("peeked, got n=%d, c=0x%x\n",n, c); if (n > 0) return c; else return '\0'; } /*---------------------------------------------------------------------------*/ /*!Handle an interrupt from GDB Detect an interrupt from GDB and stall the processor */ /*---------------------------------------------------------------------------*/ static void rsp_interrupt() { unsigned char c; if (read (rsp.client_fd, &c, sizeof (c)) <= 0) { // Had issues, just return return; } // Ensure this is a ETX control char (0x3), currently, we only call this // function when we've peeked and seen it, otherwise, ignore, return and pray // things go back to normal... if (c != 0x03) { printf("Warning: Interrupt character expected but not found on socket.\n"); return; } // Otherwise, it's an interrupt packet, stall the processor, and upon return // to the main handle_rsp() loop, it will inform GDB. if (DEBUG_GDB) printf("Interrupt received from GDB. Stalling processor.\n"); set_stall_state (1); // Send a stop reply response, manually set rsp.sigval to TARGET_SIGNAL_NONE rsp.sigval = TARGET_SIGNAL_NONE; rsp_report_exception(); rsp.client_waiting = 0; /* No longer waiting */ return; } /*---------------------------------------------------------------------------*/ /*!"Unescape" RSP binary data '#', '$' and '}' are escaped by preceding them by '}' and oring with 0x20. This function reverses that, modifying the data in place. @param[in] data The array of bytes to convert @para[in] len The number of bytes to be converted @return The number of bytes AFTER conversion */ /*---------------------------------------------------------------------------*/ static int rsp_unescape (char *data, int len) { int from_off = 0; /* Offset to source char */ int to_off = 0; /* Offset to dest char */ while (from_off < len) { /* Is it escaped */ if ( '}' == data[from_off]) { from_off++; data[to_off] = data[from_off] ^ 0x20; } else { data[to_off] = data[from_off]; } from_off++; to_off++; } return to_off; } /* rsp_unescape () */ /*---------------------------------------------------------------------------*/ /*!Initialize the matchpoint hash table This is an open hash table, so this function clears all the links to NULL. */ /*---------------------------------------------------------------------------*/ static void mp_hash_init (void) { int i; for (i = 0; i < MP_HASH_SIZE; i++) { rsp.mp_hash[i] = NULL; } } /* mp_hash_init () */ /*---------------------------------------------------------------------------*/ /*!Add an entry to the matchpoint hash table Add the entry if it wasn't already there. If it was there do nothing. The match just be on type and addr. The instr need not match, since if this is a duplicate insertion (perhaps due to a lost packet) they will be different. @param[in] type The type of matchpoint @param[in] addr The address of the matchpoint @para[in] instr The instruction to associate with the address */ /*---------------------------------------------------------------------------*/ static void mp_hash_add (enum mp_type type, uint32_t addr, uint32_t instr) { int hv = addr % MP_HASH_SIZE; struct mp_entry *curr; /* See if we already have the entry */ for(curr = rsp.mp_hash[hv]; NULL != curr; curr = curr->next) { if ((type == curr->type) && (addr == curr->addr)) { return; /* We already have the entry */ } } /* Insert the new entry at the head of the chain */ curr = (struct mp_entry*) malloc (sizeof (*curr)); curr->type = type; curr->addr = addr; curr->instr = instr; curr->next = rsp.mp_hash[hv]; rsp.mp_hash[hv] = curr; } /* mp_hash_add () */ /*---------------------------------------------------------------------------*/ /*!Look up an entry in the matchpoint hash table The match must be on type AND addr. @param[in] type The type of matchpoint @param[in] addr The address of the matchpoint @return The entry deleted, or NULL if the entry was not found */ /*---------------------------------------------------------------------------*/ static struct mp_entry * mp_hash_lookup (enum mp_type type, uint32_t addr) { int hv = addr % MP_HASH_SIZE; struct mp_entry *curr; /* Search */ for (curr = rsp.mp_hash[hv]; NULL != curr; curr = curr->next) { if ((type == curr->type) && (addr == curr->addr)) { return curr; /* The entry found */ } } /* Not found */ return NULL; } /* mp_hash_lookup () */ /*---------------------------------------------------------------------------*/ /*!Delete an entry from the matchpoint hash table If it is there the entry is deleted from the hash table. If it is not there, no action is taken. The match must be on type AND addr. The usual fun and games tracking the previous entry, so we can delete things. @note The deletion DOES NOT free the memory associated with the entry, since that is returned. The caller should free the memory when they have used the information. @param[in] type The type of matchpoint @param[in] addr The address of the matchpoint @return The entry deleted, or NULL if the entry was not found */ /*---------------------------------------------------------------------------*/ static struct mp_entry * mp_hash_delete (enum mp_type type, uint32_t addr) { int hv = addr % MP_HASH_SIZE; struct mp_entry *prev = NULL; struct mp_entry *curr; /* Search */ for (curr = rsp.mp_hash[hv]; NULL != curr; curr = curr->next) { if ((type == curr->type) && (addr == curr->addr)) { /* Found - delete. Method depends on whether we are the head of chain. */ if (NULL == prev) { rsp.mp_hash[hv] = curr->next; } else { prev->next = curr->next; } return curr; /* The entry deleted */ } prev = curr; } /* Not found */ return NULL; } /* mp_hash_delete () */ /*---------------------------------------------------------------------------*/ /*!Utility to give the value of a hex char @param[in] ch A character representing a hexadecimal digit. Done as -1, for consistency with other character routines, which can use -1 as EOF. @return The value of the hex character, or -1 if the character is invalid. */ /*---------------------------------------------------------------------------*/ static int hex (int c) { return ((c >= 'a') && (c <= 'f')) ? c - 'a' + 10 : ((c >= '0') && (c <= '9')) ? c - '0' : ((c >= 'A') && (c <= 'F')) ? c - 'A' + 10 : -1; } /* hex () */ /*---------------------------------------------------------------------------*/ /*!Convert a register to a hex digit string The supplied 32-bit value is converted to an 8 digit hex string according the target endianism. It is null terminated for convenient printing. @param[in] val The value to convert @param[out] p_buf The buffer for the text string */ /*---------------------------------------------------------------------------*/ static void reg2hex (uint32_t val, char *p_buf) { int n; /* Counter for digits */ int nyb_shift; for (n = 0; n < 8; n++) { #ifdef WORDSBIGENDIAN if(n%2==0){ nyb_shift = n * 4 + 4; } else{ nyb_shift = n * 4 - 4; } #else nyb_shift = 28 - (n * 4); #endif p_buf[n] = hexchars[(val >> nyb_shift) & 0xf]; } p_buf[8] = 0; /* Useful to terminate as string */ } /* reg2hex () */ /*---------------------------------------------------------------------------*/ /*!Convert a hex digit string to a register value The supplied 8 digit hex string is converted to a 32-bit value according the target endianism @param[in] p_buf The buffer with the hex string @return The value to convert */ /*---------------------------------------------------------------------------*/ static uint32_t hex2reg (char *p_buf) { int n; /* Counter for digits */ uint32_t val = 0; /* The result */ for (n = 0; n < 8; n++) { #ifdef WORDSBIGENDIAN int nyb_shift = n * 4; #else int nyb_shift = 28 - (n * 4); #endif val |= hex (p_buf[n]) << nyb_shift; } return val; } /* hex2reg () */ /*---------------------------------------------------------------------------*/ /*!Convert an ASCII character string to pairs of hex digits Both source and destination are null terminated. @param[out] dest Buffer to store the hex digit pairs (null terminated) @param[in] src The ASCII string (null terminated) */ /*---------------------------------------------------------------------------*/ static void ascii2hex (char *dest, char *src) { int i; /* Step through converting the source string */ for (i = 0; src[i] != '\0'; i++) { char ch = src[i]; dest[i * 2] = hexchars[ch >> 4 & 0xf]; dest[i * 2 + 1] = hexchars[ch & 0xf]; } dest[i * 2] = '\0'; } /* ascii2hex () */ /*---------------------------------------------------------------------------*/ /*!Convert pairs of hex digits to an ASCII character string Both source and destination are null terminated. @param[out] dest The ASCII string (null terminated) @param[in] src Buffer holding the hex digit pairs (null terminated) */ /*---------------------------------------------------------------------------*/ static void hex2ascii (char *dest, char *src) { int i; /* Step through convering the source hex digit pairs */ for (i = 0; src[i * 2] != '\0' && src[i * 2 + 1] != '\0'; i++) { dest[i] = ((hex (src[i * 2]) & 0xf) << 4) | (hex (src[i * 2 + 1]) & 0xf); } dest[i] = '\0'; } /* hex2ascii () */ /*---------------------------------------------------------------------------*/ /*!Set the program counter This sets the value in the NPC SPR. Not completely trivial, since this is actually cached in cpu_state.pc. Any reset of the NPC also involves clearing the delay state and setting the pcnext global. Only actually do this if the requested address is different to the current NPC (avoids clearing the delay pipe). @param[in] addr The address to use */ /*---------------------------------------------------------------------------*/ static void set_npc (uint32_t addr) { // First set the chain gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if (addr != get_npc()) { gdb_write_reg(NPC_CPU_REG_ADD, addr); if (STALLED == stallState) { if (DEBUG_GDB) printf("set_npc(): New NPC value (0x%08x) written and locally cached \n", addr); npcCachedValue = addr; npcIsCached = 1; } else { if (DEBUG_GDB) printf("set_npc(): New NPC value (0x%08x) written \n", addr); npcIsCached = 0; } } else return; } /* set_npc () */ //! Read the value of the Next Program Counter (a SPR) //! Setting the NPC flushes the pipeline, so subsequent reads will return //! zero until the processor has refilled the pipeline. This will not be //! happening if the processor is stalled (as it is when GDB had control), //! so we must cache the NPC. As soon as the processor is unstalled, this //! cached value becomes invalid. //! If we are stalled and the value has been cached, use it. If we are stalled //! and the value has not been cached, cache it (for efficiency) and use //! it. Otherwise read the corresponding SPR. //! @return The value of the NPC static uint32_t get_npc () { uint32_t current_npc; if (STALLED == stallState) { if (npcIsCached == 0) { err = gdb_set_chain(SC_RISC_DEBUG); err = gdb_read_reg(NPC_CPU_REG_ADD, &npcCachedValue); if(err > 0){ printf("Error %d reading NPC\n", err); rsp_client_close (); return 0; } if (DEBUG_GDB) printf("get_npc(): caching newly read NPC value (0x%08x)\n",npcCachedValue); npcIsCached = 1; } else if (DEBUG_GDB) printf("get_npc(): reading cached NPC value (0x%08x)\n",npcCachedValue); return npcCachedValue; } else { err = gdb_read_reg(NPC_CPU_REG_ADD, ¤t_npc); if(err > 0){ printf("Error %d reading NPC\n", err); rsp_client_close (); return 0; } return current_npc; } } // get_npc () /*---------------------------------------------------------------------------*/ /*!Send a packet acknowledging an exception has occurred This is only called if there is a client FD to talk to */ /*---------------------------------------------------------------------------*/ static void rsp_report_exception (void) { struct rsp_buf buffer; /* Construct a signal received packet */ buffer.data[0] = 'S'; buffer.data[1] = hexchars[rsp.sigval >> 4]; buffer.data[2] = hexchars[rsp.sigval % 16]; buffer.data[3] = 0; buffer.len = strlen (buffer.data); put_packet (&buffer); } /* rsp_report_exception () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP continue request Parse the command to see if there is an address. Uses the underlying generic continue function, with EXCEPT_NONE. @param[in] p_buf The full continue packet */ /*---------------------------------------------------------------------------*/ static void rsp_continue (struct rsp_buf *p_buf) { uint32_t addr; /* Address to continue from, if any */ // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ // Make sure the processor is stalled gdb_ensure_or1k_stalled(); if(err > 0){ printf("Error %d to set RISC Debug Interface chain in the CONTINUE command 'c'\n", err); rsp_client_close (); return; } if (0 == strcmp ("c", p_buf->data)) { // Arc Sim Code --> addr = cpu_state.pc; /* Default uses current NPC */ /* ---------- NPC ---------- */ addr = get_npc(); } else if (1 != sscanf (p_buf->data, "c%x", &addr)) { fprintf (stderr, "Warning: RSP continue address %s not recognized: ignored\n", p_buf->data); // Arc Sim Code --> addr = cpu_state.pc; /* Default uses current NPC */ /* ---------- NPC ---------- */ addr = get_npc(); } if (DEBUG_GDB) printf("rsp_continue() --> Read NPC = 0x%08x\n", addr); rsp_continue_generic (addr, EXCEPT_NONE); } /* rsp_continue () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP continue with signal request Currently null. Will use the underlying generic continue function. @param[in] p_buf The full continue with signal packet */ /*---------------------------------------------------------------------------*/ static void rsp_continue_with_signal (struct rsp_buf *p_buf) { printf ("RSP continue with signal '%s' received\n", p_buf->data); } /* rsp_continue_with_signal () */ /*---------------------------------------------------------------------------*/ /*!Generic processing of a continue request The signal may be EXCEPT_NONE if there is no exception to be handled. Currently the exception is ignored. The single step flag is cleared in the debug registers and then the processor is unstalled. @param[in] addr Address from which to step @param[in] except The exception to use (if any) */ /*---------------------------------------------------------------------------*/ static void rsp_continue_generic (uint32_t addr, uint32_t except) { uint32_t temp_uint32; /* Set the address as the value of the next program counter */ set_npc (addr); or1k_dbg_group_regs_cache.drr = 0; // Clear DRR or1k_dbg_group_regs_cache.dmr1 &= ~SPR_DMR1_ST; // Continuing, so disable step if it's enabled or1k_dbg_group_regs_cache.dsr |= SPR_DSR_TE; // If breakpoints-cause-traps is not enabled dbg_regs_cache_dirty = 1; // Always write the cache back /* Commit all debug registers */ if (dbg_regs_cache_dirty == 1) put_debug_registers(); /* Unstall the processor */ set_stall_state (0); /* Debug regs cache is now invalid */ dbg_regs_cache_dirty = -1; /* Note the GDB client is now waiting for a reply. */ rsp.client_waiting = 1; } /* rsp_continue_generic () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP read all registers request The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PPC (i.e. SPR PPC), NPC (i.e. SPR NPC) and SR (i.e. SPR SR). Each register is returned as a sequence of bytes in target endian order. Each byte is packed as a pair of hex digits. */ /*---------------------------------------------------------------------------*/ static void rsp_read_all_regs (void) { struct rsp_buf buffer; /* Buffer for the reply */ int r; /* Register index */ uint32_t temp_uint32; // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ // Read all GPRs gdb_read_block(0x400, (uint32_t *) &gpr_regs, MAX_GPRS*4); for (r = 0; r < MAX_GPRS; r++){ /*err = gdb_read_reg(0x400 + r, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_read_reg at reg. %d\n", err, r); put_str_packet ("E01"); return; } */ reg2hex (gpr_regs[r], &(buffer.data[r * 8])); if (DEBUG_GDB_DUMP_DATA){ switch(r % 4) { case 0: printf("gpr%02d 0x%08x ", r, temp_uint32); break; case 1: case 2: printf("0x%08x ", temp_uint32); break; case 3: printf("0x%08x\n", temp_uint32); break; default: break; } } } /* Read NPC,PPC and SR regs, they are consecutive in CPU, at adr. 16, 17 and 18 */ uint32_t pcs_and_sr[3]; gdb_read_block(NPC_CPU_REG_ADD, (uint32_t *)pcs_and_sr, 3 * 4); reg2hex (pcs_and_sr[0], &(buffer.data[NPC_REGNUM * 8])); reg2hex (pcs_and_sr[1], &(buffer.data[SR_REGNUM * 8])); reg2hex (pcs_and_sr[2], &(buffer.data[PPC_REGNUM * 8])); if (DEBUG_GDB_DUMP_DATA) printf("PPC 0x%08x\n", pcs_and_sr[2]); if (DEBUG_GDB_DUMP_DATA) printf("NPC 0x%08x\n", pcs_and_sr[0]); if (DEBUG_GDB_DUMP_DATA) printf("SR 0x%08x\n", pcs_and_sr[1]); /* Finalize the packet and send it */ buffer.data[NUM_REGS * 8] = 0; buffer.len = NUM_REGS * 8; put_packet (&buffer); return; } /* rsp_read_all_regs () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP write all registers request The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PPC (i.e. SPR PPC), NPC (i.e. SPR NPC) and SR (i.e. SPR SR). Each register is supplied as a sequence of bytes in target endian order. Each byte is packed as a pair of hex digits. @todo There is no error checking at present. Non-hex chars will generate a warning message, but there is no other check that the right amount of data is present. The result is always "OK". @param[in] p_buf The original packet request. */ /*---------------------------------------------------------------------------*/ static void rsp_write_all_regs (struct rsp_buf *p_buf) { uint32_t regnum; /* Register index */ // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } /* ---------- GPRS ---------- */ for (regnum = 0; regnum < MAX_GPRS; regnum++) gpr_regs[regnum] = hex2reg (&p_buf->data[regnum * 8 + 1]); /* Do a block write */ gdb_write_block(0x400, (uint32_t *) gpr_regs, MAX_GPRS*32); /* ---------- PPC ---------- */ /* ---------- SR ---------- */ /* Write PPC and SR regs, they are consecutive in CPU, at adr. 17 and 18 */ /* We handle NPC specially */ uint32_t pcs_and_sr[2]; pcs_and_sr[0] = hex2reg (&p_buf->data[SR_REGNUM * 8 + 1]); pcs_and_sr[1] = hex2reg (&p_buf->data[PPC_REGNUM * 8 + 1]); gdb_write_block(SR_CPU_REG_ADD, (uint32_t *)pcs_and_sr, 2 * 4); /* ---------- NPC ---------- */ set_npc(hex2reg (&p_buf->data[NPC_REGNUM * 8 + 1])); /* Acknowledge. TODO: We always succeed at present, even if the data was defective. */ put_str_packet ("OK"); } /* rsp_write_all_regs () */ /*---------------------------------------------------------------------------*/ /* Handle a RSP read memory (symbolic) request Syntax is: m<addr>,<length>: The response is the bytes, lowest address first, encoded as pairs of hex digits. The length given is the number of bytes to be read. @note This function reuses p_buf, so trashes the original command. @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_read_mem (struct rsp_buf *p_buf) { unsigned int addr; /* Where to read the memory */ int len; /* Number of bytes to read */ int off; /* Offset into the memory */ uint32_t temp_uint32 = 0; char *rec_buf, *rec_buf_ptr; int bytes_per_word = 4; /* Current OR implementation is 4-byte words */ int i; int len_cpy; /* Couple of temps we might need when doing aligning/leftover accesses */ uint32_t tmp_word; uint8_t tmp_byte; char *tmp_word_ptr = (char*) &tmp_word; if (2 != sscanf (p_buf->data, "m%x,%x:", &addr, &len)) { fprintf (stderr, "Warning: Failed to recognize RSP read memory " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } /* Make sure we won't overflow the buffer (2 chars per byte) */ if ((len * 2) >= GDB_BUF_MAX_TIMES_TWO) { fprintf (stderr, "Warning: Memory read %s too large for RSP packet: " "truncated\n", p_buf->data); len = (GDB_BUF_MAX - 1) / 2; } if(!(rec_buf = (char*)malloc(len))) { put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain err = gdb_set_chain(SC_WISHBONE); if(err){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } len_cpy = len; rec_buf_ptr = rec_buf; // Need to save a copy of pointer if (addr & 0x3) // address not word-aligned, do byte accesses first { int num_bytes_to_align = bytes_per_word - (addr & 0x3); int bytes_to_read = (num_bytes_to_align >= len_cpy) ? len_cpy : num_bytes_to_align; for (i=0;i<bytes_to_read;i++) { err = gdb_read_byte(addr++, (uint8_t*) &rec_buf[i]); if(err){ put_str_packet ("E01"); return; } } // Adjust our status len_cpy -= bytes_to_read; rec_buf_ptr += num_bytes_to_align; } if (len_cpy/bytes_per_word) // Now perform all full word accesses { int words_to_read = len_cpy/bytes_per_word; // Full words to read if (DEBUG_GDB) printf("rsp_read_mem: reading %d words from 0x%.8x\n", words_to_read, addr); // Read full data words from Wishbone Memory chain err = gdb_read_block(addr, (uint32_t*)rec_buf_ptr, words_to_read*bytes_per_word); if(err){ put_str_packet ("E01"); return; } // Adjust our status len_cpy -= (words_to_read*bytes_per_word); addr += (words_to_read*bytes_per_word); rec_buf_ptr += (words_to_read*bytes_per_word); } if (len_cpy) // Leftover bytes { for (i=0;i<len_cpy;i++) { err = gdb_read_byte(addr++, (uint8_t*) &rec_buf_ptr[i]); if(err){ put_str_packet ("E01"); return; } } } /* Refill the buffer with the reply */ for( off = 0 ; off < len ; off ++ ) { ; p_buf->data[(2*off)] = hexchars[((rec_buf[off]&0xf0)>>4)]; p_buf->data[(2*off)+1] = hexchars[(rec_buf[off]&0x0f)]; } if (DEBUG_GDB && (err > 0)) printf("\nError %x\n", err);fflush (stdout); free(rec_buf); p_buf->data[off * 2] = 0; /* End of string */ p_buf->len = strlen (p_buf->data); if (DEBUG_GDB_BLOCK_DATA){ printf("rsp_read_mem: adr 0x%.8x data: ", addr); for(i=0;i<len*2;i++) printf("%c",p_buf->data[i]); printf("\n"); } put_packet (p_buf); } /* rsp_read_mem () */ #if 0 /*---------------------------------------------------------------------------*/ /* Handle a RSP read memory (symbolic) request Syntax is: m<addr>,<length>: The response is the bytes, lowest address first, encoded as pairs of hex digits. The length given is the number of bytes to be read. @note This function reuses p_buf, so trashes the original command. @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_read_mem (struct rsp_buf *p_buf) { unsigned int addr; /* Where to read the memory */ int len; /* Number of bytes to read */ int off; /* Offset into the memory */ uint32_t temp_uint32 = 0; char *rec_buf, *rec_buf_ptr; int bytes_per_word = 4; /* Current OR implementation is 4-byte words */ int i; int len_cpy; /* Couple of temps we might need when doing aligning/leftover accesses */ uint32_t tmp_word; char *tmp_word_ptr = (char*) &tmp_word; if (2 != sscanf (p_buf->data, "m%x,%x:", &addr, &len)) { fprintf (stderr, "Warning: Failed to recognize RSP read memory " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } /* Make sure we won't overflow the buffer (2 chars per byte) */ if ((len * 2) >= GDB_BUF_MAX) { fprintf (stderr, "Warning: Memory read %s too large for RSP packet: " "truncated\n", p_buf->data); len = (GDB_BUF_MAX - 1) / 2; } if(!(rec_buf = (char*)malloc(len))) { put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain err = gdb_set_chain(SC_WISHBONE); if(err){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } len_cpy = len; rec_buf_ptr = rec_buf; // Need to save a copy of pointer if (addr & 0x3) // address not aligned at the start { // Have to read from the word-aligned address first and fetch the bytes // we need. if (DEBUG_GDB) printf("rsp_read_mem: unaligned address read - reading before bytes\n", err); int num_bytes_to_align = bytes_per_word - (addr & 0x3); uint32_t aligned_addr = addr & ~0x3; if (DEBUG_GDB) printf("rsp_read_mem: reading first %d of %d overall, from 0x%.8x\n", num_bytes_to_align, len_cpy, aligned_addr); err = gdb_read_reg(aligned_addr, &tmp_word); if (DEBUG_GDB) printf("rsp_read_mem: first word 0x%.8x\n", tmp_word); if(err){ put_str_packet ("E01"); return; } // Pack these bytes in first if (num_bytes_to_align > len_cpy) num_bytes_to_align = len_cpy; // A little strange - the OR is big endian, but they wind up // in this array in little endian format, so read them out // and pack the response array big endian (or, whatever the lowest // memory address first is... depends how you print it out I guess.) if (DEBUG_GDB_BLOCK_DATA)printf("rsp_read_mem: packing first bytes "); i=addr&0x3; int buf_ctr = 0; while (buf_ctr < num_bytes_to_align) { rec_buf_ptr[buf_ctr] = tmp_word_ptr[bytes_per_word-1-i]; if (DEBUG_GDB_BLOCK_DATA)printf("i=%d=0x%x, ", i, tmp_word_ptr[bytes_per_word-1-i]); i++; buf_ctr++; } if (DEBUG_GDB_BLOCK_DATA)printf("\n"); // Adjust our status len_cpy -= num_bytes_to_align; addr += num_bytes_to_align; rec_buf_ptr += num_bytes_to_align; } if (len_cpy/bytes_per_word) // Now perform all full word accesses { int words_to_read = len_cpy/bytes_per_word; // Full words to read if (DEBUG_GDB) printf("rsp_read_mem: reading %d words from 0x%.8x\n", words_to_read, addr); // Read full data words from Wishbone Memory chain err = gdb_read_block(addr, (uint32_t*)rec_buf_ptr, words_to_read*bytes_per_word); if(err){ put_str_packet ("E01"); return; } // A little strange, but these words will actually be little endian // in the buffer. So swap them around. uint32_t* rec_buf_u32_ptr = (uint32_t*)rec_buf_ptr; for(i=0;i<words_to_read;i++) { // htonl() will work.(network byte order is big endian) // Note this is a hack, not actually about to send this // out onto the network. rec_buf_u32_ptr[i] = htonl(rec_buf_u32_ptr[i]); } // Adjust our status len_cpy -= (words_to_read*bytes_per_word); addr += (words_to_read*bytes_per_word); rec_buf_ptr += (words_to_read*bytes_per_word); } if (len_cpy) // Leftover bytes { if (DEBUG_GDB) printf("rsp_read_mem: reading %d left-over bytes from 0x%.8x\n", len_cpy, addr); err = gdb_read_reg(addr, &tmp_word); // Big endian - top byte first! for(i=0;i<len_cpy;i++) rec_buf_ptr[i] = tmp_word_ptr[bytes_per_word - 1 - i]; } if (DEBUG_GDB) printf("rsp_read_mem: err: %d\n",err); if(err){ put_str_packet ("E01"); return; } // Refill the buffer with the reply for( off = 0 ; off < len ; off ++ ) { ; p_buf->data[(2*off)] = hexchars[((rec_buf[off]&0xf0)>>4)]; p_buf->data[(2*off)+1] = hexchars[(rec_buf[off]&0x0f)]; } if (DEBUG_GDB && (err > 0)) printf("\nError %x\n", err);fflush (stdout); free(rec_buf); p_buf->data[off * 2] = 0; /* End of string */ p_buf->len = strlen (p_buf->data); if (DEBUG_GDB_BLOCK_DATA){ printf("rsp_read_mem: adr 0x%.8x data: ", addr); for(i=0;i<len*2;i++) printf("%c",p_buf->data[i]); printf("\n"); } put_packet (p_buf); } /* rsp_read_mem () */ #endif /*---------------------------------------------------------------------------*/ /*!Handle a RSP write memory (symbolic) request ("M") Syntax is: M<addr>,<length>:<data> Example: M4015cc,2:c320# (Write the value 0xc320 to address 0x4015cc.) An example target response: + $OK# The data is the bytes, lowest address first, encoded as pairs of hex digits. The length given is the number of bytes to be written. @note This function reuses p_buf, so trashes the original command. @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_write_mem (struct rsp_buf *p_buf) { unsigned int addr; /* Where to write the memory */ int len; /* Number of bytes to write */ char *symdat; /* Pointer to the symboli data */ int datlen; /* Number of digits in symbolic data */ int off; /* Offset into the memory */ int nibc; /* Nibbel counter */ uint32_t val; if (2 != sscanf (p_buf->data, "M%x,%x:", &addr, &len)) { fprintf (stderr, "Warning: Failed to recognize RSP write memory " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } /* Find the start of the data and check there is the amount we expect. */ symdat = (char*) memchr ((const void *)p_buf->data, ':', GDB_BUF_MAX) + 1; datlen = p_buf->len - (symdat - p_buf->data); /* Sanity check */ if (len * 2 != datlen) { fprintf (stderr, "Warning: Write of %d digits requested, but %d digits " "supplied: packet ignored\n", len * 2, datlen ); put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain err = gdb_set_chain(SC_WISHBONE); if(err){ put_str_packet ("E01"); return; } val = 0; off = 0; /* Write the bytes to memory */ for (nibc = 0; nibc < datlen; nibc++) { val |= 0x0000000f & hex (symdat[nibc]); if(nibc % 8 == 7){ err = gdb_write_block(addr + off, &val, 4); if (DEBUG_GDB) printf("Error %x\n", err);fflush (stdout); if(err){ put_str_packet ("E01"); return; } val = 0; off += 4; } val <<= 4; } put_str_packet ("OK"); } /* rsp_write_mem () */ /*---------------------------------------------------------------------------*/ /*!Read a single register The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC (i.e. SPR NPC) and SR (i.e. SPR SR). The register is returned as a sequence of bytes in target endian order. Each byte is packed as a pair of hex digits. @param[in] p_buf The original packet request. Reused for the reply. */ /*---------------------------------------------------------------------------*/ static void rsp_read_reg (struct rsp_buf *p_buf) { unsigned int regnum; uint32_t temp_uint32; /* Break out the fields from the data */ if (1 != sscanf (p_buf->data, "p%x", ®num)) { fprintf (stderr, "Warning: Failed to recognize RSP read register " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } /* Get the relevant register */ if (regnum < MAX_GPRS) { err = gdb_read_reg(0x400 + regnum, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_read_reg at reg. %d \n", err, regnum); put_str_packet ("E01"); return; } reg2hex (temp_uint32, p_buf->data); } else if (PPC_REGNUM == regnum) /* ---------- PPC ---------- */ { err = gdb_read_reg(PPC_CPU_REG_ADD, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_read_reg read --> PPC\n", err); put_str_packet ("E01"); return; } reg2hex (temp_uint32, p_buf->data); } else if (NPC_REGNUM == regnum) /* ---------- NPC ---------- */ { temp_uint32 = get_npc(); /* err = gdb_read_reg(NPC_CPU_REG_ADD, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_read_reg read --> PPC\n", err); put_str_packet ("E01"); return; } */ reg2hex (temp_uint32, p_buf->data); } else if (SR_REGNUM == regnum) /* ---------- SR ---------- */ { err = gdb_read_reg(SR_CPU_REG_ADD, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_read_reg read --> PPC\n", err); put_str_packet ("E01"); return; } reg2hex (temp_uint32, p_buf->data); } else { /* Error response if we don't know the register */ fprintf (stderr, "Warning: Attempt to read unknown register 0x%x: " "ignored\n", regnum); put_str_packet ("E01"); return; } p_buf->len = strlen (p_buf->data); put_packet (p_buf); } /* rsp_read_reg () */ /*---------------------------------------------------------------------------*/ /*!Write a single register The registers follow the GDB sequence for OR1K: GPR0 through GPR31, PC (i.e. SPR NPC) and SR (i.e. SPR SR). The register is specified as a sequence of bytes in target endian order. Each byte is packed as a pair of hex digits. @param[in] p_buf The original packet request. */ /*---------------------------------------------------------------------------*/ static void rsp_write_reg (struct rsp_buf *p_buf) { unsigned int regnum; char valstr[9]; /* Allow for EOS on the string */ // int err = 0; /* Break out the fields from the data */ if (2 != sscanf (p_buf->data, "P%x=%8s", ®num, valstr)) { fprintf (stderr, "Warning: Failed to recognize RSP write register " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } /* Set the relevant register */ if (regnum < MAX_GPRS) /* ---------- GPRS ---------- */ { err = gdb_write_reg(0x400 + regnum, hex2reg (valstr)); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_write_reg write --> GPRS\n", err); put_str_packet ("E01"); return; } } else if (PPC_REGNUM == regnum) /* ---------- PPC ---------- */ { err = gdb_write_reg(PPC_CPU_REG_ADD, hex2reg (valstr)); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_write_reg write --> PPC\n", err); put_str_packet ("E01"); return; } } else if (NPC_REGNUM == regnum) /* ---------- NPC ---------- */ { set_npc(hex2reg (valstr)); /* err = gdb_write_reg(NPC_CPU_REG_ADD, hex2reg (valstr)); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_write_reg write --> NPC\n", err); put_str_packet ("E01"); return; } */ } else if (SR_REGNUM == regnum) /* ---------- SR ---------- */ { err = gdb_write_reg(SR_CPU_REG_ADD, hex2reg (valstr)); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_write_reg write --> SR\n", err); put_str_packet ("E01"); return; } } else { /* Error response if we don't know the register */ fprintf (stderr, "Warning: Attempt to write unknown register 0x%x: " "ignored\n", regnum); put_str_packet ("E01"); return; } put_str_packet ("OK"); } /* rsp_write_reg () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP query request @param[in] p_buf The request */ /*---------------------------------------------------------------------------*/ static void rsp_query (struct rsp_buf *p_buf) { if (0 == strcmp ("qAttached", p_buf->data)) { /* We are always attaching to an existing process with the bare metal embedded system. */ put_str_packet ("1"); } else if (0 == strcmp ("qC", p_buf->data)) { /* Return the current thread ID (unsigned hex). A null response indicates to use the previously selected thread. Since we do not support a thread concept, this is the appropriate response. */ put_str_packet (""); } else if (0 == strncmp ("qCRC", p_buf->data, strlen ("qCRC"))) { /* Return CRC of memory area */ fprintf (stderr, "Warning: RSP CRC query not supported\n"); put_str_packet ("E01"); } else if (0 == strcmp ("qfThreadInfo", p_buf->data)) { /* Return info about active threads. We return just '-1' */ put_str_packet ("m-1"); } else if (0 == strcmp ("qsThreadInfo", p_buf->data)) { /* Return info about more active threads. We have no more, so return the end of list marker, 'l' */ put_str_packet ("l"); } else if (0 == strncmp ("qGetTLSAddr:", p_buf->data, strlen ("qGetTLSAddr:"))) { /* We don't support this feature */ put_str_packet (""); } else if (0 == strncmp ("qL", p_buf->data, strlen ("qL"))) { /* Deprecated and replaced by 'qfThreadInfo' */ fprintf (stderr, "Warning: RSP qL deprecated: no info returned\n"); put_str_packet ("qM001"); } else if (0 == strcmp ("qOffsets", p_buf->data)) { /* Report any relocation */ put_str_packet ("Text=0;Data=0;Bss=0"); } else if (0 == strncmp ("qP", p_buf->data, strlen ("qP"))) { /* Deprecated and replaced by 'qThreadExtraInfo' */ fprintf (stderr, "Warning: RSP qP deprecated: no info returned\n"); put_str_packet (""); } else if (0 == strncmp ("qRcmd,", p_buf->data, strlen ("qRcmd,"))) { /* This is used to interface to commands to do "stuff" */ rsp_command (p_buf); } else if (0 == strncmp ("qSupported", p_buf->data, strlen ("qSupported"))) { /* Report a list of the features we support. For now we just ignore any supplied specific feature queries, but in the future these may be supported as well. Note that the packet size allows for 'G' + all the registers sent to us, or a reply to 'g' with all the registers and an EOS so the buffer is a well formed string. */ setup_or32(); // setup cpu char reply[GDB_BUF_MAX]; sprintf (reply, "PacketSize=%x", GDB_BUF_MAX); put_str_packet (reply); } else if (0 == strncmp ("qSymbol:", p_buf->data, strlen ("qSymbol:"))) { /* Offer to look up symbols. Nothing we want (for now). TODO. This just ignores any replies to symbols we looked up, but we didn't want to do that anyway! */ put_str_packet ("OK"); } else if (0 == strncmp ("qThreadExtraInfo,", p_buf->data, strlen ("qThreadExtraInfo,"))) { /* Report that we are runnable, but the text must be hex ASCI digits. For now do this by steam, reusing the original packet */ sprintf (p_buf->data, "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0); p_buf->len = strlen (p_buf->data); put_packet (p_buf); } else if (0 == strncmp ("qTStatus", p_buf->data, strlen ("qTStatus"))) { /* We don't support tracing, so return empty packet. */ put_str_packet (""); } else if (0 == strncmp ("qXfer:", p_buf->data, strlen ("qXfer:"))) { /* For now we support no 'qXfer' requests, but these should not be expected, since they were not reported by 'qSupported' */ fprintf (stderr, "Warning: RSP 'qXfer' not supported: ignored\n"); put_str_packet (""); } else { fprintf (stderr, "Unrecognized RSP query: ignored\n"); } } /* rsp_query () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP qRcmd request The actual command follows the "qRcmd," in ASCII encoded to hex @param[in] p_buf The request in full */ /*---------------------------------------------------------------------------*/ static void rsp_command (struct rsp_buf *p_buf) { char cmd[GDB_BUF_MAX]; unsigned int regno; uint32_t temp_uint32; hex2ascii (cmd, &(p_buf->data[strlen ("qRcmd,")])); /* Work out which command it is */ if (0 == strncmp ("readspr ", cmd, strlen ("readspr"))) { /* Parse and return error if we fail */ if( 1 != sscanf (cmd, "readspr %4x", ®no)) { fprintf (stderr, "Warning: qRcmd %s not recognized: ignored\n", cmd); put_str_packet ("E01"); return; } /* SPR out of range */ if (regno > MAX_SPRS) { fprintf (stderr, "Warning: qRcmd readspr %x too large: ignored\n", regno); put_str_packet ("E01"); return; } /* Construct the reply */ // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ /* special case for NPC */ if(regno == NPC_CPU_REG_ADD) temp_uint32 = get_npc(); /* Also special case for debug group (group 6) registers */ else if (((regno >> OR1K_SPG_SIZE_BITS) & 0xff) == OR1K_SPG_DEBUG) { if (dbg_regs_cache_dirty == -1) // Regs invalid, get them get_debug_registers(); uint32_t * dbg_reg_array = (uint32_t *) &or1k_dbg_group_regs_cache; temp_uint32 = dbg_reg_array[(regno & 0xff)]; dbg_regs_cache_dirty = 0; } else { err = gdb_read_reg(regno, &temp_uint32); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_command at reg. %x \n", err, regno); } else{ reg2hex (temp_uint32, cmd); if (DEBUG_GDB) printf("Error %d Command readspr Read reg. %x = 0x%08x\n", err, regno, temp_uint32); } } // pack the result into the buffer to send back sprintf (cmd, "%8x", (unsigned int)temp_uint32); ascii2hex (p_buf->data, cmd); p_buf->len = strlen (p_buf->data); put_packet (p_buf); } else if (0 == strncmp ("writespr ", cmd, strlen ("writespr"))) { unsigned int regno; uint32_t val; /* Parse and return error if we fail */ if( 2 != sscanf (cmd, "writespr %4x %8x", ®no, &val)) { fprintf (stderr, "Warning: qRcmd %s not recognized: ignored\n", cmd); put_str_packet ("E01"); return; } /* SPR out of range */ if (regno > MAX_SPRS) { fprintf (stderr, "Warning: qRcmd writespr %x too large: ignored\n", regno); put_str_packet ("E01"); return; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ /* set the relevant register */ // special case for NPC if(regno == NPC_CPU_REG_ADD) set_npc(val); /* Also special case for debug group (group 6) registers */ else if (((regno >> OR1K_SPG_SIZE_BITS) & 0xff) == OR1K_SPG_DEBUG) { if (dbg_regs_cache_dirty == -1) // Regs invalid, get them get_debug_registers(); uint32_t * dbg_reg_array = (uint32_t *) &or1k_dbg_group_regs_cache; dbg_reg_array[(regno & 0xff)] = val; dbg_regs_cache_dirty = 1; } else { err = gdb_write_reg(regno, val); if(err > 0){ if (DEBUG_GDB) printf("Error %d in rsp_command write Reg. %x = 0x%08x\n", err, regno, val); put_str_packet ("E01"); return; } else{ if (DEBUG_GDB) printf("Error %d Command writespr Write reg. %x = 0x%08x\n", err, regno, val); } } put_str_packet ("OK"); } } /* rsp_command () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP set request @param[in] p_buf The request */ /*---------------------------------------------------------------------------*/ static void rsp_set (struct rsp_buf *p_buf) { if (0 == strncmp ("QPassSignals:", p_buf->data, strlen ("QPassSignals:"))) { /* Passing signals not supported */ put_str_packet (""); } else if ((0 == strncmp ("QTDP", p_buf->data, strlen ("QTDP"))) || (0 == strncmp ("QFrame", p_buf->data, strlen ("QFrame"))) || (0 == strcmp ("QTStart", p_buf->data)) || (0 == strcmp ("QTStop", p_buf->data)) || (0 == strcmp ("QTinit", p_buf->data)) || (0 == strncmp ("QTro", p_buf->data, strlen ("QTro")))) { /* All tracepoint features are not supported. This reply is really only needed to 'QTDP', since with that the others should not be generated. */ put_str_packet (""); } else { fprintf (stderr, "Unrecognized RSP set request: ignored\n"); } } /* rsp_set () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP restart request For now we just put the program counter back to the one used with the last vRun request. There is no point in unstalling the processor, since we'll never get control back. */ /*---------------------------------------------------------------------------*/ static void rsp_restart (void) { // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); put_str_packet ("E01"); return; } /* Set NPC to reset vector 0x100 */ set_npc(rsp.start_addr); } /* rsp_restart () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP step request Parse the command to see if there is an address. Uses the underlying generic step function, with EXCEPT_NONE. @param[in] p_buf The full step packet */ /*---------------------------------------------------------------------------*/ static void rsp_step (struct rsp_buf *p_buf) { uint32_t addr; /* The address to step from, if any */ // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // First set the chain err = gdb_set_chain(SC_RISC_DEBUG); /* 1 RISC Debug Interface chain */ if(err > 0){ printf("Error %d to set RISC Debug Interface chain in the STEP command 's'\n", err); rsp_client_close (); return; } if (0 == strcmp ("s", p_buf->data)) { /* ---------- Npc ---------- */ addr = get_npc(); } else if (1 != sscanf (p_buf->data, "s%x", &addr)) { fprintf (stderr, "Warning: RSP step address %s not recognized: ignored\n", p_buf->data); /* ---------- NPC ---------- */ addr = get_npc(); } rsp_step_generic (addr, EXCEPT_NONE); } /* rsp_step () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP step with signal request Currently null. Will use the underlying generic step function. @param[in] p_buf The full step with signal packet */ /*---------------------------------------------------------------------------*/ static void rsp_step_with_signal (struct rsp_buf *p_buf) { printf ("RSP step with signal '%s' received\n", p_buf->data); } /* rsp_step_with_signal () */ /*---------------------------------------------------------------------------*/ /*!Generic processing of a step request The signal may be EXCEPT_NONE if there is no exception to be handled. Currently the exception is ignored. The single step flag is set in the debug registers and then the processor is unstalled. @param[in] addr Address from which to step @param[in] except The exception to use (if any) */ /*---------------------------------------------------------------------------*/ static void rsp_step_generic (uint32_t addr, uint32_t except) { uint32_t temp_uint32; /* Set the address as the value of the next program counter */ set_npc (addr); or1k_dbg_group_regs_cache.drr = 0; // Clear DRR or1k_dbg_group_regs_cache.dmr1 |= SPR_DMR1_ST; // Stepping, so enable step in DMR1 or1k_dbg_group_regs_cache.dsr |= SPR_DSR_TE; // Enable trap handled by DU or1k_dbg_group_regs_cache.dmr2 &= ~SPR_DMR2_WGB; // Stepping, so disable breakpoints from watchpoints dbg_regs_cache_dirty = 1; // Always write the cache back /* Commit all debug registers */ if (dbg_regs_cache_dirty == 1) put_debug_registers(); /* Unstall the processor */ set_stall_state (0); /* Debug regs cache now in invalid state */ dbg_regs_cache_dirty = -1; /* Note the GDB client is now waiting for a reply. */ rsp.client_waiting = 1; } /* rsp_step_generic () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP 'v' packet These are commands associated with executing the code on the target @param[in] p_buf The request */ /*---------------------------------------------------------------------------*/ static void rsp_vpkt (struct rsp_buf *p_buf) { if (0 == strncmp ("vAttach;", p_buf->data, strlen ("vAttach;"))) { /* Attaching is a null action, since we have no other process. We just return a stop packet (using TRAP) to indicate we are stopped. */ put_str_packet ("S05"); return; } else if (0 == strcmp ("vCont?", p_buf->data)) { /* For now we don't support this. */ put_str_packet (""); return; } else if (0 == strncmp ("vCont", p_buf->data, strlen ("vCont"))) { /* This shouldn't happen, because we've reported non-support via vCont? above */ fprintf (stderr, "Warning: RSP vCont not supported: ignored\n" ); return; } else if (0 == strncmp ("vFile:", p_buf->data, strlen ("vFile:"))) { /* For now we don't support this. */ fprintf (stderr, "Warning: RSP vFile not supported: ignored\n" ); put_str_packet (""); return; } else if (0 == strncmp ("vFlashErase:", p_buf->data, strlen ("vFlashErase:"))) { /* For now we don't support this. */ fprintf (stderr, "Warning: RSP vFlashErase not supported: ignored\n" ); put_str_packet ("E01"); return; } else if (0 == strncmp ("vFlashWrite:", p_buf->data, strlen ("vFlashWrite:"))) { /* For now we don't support this. */ fprintf (stderr, "Warning: RSP vFlashWrite not supported: ignored\n" ); put_str_packet ("E01"); return; } else if (0 == strcmp ("vFlashDone", p_buf->data)) { /* For now we don't support this. */ fprintf (stderr, "Warning: RSP vFlashDone not supported: ignored\n" ); put_str_packet ("E01"); return; } else if (0 == strncmp ("vRun;", p_buf->data, strlen ("vRun;"))) { /* We shouldn't be given any args, but check for this */ if (p_buf->len > (int) strlen ("vRun;")) { fprintf (stderr, "Warning: Unexpected arguments to RSP vRun " "command: ignored\n"); } /* Restart the current program. However unlike a "R" packet, "vRun" should behave as though it has just stopped. We use signal 5 (TRAP). */ rsp_restart (); put_str_packet ("S05"); } else { fprintf (stderr, "Warning: Unknown RSP 'v' packet type %s: ignored\n", p_buf->data); put_str_packet ("E01"); return; } } /* rsp_vpkt () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP write memory (binary) request Syntax is: X<addr>,<length>: Followed by the specified number of bytes as raw binary. Response should be "OK" if all copied OK, E<nn> if error <nn> has occurred. The length given is the number of bytes to be written. However the number of data bytes may be greater, since '#', '$' and '}' are escaped by preceding them by '}' and oring with 0x20. @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_write_mem_bin (struct rsp_buf *p_buf) { unsigned int addr; /* Where to write the memory */ int len; /* Number of bytes to write */ char *bindat, *bindat_ptr; /* Pointer to the binary data */ int off = 0; /* Offset to start of binary data */ int newlen; /* Number of bytes in bin data */ int i; int bytes_per_word = 4; /* Current OR implementation is 4-byte words */ if (2 != sscanf (p_buf->data, "X%x,%x:", &addr, &len)) { fprintf (stderr, "Warning: Failed to recognize RSP write memory " "command: %s\n", p_buf->data); put_str_packet ("E01"); return; } /* Find the start of the data and "unescape" it */ bindat = p_buf->data; while(off < GDB_BUF_MAX){ if(bindat[off] == ':'){ bindat = bindat + off + 1; off++; break; } off++; } if(off >= GDB_BUF_MAX){ put_str_packet ("E01"); return; } newlen = rsp_unescape (bindat, p_buf->len - off); /* Sanity check */ if (newlen != len) { int minlen = len < newlen ? len : newlen; fprintf (stderr, "Warning: Write of %d bytes requested, but %d bytes " "supplied. %d will be written\n", len, newlen, minlen); len = minlen; } // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain err = gdb_set_chain(SC_WISHBONE); if(err){ put_str_packet ("E01"); return; } /* Write the bytes to memory */ if (len) { swap_buf(bindat, len); if (DEBUG_GDB_BLOCK_DATA){ uint32_t temp_uint32; for (off = 0; off < len; off++){ temp_uint32 = (temp_uint32 << 8) | (0x000000ff & bindat[off]); if((off %4 ) == 3){ temp_uint32 = htonl(temp_uint32); } switch(off % 16) { case 3: printf("Add 0x%08x Data 0x%08x ", addr + off - 3, temp_uint32); break; case 7: case 11: printf("0x%08x ", temp_uint32); break; case 15: printf("0x%08x\n", temp_uint32); break; default: break; } if ((len - off == 1) && (off % 16) < 15) printf("\n"); } } bindat_ptr = bindat; // Copy of this pointer so we don't trash it if (addr & 0x3) // not perfectly aligned at beginning - fix { if (DEBUG_GDB) printf("rsp_write_mem_bin: address not word aligned: 0x%.8x\n", addr);fflush (stdout); // Write enough to align us int bytes_to_write = bytes_per_word - (addr&0x3); if (bytes_to_write > len) bytes_to_write = len; // case of writing 1 byte to adr 0x1 if (DEBUG_GDB) printf("rsp_write_mem_bin: writing %d bytes of len (%d)\n", bytes_to_write, len);fflush (stdout); for (i=0;i<bytes_to_write;i++) err = gdb_write_byte(addr+i, (uint8_t) bindat_ptr[i]); addr += bytes_to_write; bindat_ptr += bytes_to_write; len -= bytes_to_write; if (DEBUG_GDB) printf("rsp_write_mem_bin: address should now be word aligned: 0x%.8x\n", addr);fflush (stdout); } if ((len > 3) && !err) // now write full words, if we can { int words_to_write = len/bytes_per_word; if (DEBUG_GDB) printf("rsp_write_mem_bin: writing %d words from 0x%x, len %d bytes\n", words_to_write, addr, len);fflush (stdout); err = gdb_write_block(addr, (uint32_t*)bindat_ptr, (words_to_write*bytes_per_word)); addr+=(words_to_write*bytes_per_word); bindat_ptr+=(words_to_write*bytes_per_word); len-=(words_to_write*bytes_per_word); } if (len && !err) // leftover words. Write them out { if (DEBUG_GDB) printf("rsp_write_mem_bin: writing remainder %d bytes to 0x%.8x\n", len, addr);fflush (stdout); for (i=0;i<len;i++) err = gdb_write_byte(addr+i, (uint8_t) bindat_ptr[i]); } if(err){ put_str_packet ("E01"); return; } if (DEBUG_GDB) printf("Error %x\n", err);fflush (stdout); } put_str_packet ("OK"); } /* rsp_write_mem_bin () */ /*---------------------------------------------------------------------------*/ /*!Copy the debug group registers from the processor into our cache struct */ /*---------------------------------------------------------------------------*/ static void get_debug_registers(void) { if (dbg_regs_cache_dirty != -1) return; // Don't need to update them if (DEBUG_GDB) printf("gdb - get_debug_registers() - reading %d bytes for debug regs\n",sizeof(or1k_dbg_group_regs_cache)); err = gdb_set_chain(SC_RISC_DEBUG); /* Register Chain */ /* Fill our debug group registers struct */ gdb_read_block((OR1K_SPG_DEBUG << OR1K_SPG_SIZE_BITS), (uint32_t *) &or1k_dbg_group_regs_cache, (uint32_t) sizeof(or1k_dbg_group_regs_cache)); dbg_regs_cache_dirty = 0; // Just updated it so not dirty if (DEBUG_GDB) { printf("gdb - get_debug_registers() - registers:\n\t"); uint32_t * regs_ptr = (uint32_t*) &or1k_dbg_group_regs_cache; int i; for(i=0;i<(sizeof(or1k_dbg_group_regs_cache)/4);i++) { if (i%4==0)printf("\n\t"); if (i<8) printf("DVR%.2d %.8x ",i,regs_ptr[i]); else if (i<16) printf("DCR%.2d %.8x ",i-8,regs_ptr[i]); else if (i<17) printf("DMR1 %.8x ",regs_ptr[i]); else if (i<18) printf("DMR2 %.8x ",regs_ptr[i]); else if (i<19) printf("DCWR0 %.8x ",regs_ptr[i]); else if (i<20) printf("DCWR1 %.8x ",regs_ptr[i]); else if (i<21) printf("DSR %.8x ",regs_ptr[i]); else if (i<22) printf("DRR %.8x ",regs_ptr[i]); } printf("\n"); } return; } /* get_debug_registers() */ /*---------------------------------------------------------------------------*/ /*!Copy the debug group registers from our cache to the processor */ /*---------------------------------------------------------------------------*/ static void put_debug_registers(void) { /* TODO: Block CPU registers write functionality */ if (DEBUG_GDB) printf("gdb - put_debug_registers()\n"); int i; uint32_t *dbg_regs_ptr = (uint32_t *) &or1k_dbg_group_regs_cache; if (DEBUG_GDB) { printf("gdb - put_debug_registers() - registers:\n\t"); uint32_t * regs_ptr = (uint32_t*) &or1k_dbg_group_regs_cache; int i; for(i=0;i<(sizeof(or1k_dbg_group_regs_cache)/4);i++) { if (i%4==0)printf("\n\t"); if (i<8) printf("DVR%.2d %.8x ",i,regs_ptr[i]); else if (i<16) printf("DCR%.2d %.8x ",i-8,regs_ptr[i]); else if (i<17) printf("DMR1 %.8x ",regs_ptr[i]); else if (i<18) printf("DMR2 %.8x ",regs_ptr[i]); else if (i<19) printf("DCWR0 %.8x ",regs_ptr[i]); else if (i<20) printf("DCWR1 %.8x ",regs_ptr[i]); else if (i<21) printf("DSR %.8x ",regs_ptr[i]); else if (i<22) printf("DRR %.8x ",regs_ptr[i]); } printf("\n"); } err = gdb_set_chain(SC_RISC_DEBUG); /* Register Chain */ gdb_write_block((OR1K_SPG_DEBUG << OR1K_SPG_SIZE_BITS), (uint32_t *) &or1k_dbg_group_regs_cache, sizeof(or1k_dbg_group_regs_cache)); return; } /* put_debug_registers() */ /*---------------------------------------------------------------------------*/ /*!Find the DVR/DCR pair corresponding to the address @return the number, 0-7 of the DCR/DVR pair, if possible, -1 else. */ /*---------------------------------------------------------------------------*/ static int find_matching_dcrdvr_pair(uint32_t addr, uint32_t cc) { int i; for (i=0;i<OR1K_MAX_MATCHPOINTS; i++) { // Find the one matching according to address, and in use if ((or1k_dbg_group_regs_cache.dvr[i] == addr) && (or1k_dbg_group_regs_cache.dcr[i].cc == cc)) { /* if (DEBUG_GDB) printf("gdb - find_matching_dcrdvr_pair(%.8x, %d)\n",addr, cc); if (DEBUG_GDB) printf("gdb - find_matching_dcrdvr_pair match in %d: dvr[%d] = %.8x dcr[%d].cc=%d\n", i,i,or1k_dbg_group_regs_cache.dvr[i],i,or1k_dbg_group_regs_cache.dcr[i].cc); */ return i; } } // If the loop finished, no appropriate matchpoints return -1; } /* find_matching_dcrdvr_pair() */ /*---------------------------------------------------------------------------*/ /*!Count number of free DCR/DVR pairs @return the number, 0-7 */ /*---------------------------------------------------------------------------*/ static int count_free_dcrdvr_pairs(void) { int i, free=0; for (i=0;i<OR1K_MAX_MATCHPOINTS; i++) { if ((or1k_dbg_group_regs_cache.dcr[i].cc == OR1K_CC_MASKED) // If compare condition is masked, it's not used && or1k_dbg_group_regs_cache.dcr[i].dp ) // and the debug point is present free++; } return free; } /* count_free_dcrdvr_pairs() */ /*---------------------------------------------------------------------------*/ /*!Find a free hardware breakpoint register, DCR/DVR pair @return the number, 0-7 of the DCR/DVR pair, if possible, -1 else. */ /*---------------------------------------------------------------------------*/ static int find_free_dcrdvr_pair(void) { int i; for (i=0;i<OR1K_MAX_MATCHPOINTS; i++) { if ((or1k_dbg_group_regs_cache.dcr[i].cc == OR1K_CC_MASKED) // If compare condition is masked, it's not used && or1k_dbg_group_regs_cache.dcr[i].dp ) // and the debug point is present return i; } // If the loop finished, no free matchpoints return -1; } /* find_free_dcrdvr_pair() */ /*---------------------------------------------------------------------------*/ /*!Setup a DCR/DVR pair for our watchpoint. @param[in] wp_num The watchpoint number @param[in] address The address for watchpoint */ /*---------------------------------------------------------------------------*/ static void insert_hw_watchpoint(int wp_num, uint32_t address, uint32_t cc) { if (DEBUG_GDB) printf("gdb - insert_hw_watchpoint(%d, 0x%.8x)\n",wp_num, address); or1k_dbg_group_regs_cache.dvr[wp_num] = address; or1k_dbg_group_regs_cache.dcr[wp_num].cc = cc; or1k_dbg_group_regs_cache.dcr[wp_num].sc = 0; or1k_dbg_group_regs_cache.dcr[wp_num].ct = OR1K_CT_FETCH; // Instruction fetch address // Mark the debug reg cache as dirty dbg_regs_cache_dirty = 1; return; } /* insert_hw_watchpoint() */ /*---------------------------------------------------------------------------*/ /*!Remove/free a DCR/DVR watchpoint pair @param[in] wp_num The watchpoint number */ /*---------------------------------------------------------------------------*/ static void remove_hw_watchpoint(int wp_num) { or1k_dbg_group_regs_cache.dvr[wp_num] = 0; or1k_dbg_group_regs_cache.dcr[wp_num].cc = OR1K_CC_MASKED; // We only do equals for now or1k_dbg_group_regs_cache.dcr[wp_num].sc = 0; /* Auto-disable it as generating a breakpoint, too, although maybe gets done after this call anyway. Best to ensure. */ disable_hw_breakpoint(wp_num); // Mark the debug reg cache as dirty dbg_regs_cache_dirty = 1; return; } /* remove_hw_watchpoint() */ /*---------------------------------------------------------------------------*/ /*!Enable a DCR/DVR watchpoint to generate a breakpoint @param[in] wp_num The watchpoint number */ /*---------------------------------------------------------------------------*/ static void enable_hw_breakpoint(int wp_num) { // Set the corresponding bit in DMR2 to enable matchpoint 'num' to trigger a breakpoint or1k_dbg_group_regs_cache.dmr2 |= (uint32_t) (1 << (SPR_DMR2_WGB_OFF + wp_num)); // Mark the debug reg cache as dirty dbg_regs_cache_dirty = 1; return; } /* enable_hw_breakpoint() */ /*---------------------------------------------------------------------------*/ /*!Disable a DCR/DVR watchpoint from generating a breakpoint @param[in] wp_num The watchpoint number */ /*---------------------------------------------------------------------------*/ static void disable_hw_breakpoint(int wp_num) { // Set the corresponding bit in DMR2 to enable matchpoint 'num' to trigger a breakpoint or1k_dbg_group_regs_cache.dmr2 &= (uint32_t) ~(1 << (SPR_DMR2_WGB_OFF + wp_num)); // Mark the debug reg cache as dirty dbg_regs_cache_dirty = 1; return; } /* disable_hw_breakpoint() */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP remove breakpoint or matchpoint request For now only memory breakpoints are implemented, which are implemented by substituting a breakpoint at the specified address. The implementation must cope with the possibility of duplicate packets. @todo This doesn't work with icache/immu yet @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_remove_matchpoint (struct rsp_buf *p_buf) { enum mp_type type; /* What sort of matchpoint */ uint32_t addr; /* Address specified */ int len; /* Matchpoint length (not used) */ struct mp_entry *mpe; /* Info about the replaced instr */ int wp_num; /* Break out the instruction */ if (3 != sscanf (p_buf->data, "z%1d,%x,%1d", (int *)&type, &addr, &len)) { fprintf (stderr, "Warning: RSP matchpoint deletion request not " "recognized: ignored\n"); put_str_packet ("E01"); return; } /* Sanity check that the length is 4 */ if (4 != len) { fprintf (stderr, "Warning: RSP matchpoint deletion length %d not " "valid: 4 assumed\n", len); len = 4; } /* Sort out the type of matchpoint */ switch (type) { case BP_MEMORY: /* Memory breakpoint - replace the original instruction. */ mpe = mp_hash_delete (type, addr); /* If the BP hasn't yet been deleted, put the original instruction back. Don't forget to free the hash table entry afterwards. */ if (NULL != mpe) { // Arc Sim Code --> set_program32 (addr, mpe->instr); // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain err = gdb_set_chain(SC_WISHBONE); if(err){ put_str_packet ("E01"); return; } err = gdb_write_block(addr, &mpe->instr, 4); if(err){ put_str_packet ("E01"); return; } free (mpe); } put_str_packet ("OK"); return; case BP_HARDWARE: /* Adding support -- jb 090901 */ if (dbg_regs_cache_dirty == -1) // Regs invalid, get them get_debug_registers(); if (DEBUG_GDB) printf("gdb - rsp_remove_matchpoint() - hardware mp remove at addr %.8x\n",addr); #ifdef HWBP_BTWN // Find the first of the pair of dcr/dvr registers wp_num = find_matching_dcrdvr_pair(addr-4,OR1K_CC_GE); #else wp_num = find_matching_dcrdvr_pair(addr,OR1K_CC_EQ); remove_hw_watchpoint(wp_num); #endif if ( wp_num < 0 ) { printf("gdb - rsp_remove_matchpoint() failed to remove hardware breakpoint at addr %.8x\n", addr); put_str_packet ("E01"); /* Cannot remove */ return; } if (DEBUG_GDB) printf("gdb - rsp_remove_matchpoint() - mp to remove in DCR/DVR pair %d \n",wp_num); remove_hw_watchpoint(wp_num); #ifdef HWBP_BTWN wp_num++; /* Should probably check here that this is correct. Oh well. */ remove_hw_watchpoint(wp_num); // Unchain these or1k_dbg_group_regs_cache.dmr1 &= ~(SPR_DMR1_CW << (wp_num * SPR_DMR1_CW_SZ)); #endif // Disable breakpoint generation disable_hw_breakpoint(wp_num); put_str_packet ("OK"); return; case WP_WRITE: put_str_packet (""); /* Not supported */ return; case WP_READ: put_str_packet (""); /* Not supported */ return; case WP_ACCESS: put_str_packet (""); /* Not supported */ return; default: fprintf (stderr, "Warning: RSP matchpoint type %d not " "recognized: ignored\n", type); put_str_packet ("E01"); return; } } /* rsp_remove_matchpoint () */ /*---------------------------------------------------------------------------*/ /*!Handle a RSP insert breakpoint or matchpoint request For now only memory breakpoints are implemented, which are implemented by substituting a breakpoint at the specified address. The implementation must cope with the possibility of duplicate packets. @todo This doesn't work with icache/immu yet @param[in] p_buf The command received */ /*---------------------------------------------------------------------------*/ static void rsp_insert_matchpoint (struct rsp_buf *p_buf) { enum mp_type type; /* What sort of matchpoint */ uint32_t addr; /* Address specified */ int len; /* Matchpoint length (not used) */ uint32_t instr; int wp_num; /* Break out the instruction */ if (3 != sscanf (p_buf->data, "Z%1d,%x,%1d", (int *)&type, &addr, &len)) { fprintf (stderr, "Warning: RSP matchpoint insertion request not " "recognized: ignored\n"); put_str_packet ("E01"); return; } /* Sanity check that the length is 4 */ if (4 != len) { fprintf (stderr, "Warning: RSP matchpoint insertion length %d not " "valid: 4 assumed\n", len); len = 4; } /* Sort out the type of matchpoint */ switch (type) { case BP_MEMORY: // software-breakpoint Z0 break /* Memory breakpoint - substitute a TRAP instruction */ // Make sure the processor is stalled gdb_ensure_or1k_stalled(); // Set chain 5 --> Wishbone Memory chain gdb_set_chain(SC_WISHBONE); // Read the data from Wishbone Memory chain // Arc Sim Code --> mp_hash_add (type, addr, eval_direct32 (addr, 0, 0)); gdb_read_block(addr, &instr, 4); mp_hash_add (type, addr, instr); // Arc Sim Code --> set_program32 (addr, OR1K_TRAP_INSTR); instr = OR1K_TRAP_INSTR; err = gdb_write_block(addr, &instr, 4); if(err){ put_str_packet ("E01"); return; } put_str_packet ("OK"); return; case BP_HARDWARE: // hardware-breakpoint Z1 hbreak /* Adding support -- jb 090901 */ get_debug_registers(); // First update our copy of the debug registers #ifdef HWBP_BTWN if (count_free_dcrdvr_pairs() < 2) /* Need at least two spare watchpoints free */ put_str_packet (""); /* Cannot add */ #endif wp_num = find_free_dcrdvr_pair(); if (wp_num == -1) { put_str_packet (""); /* Could not find a place to put the breakpoint */ } #ifdef HWBP_BTWN if ((wp_num >= OR1K_MAX_MATCHPOINTS-1) || (wp_num %2 != 0)) /* Should have gotten either, 0,2,4,6 */ { /* Something is wrong - can't do it */ put_str_packet (""); return; } // First watchpoint to watch for address greater than the address insert_hw_watchpoint(wp_num, addr-4, OR1K_CC_GE); wp_num++; // The watchpoints should be next to each other. // Second watchpoint to watch for address less than the address insert_hw_watchpoint(wp_num, addr+4, OR1K_CC_LE); // Chain these two together // First clear the chain settings for this wp (2 bits per) or1k_dbg_group_regs_cache.dmr1 &= ~(SPR_DMR1_CW << (wp_num * SPR_DMR1_CW_SZ)); // We will trigger a match when wp-1 {_-*{>AND<}*-_} wp go off. or1k_dbg_group_regs_cache.dmr1 |= (SPR_DMR1_CW_AND << (wp_num * SPR_DMR1_CW_SZ)); // Now enable this send wp (the higher of the two) to trigger a matchpoint #else /* Simply insert a watchpoint at the address */ insert_hw_watchpoint(wp_num, addr, OR1K_CC_EQ); #endif enable_hw_breakpoint(wp_num); put_str_packet ("OK"); return; case WP_WRITE: // write-watchpoint Z2 watch put_str_packet (""); /* Not supported */ return; case WP_READ: // read-watchpoint Z3 rwatch put_str_packet (""); /* Not supported */ return; case WP_ACCESS: // access-watchpoint Z4 awatch put_str_packet (""); /* Not supported */ return; default: fprintf (stderr, "Warning: RSP matchpoint type %d not " "recognized: ignored\n", type); put_str_packet ("E01"); return; } } /* rsp_insert_matchpoint () */ /*--------------------------------------------------------------------------- Setup the or32 to init state ---------------------------------------------------------------------------*/ void setup_or32(void) { uint32_t temp_uint32; // First set the chain err = gdb_set_chain(SC_REGISTER); /* 4 Register Chain */ if(err > 0){ if (DEBUG_GDB) printf("Error %d in gdb_set_chain\n", err); } if(gdb_read_reg(0x04, &temp_uint32)) printf("Error read from register\n"); if (DEBUG_GDB) printf("Read from chain 4 SC_REGISTER at add 0x00000004 = 0x%08x\n", temp_uint32 ); if(gdb_write_reg(0x04, 0x00000001)) printf("Error write to register\n"); if (DEBUG_GDB) printf("Write to chain 4 SC_REGISTER at add 0x00000004 = 0x00000001\n"); // if(gdb_read_reg(0x04, &temp_uint32)) printf("Error read from register\n"); // if (DEBUG_GDB) printf("Read from chain 4 SC_REGISTER at add 0x00000004 = 0x%08x\n", temp_uint32 ); // if(gdb_read_reg(0x04, &temp_uint32)) printf("Error read from register\n"); // if (DEBUG_GDB) printf("Read from chain 4 SC_REGISTER at add 0x00000004 = 0x%08x\n", temp_uint32 ); if(gdb_write_reg(0x00, 0x01000001)) printf("Error write to register\n"); if (DEBUG_GDB) printf("Write to chain 4 SC_REGISTER at add 0x00000000 = 0x01000001\n"); } // Function to check if the processor is stalled - if not then stall it. // this is useful in the event that GDB thinks the processor is stalled, but has, in fact // been hard reset on the board and is running. static void gdb_ensure_or1k_stalled() { // Disable continual checking that the or1k is stalled #ifdef ENABLE_OR1K_STALL_CHECK unsigned char stalled; dbg_cpu0_read_ctrl(0, &stalled); if ((stalled & 0x1) != 0x1) { if (DEBUG_GDB) printf("Processor not stalled, like we thought\n"); // Set the TAP controller to its OR1k chain dbg_set_tap_ir(JI_DEBUG); gdb_chain = -1; // Processor isn't stalled, contrary to what we though, so stall it printf("Stalling or1k\n"); dbg_cpu0_write_ctrl(0, 0x01); // stall or1k } #endif return; } int gdb_read_byte(uint32_t adr, uint8_t *data) { if (DEBUG_CMDS) printf("rreg %d\n", gdb_chain); switch (gdb_chain) { case SC_RISC_DEBUG: *data = 0; return 0; // Should probably throw an error for chains without byte read... case SC_REGISTER: *data = 0; return 0; case SC_WISHBONE: return dbg_wb_read8(adr, data) ? ERR_CRC : ERR_NONE; case SC_TRACE: *data = 0; return 0; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_read_reg(uint32_t adr, uint32_t *data) { if (DEBUG_CMDS) printf("rreg %d\n", gdb_chain); switch (gdb_chain) { case SC_RISC_DEBUG: return dbg_cpu0_read(adr, data, 4) ? ERR_CRC : ERR_NONE; case SC_REGISTER: return dbg_cpu0_read_ctrl(adr, (unsigned char*)data) ? ERR_CRC : ERR_NONE; case SC_WISHBONE: return dbg_wb_read32(adr, data) ? ERR_CRC : ERR_NONE; case SC_TRACE: *data = 0; return 0; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_write_byte(uint32_t adr, uint8_t data) { if (DEBUG_CMDS) printf("wbyte %d\n", gdb_chain); switch (gdb_chain) { case SC_WISHBONE: return dbg_wb_write8(adr, data) ? ERR_CRC : ERR_NONE; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_write_short(uint32_t adr, uint16_t data) { if (DEBUG_CMDS) printf("wshort %d\n", gdb_chain); fflush (stdout); switch (gdb_chain) { case SC_WISHBONE: return dbg_wb_write16(adr, data) ? ERR_CRC : ERR_NONE; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_write_reg(uint32_t adr, uint32_t data) { if (DEBUG_CMDS) printf("wreg %d\n", gdb_chain); fflush (stdout); switch (gdb_chain) { /* remap registers, to be compatible with jp1 */ case SC_RISC_DEBUG: if (adr == JTAG_RISCOP) adr = 0x00; return dbg_cpu0_write(adr, &data, 4) ? ERR_CRC : ERR_NONE; case SC_REGISTER: return dbg_cpu0_write_ctrl(adr, data) ? ERR_CRC : ERR_NONE; case SC_WISHBONE: return dbg_wb_write32(adr, data) ? ERR_CRC : ERR_NONE; case SC_TRACE: return 0; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_read_block(uint32_t adr, uint32_t *data, int len) { if (DEBUG_CMDS) printf("rb %d len %d\n", gdb_chain, len); fflush (stdout); switch (gdb_chain) { case SC_RISC_DEBUG: return dbg_cpu0_read(adr, data, len) ? ERR_CRC : ERR_NONE; case SC_WISHBONE: return dbg_wb_read_block32(adr, data, len) ? ERR_CRC : ERR_NONE; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_write_block(uint32_t adr, uint32_t *data, int len) { if (DEBUG_CMDS) printf("wb %d\n", gdb_chain); fflush (stdout); switch (gdb_chain) { case SC_RISC_DEBUG: return dbg_cpu0_write(adr, data, len) ? ERR_CRC : ERR_NONE; case SC_WISHBONE: return dbg_wb_write_block32(adr, data, len) ? ERR_CRC : ERR_NONE; default: return JTAG_PROXY_INVALID_CHAIN; } } int gdb_set_chain(int chain) { int rv; switch (chain) { case SC_RISC_DEBUG: case SC_REGISTER: case SC_TRACE: case SC_WISHBONE: gdb_chain = chain; rv = ERR_NONE; break; default: rv = JTAG_PROXY_INVALID_CHAIN; break; } return rv; } /***************************************************************************** * Close the connection to the client if it is open ******************************************************************************/ static void client_close (char err) { if(gdb_fd) { perror("gdb socket - " + err); close(gdb_fd); gdb_fd = 0; } } /* client_close () */ /*---------------------------------------------------------------------------*/ /* Swap a buffer of 4-byte from 1234 to 4321 parameter[in] p_buf and len parameter[out] none */ /*---------------------------------------------------------------------------*/ static void swap_buf(char* p_buf, int len) { int temp; int n = 0; if (len > 2) { while(n < len){ // swap 0 and 3 temp = p_buf[n]; p_buf[n] = p_buf[n + 3]; p_buf[n + 3] = temp; // swap 1 and 2 temp = p_buf[n + 1]; p_buf[n + 1] = p_buf[n + 2]; p_buf[n + 2] = temp; n += 4; } } } /*---------------------------------------------------------------------------*/ /*!Set the stall state of the processor @param[in] state If non-zero stall the processor. */ /*---------------------------------------------------------------------------*/ static void set_stall_state (int state) { if(state == 0) { err = dbg_cpu0_write_ctrl(0, 0); /* unstall or1k */ stallState = UNSTALLED; npcIsCached = 0; rsp.sigval = TARGET_SIGNAL_NONE; } else { err = dbg_cpu0_write_ctrl(0, 0x01); /* stall or1k */ stallState = STALLED; } if(err > 0 && DEBUG_GDB)printf("Error %d in set_stall_state Stall state = %d\n", err, state); } /* set_stall_state () */ /*---------------------------------------------------------------------------*/ /*!Set the reset bit of the processor's control reg in debug interface */ /*---------------------------------------------------------------------------*/ static void reset_or1k (void) { err = dbg_cpu0_write_ctrl(0, 0x02); /* reset or1k */ if(err > 0 && DEBUG_GDB)printf("Error %d in reset_or1k()\n", err); } /* reset_or1k () */ /*---------------------------------------------------------------------------*/ /*!Close down the connection with GDB in the event of a kill signal */ /*---------------------------------------------------------------------------*/ void gdb_close() { rsp_client_close(); client_close('0'); // Maybe do other things here! }
Go to most recent revision | Compare with Previous | Blame | View Log