URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [orpsocv2/] [boards/] [actel/] [ordb1a3pe1500/] [bench/] [verilog/] [include/] [eth_stim.v] - Rev 425
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// Ethernet MAC Stimulus //// //// //// //// Description //// //// Ethernet MAC stimulus tasks. Taken from the project //// //// testbench in the ethmac core. //// //// //// //// To Do: //// //// //// //// //// //// Author(s): //// //// - Tadej Markovic, tadej@opencores.org //// //// - Igor Mohor, igorM@opencores.org //// //// - Julius Baxter julius.baxter@orsoc.se //// //// //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2009 Authors and OPENCORES.ORG //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `define TIME $display("Time: %0t", $time) // Defines for ethernet test to trigger sending/receiving // Is straight forward when using RTL design, but if using netlist then paths to // the RX/TX enabled bits depend on synthesis tool, etc, but ones here appear to // work with design put through Synplify, with hierarchy maintained. `define ETH_TOP dut.ethmac0 `define ETH_BD_RAM_PATH `ETH_TOP.wishbone.bd_ram `define ETH_MODER_PATH `ETH_TOP.ethreg1.MODER_0 `ifdef RTL_SIM `ifdef ethmac_IS_GATELEVEL `define ETH_MODER_TXEN_BIT `ETH_MODER_PATH.r_TxEn; `define ETH_MODER_RXEN_BIT `ETH_MODER_PATH.r_RxEn; `else `define ETH_MODER_TXEN_BIT `ETH_MODER_PATH.DataOut[1]; `define ETH_MODER_RXEN_BIT `ETH_MODER_PATH.DataOut[0]; `endif `endif `ifdef GATE_SIM `define ETH_MODER_TXEN_BIT `ETH_MODER_PATH.r_TxEn; `define ETH_MODER_RXEN_BIT `ETH_MODER_PATH.r_RxEn; `endif reg [15:0] eth_stim_rx_packet_length; reg [7:0] st_data; reg [31:0] lfsr; integer lfsr_last_byte; // Is number of ethernet packets to send if doing the eth-rx test. parameter eth_stim_num_rx_only_num_packets = 500; // Set to 0 for continuous RX parameter eth_stim_num_rx_only_packet_size = 512; parameter eth_stim_num_rx_only_packet_size_change = 2'b01; // 2'b01: Increment parameter eth_stim_num_rx_only_packet_size_change_amount = 1; parameter eth_stim_num_rx_only_IPG = 800000; // ns // Do call/response test reg eth_stim_do_rx_reponse_to_tx; parameter num_tx_bds = 16; parameter num_tx_bds_mask = 4'hf; parameter num_rx_bds = 16; parameter num_rx_bds_mask = 4'hf; parameter max_eth_packet_size = 16'h0600; // If running eth-rxtxbig test (sending and receiving maximum packets), then // set this parameter to the max packet size, otherwise min packet size //parameter rx_while_tx_min_packet_size = max_eth_packet_size; parameter rx_while_tx_min_packet_size = 32; // Use the smallest possible IPG parameter eth_stim_use_min_IPG = 0; parameter eth_stim_IPG_delay_max = 500_000; // Maximum 500uS ga //parameter eth_stim_IPG_delay_max = 100_000_000; // Maximum 100mS between packets parameter eth_stim_IPG_min_10mb = 9600; // 9.6 uS parameter eth_stim_IPG_min_100mb = 800; // 860+~100 = 960 nS 100MBit min IPG parameter eth_stim_check_rx_packet_contents = 1; parameter eth_stim_check_tx_packet_contents = 1; parameter eth_inject_errors = 0; // When running simulations where you don't want to feed packets to the design // like this... parameter eth_stim_disable_rx_stim = 0; // Delay between seeing that the buffer descriptor for an RX packet says it's // been received and ending up in the memory. // For 25MHz sdram controller, use following: //parameter Td_rx_packet_check = (`BOARD_CLOCK_PERIOD * 2000); // For 64MHz sdram controller, use following: parameter Td_rx_packet_check = (`BOARD_CLOCK_PERIOD * 500); integer expected_rxbd;// init to 0 integer expected_txbd; wire ethmac_rxen; wire ethmac_txen; assign ethmac_rxen = eth_stim_disable_rx_stim ? 0 : `ETH_MODER_RXEN_BIT; assign ethmac_txen = `ETH_MODER_TXEN_BIT; integer eth_rx_num_packets_sent = 0; integer eth_rx_num_packets_checked = 0; integer num_tx_packets = 1; integer rx_packet_lengths [0:1023]; // Array of packet lengths integer speed_loop; // When txen is (re)enabled, the tx bd pointer goes back to 0 always @(posedge ethmac_txen) expected_txbd = 0; reg eth_stim_waiting; initial begin #1; //lfsr = 32'h84218421; // Init pseudo lfsr lfsr = 32'h00700001; // Init pseudo lfsr lfsr_last_byte = 0; eth_stim_waiting = 1; expected_rxbd = num_tx_bds; // init this here eth_stim_do_rx_reponse_to_tx = 0; while (eth_stim_waiting) // Loop, waiting for enabling of MAC by software begin #100; // If RX enable and not TX enable... if(ethmac_rxen === 1'b1 & !(ethmac_txen===1'b1)) begin if (eth_inject_errors) begin do_rx_only_stim(16, 64, 0, 0); do_rx_only_stim(128, 64, 1'b1, 8); do_rx_only_stim(256, 64, 1'b1, 4); eth_stim_waiting = 0; end else begin //do_rx_only_stim(eth_stim_num_rx_only_num_packets, //eth_stim_num_rx_only_packet_size, 0, 0); // Call packet send loop directly. No error injection. send_packet_loop(eth_stim_num_rx_only_num_packets, eth_stim_num_rx_only_packet_size, eth_stim_num_rx_only_packet_size_change, eth_stim_num_rx_only_packet_size_change_amount, eth_phy0.eth_speed, // Speed eth_stim_num_rx_only_IPG, // IPG 48'h0012_3456_789a, 48'h0708_090A_0B0C, 1, 0, 0); eth_stim_waiting = 0; end end // if (ethmac_rxen === 1'b1 & !(ethmac_txen===1'b1)) // If both RX and TX enabled else if (ethmac_rxen === 1'b1 & ethmac_txen===1'b1) begin // Both enabled - let's wait for the first packet transmitted // to see what stimulus we should provide while (num_tx_packets==1) #1000; $display("* ethmac RX/TX test request: %x", eth_phy0.tx_mem[0]); // Check the first received byte's value case (eth_phy0.tx_mem[0]) 0: begin // kickoff call/response here eth_stim_do_rx_reponse_to_tx = 1; end default: begin do_rx_while_tx_stim(1400); end endcase // case (eth_phy0.tx_mem[0]) eth_stim_waiting = 0; end end // while (eth_stim_waiting) end // initial begin // Main Ethernet RX testing stimulus task. // Sends a set of packets at both speeds task do_rx_only_stim; input [31:0] num_packets; input [31:0] start_packet_size; input inject_errors; input [31:0] inject_errors_mod; begin for(speed_loop=1;speed_loop<3;speed_loop=speed_loop+1) begin send_packet_loop(num_packets, start_packet_size, 2'b01, 1, speed_loop[0], 10000, 48'h0012_3456_789a, 48'h0708_090A_0B0C, 1, inject_errors, inject_errors_mod); end end endtask // do_rx_stim // Generate RX packets while there's TX going on // Sends a set of packets at both speeds task do_rx_while_tx_stim; input [31:0] num_packets; reg [31:0] IPG; // Inter-packet gap reg [31:0] packet_size; integer j; begin for(j=0;j<num_packets;j=j+1) begin // Determine delay between RX packets: if (eth_stim_use_min_IPG) begin // Assign based on whether we're in 100mbit or 10mbit mode IPG = eth_phy0.eth_speed ? eth_stim_IPG_min_100mb : eth_stim_IPG_min_10mb; // Add a little bit of variability // Add up to 15 IPG = IPG + ($random & 32'h000000f); end else begin IPG = $random; while (IPG > eth_stim_IPG_delay_max) IPG = IPG / 2; end $display("do_rx_while_tx IPG = %0d", IPG); // Determine size of next packet: if (rx_while_tx_min_packet_size == max_eth_packet_size) // We want to transmit biggest packets possible, easy case packet_size = max_eth_packet_size - 4; else begin // Constrained random sized packets packet_size = $random; while (packet_size > (max_eth_packet_size-4)) packet_size = packet_size / 2; // Now divide by least significant bits of j packet_size = packet_size / {29'd0,j[1:0],1'b1}; if (packet_size < 60) packet_size = packet_size + 60; end $display("do_rx_while_tx packet_size = %0d", packet_size); send_packet_loop(1, packet_size, 2'b01, 1, eth_phy0.eth_speed, IPG, 48'h0012_3456_789a, 48'h0708_090A_0B0C, 1, 1'b0, 0); // If RX enable went low, wait for it go high again if (ethmac_rxen===1'b0) begin while (ethmac_rxen===1'b0) begin @(posedge ethmac_rxen); #10000; end // RX disabled and when re-enabled we reset the buffer descriptor number expected_rxbd = num_tx_bds; end end // for (j=0;j<num_packets;j=j+1) end endtask // do_rx_stim // Registers used in detecting transmitted packets reg eth_stim_tx_loop_keep_polling; reg [31:0] ethmac_txbd_lenstat, ethmac_last_txbd_lenstat; reg eth_stim_detected_packet_tx; // If in call-response mode, whenever we receive a TX packet, we generate // one and send it back always @(negedge eth_stim_detected_packet_tx) begin if (eth_stim_do_rx_reponse_to_tx & ethmac_rxen) // Continue if we are enabled do_rx_response_to_tx(); end // Generate RX packet in rsponse to TX packet task do_rx_response_to_tx; //input unused; reg [31:0] IPG; // Inter-packet gap reg [31:0] packet_size; integer j; begin // Get packet size test wants us to send packet_size = {eth_phy0.tx_mem[0],eth_phy0.tx_mem[1], eth_phy0.tx_mem[2],eth_phy0.tx_mem[3]}; IPG = {eth_phy0.tx_mem[4],eth_phy0.tx_mem[5], eth_phy0.tx_mem[6],eth_phy0.tx_mem[7]}; $display("do_rx_response_to_tx IPG = %0d", IPG); if (packet_size == 0) begin // Constrained random sized packets packet_size = $random; while (packet_size > (max_eth_packet_size-4)) packet_size = packet_size / 2; if (packet_size < 60) packet_size = packet_size + 60; end $display("do_rx_response_to_tx packet_size = %0d", packet_size); send_packet_loop(1, packet_size, 2'b01, 1, eth_phy0.eth_speed, IPG, 48'h0012_3456_789a, 48'h0708_090A_0B0C, 1, 1'b0, 0); // If RX enable went low, wait for it go high again if (ethmac_rxen===1'b0) begin while (ethmac_rxen===1'b0) begin @(posedge ethmac_rxen); #10000; end // RX disabled and when re-enabled we reset the buffer // descriptor number expected_rxbd = num_tx_bds; end end endtask // do_rx_response_to_tx // // always@() to check the TX buffer descriptors // always @(posedge ethmac_txen) begin ethmac_last_txbd_lenstat = 0; eth_stim_tx_loop_keep_polling=1; // Wait on the TxBD Ready bit while(eth_stim_tx_loop_keep_polling) begin #10; get_bd_lenstat(expected_txbd, ethmac_txbd_lenstat); // Check if we've finished transmitting this BD if (!ethmac_txbd_lenstat[15] & ethmac_last_txbd_lenstat[15]) // Falling edge of TX BD Ready eth_stim_detected_packet_tx = 1; ethmac_last_txbd_lenstat = ethmac_txbd_lenstat; // If TX en goes low then exit if (!ethmac_txen) eth_stim_tx_loop_keep_polling = 0; else if (eth_stim_detected_packet_tx) begin // Wait until the eth_phy has finished receiving it while (eth_phy0.mtxen_i === 1'b1) #10; $display("(%t) Check TX packet: bd %d: 0x%h",$time, expected_txbd, ethmac_txbd_lenstat); // Check the TXBD, see if the packet transmitted OK if (ethmac_txbd_lenstat[8] | ethmac_txbd_lenstat[3]) begin // Error occured `TIME; $display("*E TX Error of packet %0d detected.", num_tx_packets); $display(" TX BD %0d = 0x%h", expected_txbd, ethmac_txbd_lenstat); if (ethmac_txbd_lenstat[8]) $display(" Underrun in MAC during TX"); if (ethmac_txbd_lenstat[3]) $display(" Retransmission limit hit"); $finish; end else begin // Packet was OK, let's compare the contents we // received with those that were meant to be transmitted if (eth_stim_check_tx_packet_contents) begin check_tx_packet(expected_txbd); expected_txbd = (expected_txbd + 1) & num_tx_bds_mask; num_tx_packets = num_tx_packets + 1; eth_stim_detected_packet_tx = 0; end end end end // while (eth_stim_tx_loop_keep_polling) end // always @ (posedge ethmac_txen) // // Check packet TX'd by MAC was good // task check_tx_packet; input [31:0] tx_bd_num; reg [31:0] tx_bd_addr; reg [7:0] phy_byte; reg [31:0] txpnt_wb; // Pointer in array to where data should be reg [24:0] txpnt_sdram; // Index in array of shorts for data in SDRAM // part reg [21:0] buffer; reg [7:0] sdram_byte; reg [31:0] tx_len_bd; integer i; integer failure; begin failure = 0; get_bd_lenstat(tx_bd_num, tx_len_bd); tx_len_bd = {15'd0,tx_len_bd[31:16]}; // Check, if length didn't have to be padded, that // amount transmitted was correct if ((tx_len_bd > 60)&(tx_len_bd != (eth_phy0.tx_len-4))) begin $display("*E TX packet sent length, %0d != length in TX BD, %0d", eth_phy0.tx_len-4, tx_len_bd); #100; $finish; end get_bd_addr(tx_bd_num, tx_bd_addr); // We're never going to be using more than about 256K of receive buffer // so let's lop off the top bit of the address pointer - we only want // the offset from the base of the memory bank txpnt_wb = {14'd0,tx_bd_addr[17:0]}; txpnt_sdram = tx_bd_addr[24:0]; // Variable we'll use for index in the PHY's TX buffer buffer = 0; // Start of TX data `ifdef VERSATILE_SDRAM for (i=0;i<tx_len_bd;i=i+1) begin //$display("Checking address in tx bd 0x%0h",txpnt_sdram); sdram0.get_byte(txpnt_sdram,sdram_byte); phy_byte = eth_phy0.tx_mem[buffer]; // Debugging output //$display("txpnt_sdram = 0x%h, sdram_byte = 0x%h, buffer = 0x%h, phy_byte = 0x%h", txpnt_sdram, sdram_byte, buffer, phy_byte); if (phy_byte !== sdram_byte) begin `TIME; $display("*E Wrong byte (%d) of TX packet! ram = %h, phy = %h",buffer, sdram_byte, phy_byte); failure = 1; end buffer = buffer + 1; txpnt_sdram = txpnt_sdram+1; end // for (i=0;i<tx_len_bd;i=i+1) `else $display("SET ME UP TO LOOK IN ANOTHER MEMORY!"); $display("RAM pointer for BD is 0x%h, bank offset we'll use is 0x%h", tx_bd_addr, txpnt_wb); $finish; `endif // !`ifdef VERSATILE_SDRAM if (failure) begin #100 `TIME; $display("*E Error transmitting packet %0d (%0d bytes). Finishing simulation", num_tx_packets, tx_len_bd); get_bd_lenstat(tx_bd_num, tx_len_bd); $display(" TXBD lenstat: 0x%0h",tx_len_bd); $display(" TXBD address: 0x%0h",tx_bd_addr); $finish; end else begin #1 $display( "(%0t)(%m) TX packet %0d: %0d bytes in memory OK!",$time,num_tx_packets, tx_len_bd); end end endtask // check_tx_packet // // Task to send a set of packets // task send_packet_loop; input [31:0] num_packets; input [31:0] length; input [1:0] length_change; // 0 = none, 1 = incr, 2 = decrement input [31:0] length_change_size; // Size to change by input speed; input [31:0] back_to_back_delay; // #delay setting between packets input [47:0] dst_mac; input [47:0] src_mac; input random_fill; input random_errors; input [31:0] random_error_mod; integer j; reg error_this_time; integer error_type; // 0 = rxerr, 1=bad preamble 2=bad crc 3=TODO reg [31:0] rx_bd_lenstat; begin error_type = 0; error_this_time = 0; if (num_packets == 0) // Loop forever when num_packets is 0 num_packets = 32'h7fffffff; if (speed & !(eth_phy0.control_bit14_10[13] === 1'b1)) begin // write to phy's control register for 100Mbps eth_phy0.control_bit14_10 = 5'b01000; // bit 13 set - speed 100 // Swapping speeds, give some delay #10000; end else if (!speed & !(eth_phy0.control_bit14_10[13] === 1'b0)) begin eth_phy0.control_bit14_10 = 5'b00000; // bit 13 reset - speed 10 // Swapping speeds, give some delay #10000; end eth_phy0.control_bit8_0 = 9'h1_00; for(j=0;j<num_packets | length <32;j=j+1) begin eth_stim_rx_packet_length = length[15:0]; // Bytes st_data = 8'h0F; // setup RX packet in buffer - length is without CRC set_rx_packet(0, eth_stim_rx_packet_length, 1'b0, dst_mac, src_mac, 16'h0D0E, st_data, random_fill); set_rx_addr_type(0, dst_mac, src_mac, 16'h0D0E); // Error type 2 is cause CRC error append_rx_crc(0, eth_stim_rx_packet_length, 1'b0, (error_type==2)); if (error_this_time) begin if (error_type == 0) // RX ERR assert during transmit eth_phy0.send_rx_packet(64'h0055_5555_5555_5555, 4'h7, 8'hD5, 0, eth_stim_rx_packet_length+4, 1'b0, 1'b1); else if (error_type == 1) // Incorrect preamble eth_phy0.send_rx_packet(64'h0055_5f55_5555_5555, 4'h7, 8'hD5, 0, eth_stim_rx_packet_length+4, 1'b0, 1'b0); else // Normal datapacket eth_phy0.send_rx_packet(64'h0055_5555_5555_5555, 4'h7, 8'hD5, 0, eth_stim_rx_packet_length+4, 1'b0, 1'b0); end else eth_phy0.send_rx_packet(64'h0055_5555_5555_5555, 4'h7, 8'hD5, 0, eth_stim_rx_packet_length+4, 1'b0, 1'b0); // if RX enable still set (might have gone low during this packet if (ethmac_rxen) begin if (error_this_time) // Put in dummy length, checking function will skip... rx_packet_lengths[(eth_rx_num_packets_sent& 12'h3ff)]=32'heeeeeeee; else rx_packet_lengths[(eth_rx_num_packets_sent & 12'h3ff)] = length; eth_rx_num_packets_sent = eth_rx_num_packets_sent + 1; end // if (ethmac_rxen) else begin // Force the loop to finish up j = num_packets; end // Inter-packet gap #back_to_back_delay; // Update length if (length_change == 2'b01) length = length + length_change_size; if ((length_change == 2'b10) && ((length - length_change_size) > 32)) length = length - length_change_size; // Increment error type if (error_this_time) error_type = error_type + 1; if (error_type > 3) error_type = 0; // Check if we should put in an error this time if (j%random_error_mod == 0) error_this_time = 1; else error_this_time = 0; eth_phy0.rx_err(0); // Now wait to check if we have filled up all the RX BDs and // the this packet would start writing over them. Only really an // issue when doing minimum IPG tests. while(((eth_rx_num_packets_sent+1) - eth_rx_num_packets_checked) == num_rx_bds) #100; end // for (j=0;j<num_packets | length <32;j=j+1) end endtask // send_packet_loop // Local buffer of "sent" data to the ethernet MAC, we will check against // Size of our local buffer in bytes parameter eth_rx_sent_circbuf_size = (16*1024); parameter eth_rx_sent_circbuf_size_mask = eth_rx_sent_circbuf_size - 1; integer eth_rx_sent_circbuf_fill_ptr = 0; integer eth_rx_sent_circbuf_read_ptr = 0; // The actual buffer reg [7:0] eth_rx_sent_circbuf [0:eth_rx_sent_circbuf_size-1]; /* TASKS for set and check RX packets: ----------------------------------- set_rx_packet (rxpnt[31:0], len[15:0], plus_nibble, d_addr[47:0], s_addr[47:0], type_len[15:0], start_data[7:0]); check_rx_packet (rxpnt_phy[31:0], rxpnt_wb[31:0], len[15:0], plus_nibble, successful_nibble, failure[31:0]); */ task set_rx_packet; input [31:0] rxpnt; // pointer to place in in the phy rx buffer we'll start at input [15:0] len; input plus_dribble_nibble; // if length is longer for one nibble input [47:0] eth_dest_addr; input [47:0] eth_source_addr; input [15:0] eth_type_len; input [7:0] eth_start_data; input random_fill; integer i, sd; reg [47:0] dest_addr; reg [47:0] source_addr; reg [15:0] type_len; reg [21:0] buffer; reg delta_t; begin buffer = rxpnt[21:0]; dest_addr = eth_dest_addr; source_addr = eth_source_addr; type_len = eth_type_len; sd = eth_start_data; delta_t = 0; for(i = 0; i < len; i = i + 1) begin if (i < 6) begin eth_phy0.rx_mem[buffer] = dest_addr[47:40]; dest_addr = dest_addr << 8; end else if (i < 12) begin eth_phy0.rx_mem[buffer] = source_addr[47:40]; source_addr = source_addr << 8; end else if (i < 14) begin eth_phy0.rx_mem[buffer] = type_len[15:8]; type_len = type_len << 8; end else begin if (random_fill) begin if (lfsr_last_byte == 0) eth_phy0.rx_mem[buffer] = lfsr[15:8]; if (lfsr_last_byte == 1) eth_phy0.rx_mem[buffer] = lfsr[23:16]; if (lfsr_last_byte == 2) eth_phy0.rx_mem[buffer] = lfsr[31:24]; if (lfsr_last_byte == 3) begin eth_phy0.rx_mem[buffer] = lfsr[7:0]; lfsr = {lfsr[30:0],(((lfsr[31] ^ lfsr[6]) ^ lfsr[5]) ^ lfsr[1])}; lfsr_last_byte = 0; end else lfsr_last_byte = lfsr_last_byte + 1; end // if (random_fill) else eth_phy0.rx_mem[buffer] = sd[7:0]; sd = sd + 1; end // else: !if(i < 14) // Update our local buffer eth_rx_sent_circbuf[eth_rx_sent_circbuf_fill_ptr] = eth_phy0.rx_mem[buffer]; eth_rx_sent_circbuf_fill_ptr = (eth_rx_sent_circbuf_fill_ptr+1)& eth_rx_sent_circbuf_size_mask; buffer = buffer + 1; end // for (i = 0; i < len; i = i + 1) delta_t = !delta_t; if (plus_dribble_nibble) eth_phy0.rx_mem[buffer] = {4'h0, 4'hD /*sd[3:0]*/}; delta_t = !delta_t; end endtask // set_rx_packet task set_rx_addr_type; input [31:0] rxpnt; input [47:0] eth_dest_addr; input [47:0] eth_source_addr; input [15:0] eth_type_len; integer i; reg [47:0] dest_addr; reg [47:0] source_addr; reg [15:0] type_len; reg [21:0] buffer; reg delta_t; begin buffer = rxpnt[21:0]; dest_addr = eth_dest_addr; source_addr = eth_source_addr; type_len = eth_type_len; delta_t = 0; for(i = 0; i < 14; i = i + 1) begin if (i < 6) begin eth_phy0.rx_mem[buffer] = dest_addr[47:40]; dest_addr = dest_addr << 8; end else if (i < 12) begin eth_phy0.rx_mem[buffer] = source_addr[47:40]; source_addr = source_addr << 8; end else // if (i < 14) begin eth_phy0.rx_mem[buffer] = type_len[15:8]; type_len = type_len << 8; end buffer = buffer + 1; end delta_t = !delta_t; end endtask // set_rx_addr_type // Check if we're using a synthesized version of eth module `ifdef ethmac_IS_GATELEVEL // Get the length/status register of the ethernet buffer descriptor task get_bd_lenstat; input [31:0] bd_num;// Number of ethernet BD to check output [31:0] bd_lenstat; `ifdef ACTEL reg [8:0] tmp; integer raddr; `endif begin `ifdef ACTEL // Pull from the Actel memory model raddr = `ETH_BD_RAM_PATH.\mem_tile.I_1 .get_address((bd_num*2)); tmp = `ETH_BD_RAM_PATH.\mem_tile.I_1 .MEM_512_9[(raddr*2)]; bd_lenstat[8:0] = tmp[8:0]; tmp = `ETH_BD_RAM_PATH.\mem_tile.I_1 .MEM_512_9[(raddr*2)+1]; bd_lenstat[17:9] = tmp[8:0]; raddr = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .get_address((bd_num*2)); tmp = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .MEM_512_9[(raddr*2)]; bd_lenstat[26:18] = tmp[8:0]; tmp = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .MEM_512_9[(raddr*2)+1]; bd_lenstat[31:27] = tmp[4:0]; //$display("(%t) read eth bd lenstat %h",$time, bd_lenstat); `endif end endtask // get_bd_lenstat // Get the length/status register of the ethernet buffer descriptor task get_bd_addr; input [31:0] bd_num;// Number of the ethernet BD to check output [31:0] bd_addr; `ifdef ACTEL reg [8:0] tmp; integer raddr; `endif begin `ifdef ACTEL // Pull from the Actel memory model raddr = `ETH_BD_RAM_PATH.\mem_tile.I_1 .get_address((bd_num*2)+1); tmp = `ETH_BD_RAM_PATH.\mem_tile.I_1 .MEM_512_9[(raddr*2)]; bd_addr[8:0] = tmp[8:0]; tmp = `ETH_BD_RAM_PATH.\mem_tile.I_1 .MEM_512_9[(raddr*2)+1]; bd_addr[17:9] = tmp[8:0]; raddr = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .get_address((bd_num*2)+1); tmp = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .MEM_512_9[(raddr*2)]; bd_addr[26:18] = tmp[8:0]; tmp = `ETH_BD_RAM_PATH.\mem_tile_0.I_1 .MEM_512_9[(raddr*2)+1]; bd_addr[31:27] = tmp[4:0]; //$display("(%t) read eth bd%d addr %h",$time,bd_num, bd_addr); `endif end endtask // get_bd_addr `else // !`ifdef ethmac_IS_GATELEVEL // Get the length/status register of the ethernet buffer descriptor task get_bd_lenstat; input [31:0] bd_num;// Number of ethernet BD to check output [31:0] bd_lenstat; begin bd_lenstat = `ETH_BD_RAM_PATH.mem[(bd_num*2)]; end endtask // get_bd_lenstat // Get the length/status register of the ethernet buffer descriptor task get_bd_addr; input [31:0] bd_num;// Number of the ethernet BD to check output [31:0] bd_addr; begin bd_addr = `ETH_BD_RAM_PATH.mem[((bd_num*2)+1)]; //$display("(%t) read eth bd%d addr %h",$time,bd_num, bd_addr); end endtask // get_bd_addr `endif // Always block triggered by finishing of transmission of new packet from // send_packet_loop integer eth_rx_packet_length_to_check; always @* begin // Loop here until: // 1 - packets sent is not equal to packets checked (ie. some to check) // 2 - we're explicitly disabled for some reason // 3 - Receive has been disabled in the MAC while((eth_rx_num_packets_sent == eth_rx_num_packets_checked) || !eth_stim_check_rx_packet_contents || !(ethmac_rxen===1'b1)) #1000; eth_rx_packet_length_to_check = rx_packet_lengths[(eth_rx_num_packets_checked & 12'h3ff)]; if ( eth_rx_packet_length_to_check !== 32'heeeeeeee) check_rx_packet(expected_rxbd, 0, eth_rx_packet_length_to_check); eth_rx_num_packets_checked = eth_rx_num_packets_checked + 1; expected_rxbd = expected_rxbd + 1; // Wrap if (expected_rxbd == (num_tx_bds + num_rx_bds)) expected_rxbd = num_tx_bds; end task check_rx_packet; input [31:0] rx_bd_num; input [31:0] rxpnt_phy; // Pointer in array of data in PHY input [31:0] len; reg [31:0] rx_bd_lenstat; reg [31:0] rx_bd_addr; reg [7:0] phy_byte; reg [31:0] rxpnt_wb; // Pointer in array to where data should be reg [24:0] rxpnt_sdram; // byte address from CPU in RAM reg [15:0] sdram_short; reg [7:0] sdram_byte; //reg [7:0] phy_rx_mem [0:2000]; integer i; integer failure; begin failure = 0; // Wait until the buffer descriptor indicates the packet has been // received... get_bd_lenstat(rx_bd_num, rx_bd_lenstat); while (rx_bd_lenstat & 32'h00008000)// Check Empty bit begin #10; get_bd_lenstat(rx_bd_num, rx_bd_lenstat); //$display("(%t) check_rx_packet: poll bd %d: 0x%h",$time, // rx_bd_num, rx_bd_lenstat); end // Delay some time - takes a bit for the Wishbone FSM to pipe out the // packet over Wishbone and into whatever memory it's going into #Td_rx_packet_check; // Ok, buffer filled, let's get its offset in memory get_bd_addr(rx_bd_num, rx_bd_addr); $display("(%t) Check RX packet: bd %d: 0x%h, addr 0x%h",$time, rx_bd_num, rx_bd_lenstat, rx_bd_addr); // We're never going to be using more than about 256KB of receive buffer // so let's lop off the top bit of the address pointer - we only want // the offset from the base of the memory bank rxpnt_wb = {14'd0,rx_bd_addr[17:0]}; rxpnt_sdram = rx_bd_addr[24:0]; `ifdef VERSATILE_SDRAM // We'll look inside the SDRAM array // Hard coded for the SDRAM buffer area to be from the halfway mark in // memory (so starting in Bank2) // We'll be passed the offset from the beginning of the buffer area // in rxpnt_wb. This value will be in bytes. //$display("RAM pointer for BD is 0x%h, SDRAM addr is 0x%h", rx_bd_addr, rxpnt_sdram); for (i=0;i<len;i=i+1) begin sdram0.get_byte(rxpnt_sdram,sdram_byte); phy_byte = eth_rx_sent_circbuf[eth_rx_sent_circbuf_read_ptr];//phy_rx_mem[buffer]; //eth_phy0.rx_mem[buffer]; if (phy_byte !== sdram_byte) begin // `TIME; $display("*E Wrong byte (%5d) of RX packet %5d! phy = %h, ram = %h", i, eth_rx_num_packets_checked, phy_byte, sdram_byte); failure = 1; end eth_rx_sent_circbuf_read_ptr = (eth_rx_sent_circbuf_read_ptr+1)& eth_rx_sent_circbuf_size_mask; rxpnt_sdram = rxpnt_sdram+1; end // for (i=0;i<len;i=i+2) `else $display("SET ME UP TO LOOK IN ANOTHER MEMORY!"); $display("RAM pointer for BD is 0x%h, bank offset we'll use is 0x%h", rx_bd_addr, rxpnt_wb); $finish; `endif // !`ifdef VERSATILE_SDRAM if (failure) begin #100 `TIME; $display("*E Recieved packet %0d, length %0d bytes, had an error. Finishing simulation.", eth_rx_num_packets_checked, len); $finish; end else begin #1 $display( "(%0t)(%m) RX packet %0d: %0d bytes in memory OK!",$time,eth_rx_num_packets_checked, len); end end endtask // check_rx_packet ////////////////////////////////////////////////////////////// // Ethernet CRC Basic tasks ////////////////////////////////////////////////////////////// task append_rx_crc; input [31:0] rxpnt_phy; // source input [15:0] len; // length in bytes without CRC input plus_dribble_nibble; // if length is longer for one nibble input negated_crc; // if appended CRC is correct or not reg [31:0] crc; reg [7:0] tmp; reg [31:0] addr_phy; reg delta_t; begin addr_phy = rxpnt_phy + len; delta_t = 0; // calculate CRC from prepared packet paralel_crc_phy_rx(rxpnt_phy, {16'h0, len}, plus_dribble_nibble, crc); if (negated_crc) crc = ~crc; delta_t = !delta_t; if (plus_dribble_nibble) begin tmp = eth_phy0.rx_mem[addr_phy]; eth_phy0.rx_mem[addr_phy] = {crc[27:24], tmp[3:0]}; eth_phy0.rx_mem[addr_phy + 1] = {crc[19:16], crc[31:28]}; eth_phy0.rx_mem[addr_phy + 2] = {crc[11:8], crc[23:20]}; eth_phy0.rx_mem[addr_phy + 3] = {crc[3:0], crc[15:12]}; eth_phy0.rx_mem[addr_phy + 4] = {4'h0, crc[7:4]}; end else begin eth_phy0.rx_mem[addr_phy] = crc[31:24]; eth_phy0.rx_mem[addr_phy + 1] = crc[23:16]; eth_phy0.rx_mem[addr_phy + 2] = crc[15:8]; eth_phy0.rx_mem[addr_phy + 3] = crc[7:0]; end end endtask // append_rx_crc task append_rx_crc_delayed; input [31:0] rxpnt_phy; // source input [15:0] len; // length in bytes without CRC input plus_dribble_nibble; // if length is longer for one nibble input negated_crc; // if appended CRC is correct or not reg [31:0] crc; reg [7:0] tmp; reg [31:0] addr_phy; reg delta_t; begin addr_phy = rxpnt_phy + len; delta_t = 0; // calculate CRC from prepared packet paralel_crc_phy_rx(rxpnt_phy+4, {16'h0, len}-4, plus_dribble_nibble, crc); if (negated_crc) crc = ~crc; delta_t = !delta_t; if (plus_dribble_nibble) begin tmp = eth_phy0.rx_mem[addr_phy]; eth_phy0.rx_mem[addr_phy] = {crc[27:24], tmp[3:0]}; eth_phy0.rx_mem[addr_phy + 1] = {crc[19:16], crc[31:28]}; eth_phy0.rx_mem[addr_phy + 2] = {crc[11:8], crc[23:20]}; eth_phy0.rx_mem[addr_phy + 3] = {crc[3:0], crc[15:12]}; eth_phy0.rx_mem[addr_phy + 4] = {4'h0, crc[7:4]}; end else begin eth_phy0.rx_mem[addr_phy] = crc[31:24]; eth_phy0.rx_mem[addr_phy + 1] = crc[23:16]; eth_phy0.rx_mem[addr_phy + 2] = crc[15:8]; eth_phy0.rx_mem[addr_phy + 3] = crc[7:0]; end end endtask // append_rx_crc_delayed // paralel CRC calculating for PHY RX task paralel_crc_phy_rx; input [31:0] start_addr; // start address input [31:0] len; // length of frame in Bytes without CRC length input plus_dribble_nibble; // if length is longer for one nibble output [31:0] crc_out; reg [21:0] addr_cnt; // only 22 address lines integer word_cnt; integer nibble_cnt; reg [31:0] load_reg; reg delta_t; reg [31:0] crc_next; reg [31:0] crc; reg crc_error; reg [3:0] data_in; integer i; begin #1 addr_cnt = start_addr[21:0]; word_cnt = 24; // 27; // start of the frame - nibble granularity (MSbit first) crc = 32'hFFFF_FFFF; // INITIAL value delta_t = 0; // length must include 4 bytes of ZEROs, to generate CRC // get number of nibbles from Byte length (2^1 = 2) if (plus_dribble_nibble) nibble_cnt = ((len + 4) << 1) + 1'b1; // one nibble longer else nibble_cnt = ((len + 4) << 1); // because of MAGIC NUMBER nibbles are swapped [3:0] -> [0:3] load_reg[31:24] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[23:16] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[15: 8] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[ 7: 0] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; while (nibble_cnt > 0) begin // wait for delta time delta_t = !delta_t; // shift data in if(nibble_cnt <= 8) // for additional 8 nibbles shift ZEROs in! data_in[3:0] = 4'h0; else data_in[3:0] = {load_reg[word_cnt], load_reg[word_cnt+1], load_reg[word_cnt+2], load_reg[word_cnt+3]}; crc_next[0] = (data_in[0] ^ crc[28]); crc_next[1] = (data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29]); crc_next[2] = (data_in[2] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[30]); crc_next[3] = (data_in[3] ^ data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30] ^ crc[31]); crc_next[4] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[0]; crc_next[5] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[1]; crc_next[6] = (data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30]) ^ crc[ 2]; crc_next[7] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[3]; crc_next[8] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[4]; crc_next[9] = (data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30]) ^ crc[5]; crc_next[10] = (data_in[3] ^ data_in[2] ^ data_in[0] ^ crc[28] ^ crc[30] ^ crc[31]) ^ crc[6]; crc_next[11] = (data_in[3] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[31]) ^ crc[7]; crc_next[12] = (data_in[2] ^ data_in[1] ^ data_in[0] ^ crc[28] ^ crc[29] ^ crc[30]) ^ crc[8]; crc_next[13] = (data_in[3] ^ data_in[2] ^ data_in[1] ^ crc[29] ^ crc[30] ^ crc[31]) ^ crc[9]; crc_next[14] = (data_in[3] ^ data_in[2] ^ crc[30] ^ crc[31]) ^ crc[10]; crc_next[15] = (data_in[3] ^ crc[31]) ^ crc[11]; crc_next[16] = (data_in[0] ^ crc[28]) ^ crc[12]; crc_next[17] = (data_in[1] ^ crc[29]) ^ crc[13]; crc_next[18] = (data_in[2] ^ crc[30]) ^ crc[14]; crc_next[19] = (data_in[3] ^ crc[31]) ^ crc[15]; crc_next[20] = crc[16]; crc_next[21] = crc[17]; crc_next[22] = (data_in[0] ^ crc[28]) ^ crc[18]; crc_next[23] = (data_in[1] ^ data_in[0] ^ crc[29] ^ crc[28]) ^ crc[19]; crc_next[24] = (data_in[2] ^ data_in[1] ^ crc[30] ^ crc[29]) ^ crc[20]; crc_next[25] = (data_in[3] ^ data_in[2] ^ crc[31] ^ crc[30]) ^ crc[21]; crc_next[26] = (data_in[3] ^ data_in[0] ^ crc[31] ^ crc[28]) ^ crc[22]; crc_next[27] = (data_in[1] ^ crc[29]) ^ crc[23]; crc_next[28] = (data_in[2] ^ crc[30]) ^ crc[24]; crc_next[29] = (data_in[3] ^ crc[31]) ^ crc[25]; crc_next[30] = crc[26]; crc_next[31] = crc[27]; crc = crc_next; crc_error = crc[31:0] != 32'hc704dd7b; // CRC not equal to magic number case (nibble_cnt) 9: crc_out = {!crc[24], !crc[25], !crc[26], !crc[27], !crc[28], !crc[29], !crc[30], !crc[31], !crc[16], !crc[17], !crc[18], !crc[19], !crc[20], !crc[21], !crc[22], !crc[23], !crc[ 8], !crc[ 9], !crc[10], !crc[11], !crc[12], !crc[13], !crc[14], !crc[15], !crc[ 0], !crc[ 1], !crc[ 2], !crc[ 3], !crc[ 4], !crc[ 5], !crc[ 6], !crc[ 7]}; default: crc_out = crc_out; endcase // wait for delta time delta_t = !delta_t; // increment address and load new data if ((word_cnt+3) == 7)//4) begin // because of MAGIC NUMBER nibbles are swapped [3:0] -> [0:3] load_reg[31:24] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[23:16] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[15: 8] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; load_reg[ 7: 0] = eth_phy0.rx_mem[addr_cnt]; addr_cnt = addr_cnt + 1; end // set new load bit position if((word_cnt+3) == 31) word_cnt = 16; else if ((word_cnt+3) == 23) word_cnt = 8; else if ((word_cnt+3) == 15) word_cnt = 0; else if ((word_cnt+3) == 7) word_cnt = 24; else word_cnt = word_cnt + 4;// - 4; // decrement nibble counter nibble_cnt = nibble_cnt - 1; // wait for delta time delta_t = !delta_t; end // while #1; end endtask // paralel_crc_phy_rx
Go to most recent revision | Compare with Previous | Blame | View Log