URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [boards/] [xilinx/] [atlys/] [bench/] [verilog/] [ddr2_model.v] - Rev 751
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************************************************************************** * * File Name: ddr2_model.v * Version: 5.82 * Model: BUS Functional * * Dependencies: ddr2_model_parameters.vh * * Description: Micron SDRAM DDR2 (Double Data Rate 2) * * Limitation: - doesn't check for average refresh timings * - positive ck and ck_n edges are used to form internal clock * - positive dqs and dqs_n edges are used to latch data * - test mode is not modeled * * Note: - Set simulator resolution to "ps" accuracy * - Set Debug = 0 to disable $display messages * * Disclaimer This software code and all associated documentation, comments or other * of Warranty: information (collectively "Software") is provided "AS IS" without * warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY * DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES * OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT * WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE * OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE. * FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR * THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS, * ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE * OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI, * ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT, * INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING, * WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, * OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE * THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGES. Because some jurisdictions prohibit the exclusion or * limitation of liability for consequential or incidental damages, the * above limitation may not apply to you. * * Copyright 2003 Micron Technology, Inc. All rights reserved. * * Rev Author Date Changes * --------------------------------------------------------------------------------------- * 1.00 JMK 07/29/03 Initial Release * 1.10 JMK 08/09/03 Timing Parameter updates to tIS, tIH, tDS, tDH * 2.20 JMK 08/07/03 General cleanup * 2.30 JMK 11/26/03 Added CL_MIN, CL_MAX, wl_min and wl_max parameters. * Added AL_MIN and AL_MAX parameters. * Removed support for OCD. * 2.40 JMK 01/15/04 Removed verilog 2001 constructs. * 2.50 JMK 01/29/04 Removed tRP checks during Precharge command. * 2.60 JMK 04/20/04 Fixed tWTR check. * 2.70 JMK 04/30/04 Added tRFC maximum check. * Combined Self Refresh and Power Down always blocks. * Added Reset Function (CKE LOW Anytime). * 2.80 JMK 08/19/04 Precharge is treated as NOP when bank is not active. * Added checks for tRAS, tWR, tRTP to any bank during Pre-All. * tRFC maximum violation will only display one time. * 2.90 JMK 11/05/04 Fixed DQS checking during write. * Fixed false tRFC max assertion during power up and self ref. * Added warning for 200us CKE low time during initialization. * Added -3, -3E, and -37V speed grades to ddr2_parameters.v * 3.00 JMK 04/22/05 Removed ODT off requirement during power down. * Added tAOND, tAOFD, tANPD, tAXPD, tAONPD, and tAOFPD parameters. * Added ODT status messages. * Updated the initialization sequence. * Disable ODT and CLK pins during self refresh. * Disable cmd and addr pins during power down and self refresh. * 3.10 JMK 06/07/05 Disable trpa checking if the part does not have 8 banks. * Changed tAXPD message from error to a warning. * Added tDSS checking. * Removed tDQSL checking during tWPRE and tWPST. * Fixed a burst order error during writes. * Renamed parameters file with .vh extension. * 3.20 JMK 07/18/05 Removed 14 tCK requirement from LMR to READ. * 3.30 JMK 08/03/05 Added check for interrupting a burst with auto precharge. * 4.00 JMK 11/21/05 Parameter names all UPPERCASE, signal names all lowercase. * Clock jitter can be tolerated within specification range. * Clock frequency is sampled from the CK pin. * Scaleable up to 64 DQ and 16 DQS bits. * Read data can be randomly skewed using RANDOM_OUT_DELAY. * Parameterized read and write DQS, and read DQ. * Initialization can be bypassed using initialize task. * 4.10 JMK 11/30/05 Fixed compile errors when `MAX_MEM was defined. * 4.20 JMK 12/09/05 Fixed memory addressing error when `MAX_MEM was defined. * 4.30 JMK 02/15/06 Added dummy write to initialization sequence. * Removed tWPST maximum checking. * Rising dqs_n edge latches data when enabled in EMR. * Fixed a sign error in the tJIT(cc) calculation. * 4.40 JMK 02/16/06 Fixed dummy write when`MAX_MEM was defined. * 4.50 JMK 02/27/06 Fixed extra tDQSS assertions. * Fixed tRCD and tWTR checking. * Errors entering Power Down or Self Refresh will cause reset. * Ignore dqs_n when disabled in EMR. * 5.00 JMK 04/24/06 Test stimulus now included from external file (subtest.vh) * Fixed tRFC max assertion during self refresh. * Fixed tANPD checking during Power Down. * Removed dummy write from initialization sequence. * 5.01 JMK 04/28/06 Fixed Auto Precharge to Load Mode, Refresh and Self Refresh. * Removed Auto Precharge error message during Power Down Enter. * 5.10 JMK 07/26/06 Created internal clock using ck and ck_n. * RDQS can only be enabled in EMR for x8 configurations. * CAS latency is checked vs frequency when DLL locks. * tMOD changed from tCK units to ns units. * Added 50 Ohm setting for Rtt in EMR. * Improved checking of DQS during writes. * 5.20 JMK 10/02/06 Fixed DQS checking for interrupting write to write and x16. * 5.30 JMK 05/25/07 Fixed checking for 0-Z transition on write postamble. * 5.50 JMK 05/30/08 Renamed ddr2_dimm.v to ddr2_module.v and added SODIMM support. * Added a register delay to ddr2_module.v when RDIMM is defined. * Added multi-chip package model support in ddr2_mcp.v * Added High Temp Self Refresh rate setting in EMRS2[7] * 5.70 JMK 04/23/09 Updated tRPA definition * Increased internal width to 72 bit DQ bus * 5.80 SPH 08/12/09 Fixed tRAS maximum violation (only check if bank still open) * 5.81 SPH 12/08/09 Only check tIH for cmd_addr if CS# LOW * 5.82 SPH 04/08/10 Correct debug message for SRT in EMR2 * 5.81 SPH 12/08/09 Only check tIH for cmd_addr if CS# LOW * 5.81 SPH 12/08/09 Only check tIH for cmd_addr if CS# LOW ****************************************************************************************/ // DO NOT CHANGE THE TIMESCALE // MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION `timescale 1ps / 1ps module ddr2_model ( ck, ck_n, cke, cs_n, ras_n, cas_n, we_n, dm_rdqs, ba, addr, dq, dqs, dqs_n, rdqs_n, odt ); `include "ddr2_model_parameters.v" // text macros `define DQ_PER_DQS DQ_BITS/DQS_BITS `define BANKS (1<<BA_BITS) `define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS) `define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS)) `define MEM_SIZE (1<<MEM_BITS) `define MAX_PIPE 2*(AL_MAX + CL_MAX) // Declare Ports input ck; input ck_n; input cke; input cs_n; input ras_n; input cas_n; input we_n; inout [DM_BITS-1:0] dm_rdqs; input [BA_BITS-1:0] ba; input [ADDR_BITS-1:0] addr; inout [DQ_BITS-1:0] dq; inout [DQS_BITS-1:0] dqs; inout [DQS_BITS-1:0] dqs_n; output [DQS_BITS-1:0] rdqs_n; input odt; // clock jitter real tck_avg; time tck_sample [TDLLK-1:0]; time tch_sample [TDLLK-1:0]; time tcl_sample [TDLLK-1:0]; time tck_i; time tch_i; time tcl_i; real tch_avg; real tcl_avg; time tm_ck_pos; time tm_ck_neg; real tjit_per_rtime; integer tjit_cc_time; real terr_nper_rtime; // clock skew real out_delay; integer dqsck [DQS_BITS-1:0]; integer dqsck_min; integer dqsck_max; integer dqsq_min; integer dqsq_max; integer seed; // Mode Registers reg burst_order; reg [BL_BITS:0] burst_length; integer cas_latency; integer additive_latency; reg dll_reset; reg dll_locked; reg dll_en; integer write_recovery; reg low_power; reg [1:0] odt_rtt; reg odt_en; reg [2:0] ocd; reg dqs_n_en; reg rdqs_en; reg out_en; integer read_latency; integer write_latency; // cmd encoding parameter LOAD_MODE = 4'b0000, REFRESH = 4'b0001, PRECHARGE = 4'b0010, ACTIVATE = 4'b0011, WRITE = 4'b0100, READ = 4'b0101, NOP = 4'b0111, PWR_DOWN = 4'b1000, SELF_REF = 4'b1001 ; reg [8*9-1:0] cmd_string [9:0]; initial begin cmd_string[LOAD_MODE] = "Load Mode"; cmd_string[REFRESH ] = "Refresh "; cmd_string[PRECHARGE] = "Precharge"; cmd_string[ACTIVATE ] = "Activate "; cmd_string[WRITE ] = "Write "; cmd_string[READ ] = "Read "; cmd_string[NOP ] = "No Op "; cmd_string[PWR_DOWN ] = "Pwr Down "; cmd_string[SELF_REF ] = "Self Ref "; end // command state reg [`BANKS-1:0] active_bank; reg [`BANKS-1:0] auto_precharge_bank; reg [`BANKS-1:0] write_precharge_bank; reg [`BANKS-1:0] read_precharge_bank; reg [ROW_BITS-1:0] active_row [`BANKS-1:0]; reg in_power_down; reg in_self_refresh; reg [3:0] init_mode_reg; reg init_done; integer init_step; reg er_trfc_max; reg odt_state; reg prev_odt; // cmd timers/counters integer ref_cntr; integer ck_cntr; integer ck_load_mode; integer ck_write; integer ck_read; integer ck_write_ap; integer ck_power_down; integer ck_slow_exit_pd; integer ck_self_refresh; integer ck_cke; integer ck_odt; integer ck_dll_reset; integer ck_bank_write [`BANKS-1:0]; integer ck_bank_read [`BANKS-1:0]; time tm_refresh; time tm_precharge; time tm_precharge_all; time tm_activate; time tm_write_end; time tm_self_refresh; time tm_odt_en; time tm_bank_precharge [`BANKS-1:0]; time tm_bank_activate [`BANKS-1:0]; time tm_bank_write_end [`BANKS-1:0]; time tm_bank_read_end [`BANKS-1:0]; // pipelines reg [`MAX_PIPE:0] al_pipeline; reg [`MAX_PIPE:0] wr_pipeline; reg [`MAX_PIPE:0] rd_pipeline; reg [`MAX_PIPE:0] odt_pipeline; reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0]; reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0]; reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0]; reg prev_cke; // data state reg [BL_MAX*DQ_BITS-1:0] memory_data; reg [BL_MAX*DQ_BITS-1:0] bit_mask; reg [BL_BITS-1:0] burst_position; reg [BL_BITS:0] burst_cntr; reg [DQ_BITS-1:0] dq_temp; reg [35:0] check_write_postamble; reg [35:0] check_write_preamble; reg [35:0] check_write_dqs_high; reg [35:0] check_write_dqs_low; reg [17:0] check_dm_tdipw; reg [71:0] check_dq_tdipw; // data timers/counters time tm_cke; time tm_odt; time tm_tdqss; time tm_dm [17:0]; time tm_dqs [17:0]; time tm_dqs_pos [35:0]; time tm_dqss_pos [35:0]; time tm_dqs_neg [35:0]; time tm_dq [71:0]; time tm_cmd_addr [22:0]; reg [8*7-1:0] cmd_addr_string [22:0]; initial begin cmd_addr_string[ 0] = "CS_N "; cmd_addr_string[ 1] = "RAS_N "; cmd_addr_string[ 2] = "CAS_N "; cmd_addr_string[ 3] = "WE_N "; cmd_addr_string[ 4] = "BA 0 "; cmd_addr_string[ 5] = "BA 1 "; cmd_addr_string[ 6] = "BA 2 "; cmd_addr_string[ 7] = "ADDR 0"; cmd_addr_string[ 8] = "ADDR 1"; cmd_addr_string[ 9] = "ADDR 2"; cmd_addr_string[10] = "ADDR 3"; cmd_addr_string[11] = "ADDR 4"; cmd_addr_string[12] = "ADDR 5"; cmd_addr_string[13] = "ADDR 6"; cmd_addr_string[14] = "ADDR 7"; cmd_addr_string[15] = "ADDR 8"; cmd_addr_string[16] = "ADDR 9"; cmd_addr_string[17] = "ADDR 10"; cmd_addr_string[18] = "ADDR 11"; cmd_addr_string[19] = "ADDR 12"; cmd_addr_string[20] = "ADDR 13"; cmd_addr_string[21] = "ADDR 14"; cmd_addr_string[22] = "ADDR 15"; end reg [8*5-1:0] dqs_string [1:0]; initial begin dqs_string[0] = "DQS "; dqs_string[1] = "DQS_N"; end // Memory Storage `ifdef MAX_MEM reg [BL_MAX*DQ_BITS-1:0] memory [0:`MAX_SIZE-1]; `else reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1]; reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1]; reg [MEM_BITS:0] memory_index; reg [MEM_BITS:0] memory_used; `endif // receive reg ck_in; reg ck_n_in; reg cke_in; reg cs_n_in; reg ras_n_in; reg cas_n_in; reg we_n_in; reg [17:0] dm_in; reg [2:0] ba_in; reg [15:0] addr_in; reg [71:0] dq_in; reg [35:0] dqs_in; reg odt_in; reg [17:0] dm_in_pos; reg [17:0] dm_in_neg; reg [71:0] dq_in_pos; reg [71:0] dq_in_neg; reg dq_in_valid; reg dqs_in_valid; integer wdqs_cntr; integer wdq_cntr; integer wdqs_pos_cntr [35:0]; reg b2b_write; reg [35:0] prev_dqs_in; reg diff_ck; always @(ck ) ck_in <= #BUS_DELAY ck; always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n; always @(cke ) cke_in <= #BUS_DELAY cke; always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n; always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n; always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n; always @(we_n ) we_n_in <= #BUS_DELAY we_n; always @(dm_rdqs) dm_in <= #BUS_DELAY dm_rdqs; always @(ba ) ba_in <= #BUS_DELAY ba; always @(addr ) addr_in <= #BUS_DELAY addr; always @(dq ) dq_in <= #BUS_DELAY dq; always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<18) | dqs; always @(odt ) odt_in <= #BUS_DELAY odt; // create internal clock always @(posedge ck_in) diff_ck <= ck_in; always @(posedge ck_n_in) diff_ck <= ~ck_n_in; wire [17:0] dqs_even = dqs_in[17:0]; wire [17:0] dqs_odd = dqs_n_en ? dqs_in[35:18] : ~dqs_in[17:0]; wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop // transmit reg dqs_out_en; reg [DQS_BITS-1:0] dqs_out_en_dly; reg dqs_out; reg [DQS_BITS-1:0] dqs_out_dly; reg dq_out_en; reg [DQ_BITS-1:0] dq_out_en_dly; reg [DQ_BITS-1:0] dq_out; reg [DQ_BITS-1:0] dq_out_dly; integer rdqsen_cntr; integer rdqs_cntr; integer rdqen_cntr; integer rdq_cntr; bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}}); bufif1 buf_dm [DM_BITS-1:0] (dm_rdqs, dqs_out_dly, dqs_out_en_dly & {DM_BITS {out_en}} & {DM_BITS{rdqs_en}}); bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}}); bufif1 buf_rdqs_n [DQS_BITS-1:0] (rdqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}} & {DQS_BITS{rdqs_en}}); bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en}}); initial begin if (BL_MAX < 2) $display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX); if ((1<<BO_BITS) > BL_MAX) $display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter."); $timeformat (-12, 1, " ps", 1); reset_task; seed = RANDOM_SEED; ck_cntr = 0; end // calculate the absolute value of a real number function real abs_value; input arg; real arg; begin if (arg < 0.0) abs_value = -1.0 * arg; else abs_value = arg; end endfunction `ifdef MAX_MEM `else function get_index; input [`MAX_BITS-1:0] addr; begin : index get_index = 0; for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin if (address[memory_index] == addr) begin get_index = 1; disable index; end end end endfunction `endif task memory_write; input [BA_BITS-1:0] bank; input [ROW_BITS-1:0] row; input [COL_BITS-1:0] col; input [BL_MAX*DQ_BITS-1:0] data; reg [`MAX_BITS-1:0] addr; begin // chop off the lowest address bits addr = {bank, row, col}/BL_MAX; `ifdef MAX_MEM memory[addr] = data; `else if (get_index(addr)) begin address[memory_index] = addr; memory[memory_index] = data; end else if (memory_used == `MEM_SIZE) begin $display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data); if (STOP_ON_ERROR) $stop(0); end else begin address[memory_used] = addr; memory[memory_used] = data; memory_used = memory_used + 1; end `endif end endtask task memory_read; input [BA_BITS-1:0] bank; input [ROW_BITS-1:0] row; input [COL_BITS-1:0] col; output [BL_MAX*DQ_BITS-1:0] data; reg [`MAX_BITS-1:0] addr; begin // chop off the lowest address bits addr = {bank, row, col}/BL_MAX; `ifdef MAX_MEM data = memory[addr]; `else if (get_index(addr)) begin data = memory[memory_index]; end else begin data = {BL_MAX*DQ_BITS{1'bx}}; end `endif end endtask // Before this task runs, the model must be in a valid state for precharge power down. // After this task runs, NOP commands must be issued until tRFC has been met task initialize; input [ADDR_BITS-1:0] mode_reg0; input [ADDR_BITS-1:0] mode_reg1; input [ADDR_BITS-1:0] mode_reg2; input [ADDR_BITS-1:0] mode_reg3; begin if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time); cmd_task(1, NOP, 'bx, 'bx); cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL cmd_task(1, LOAD_MODE, 3, mode_reg3); cmd_task(1, LOAD_MODE, 2, mode_reg2); cmd_task(1, LOAD_MODE, 1, mode_reg1); cmd_task(1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL cmd_task(1, REFRESH, 'bx, 'bx); cmd_task(1, REFRESH, 'bx, 'bx); cmd_task(1, LOAD_MODE, 0, mode_reg0); cmd_task(1, LOAD_MODE, 1, mode_reg1 | 'h380); // OCD Default cmd_task(1, LOAD_MODE, 1, mode_reg1); cmd_task(0, NOP, 'bx, 'bx); end endtask task reset_task; integer i; begin // disable inputs dq_in_valid = 0; dqs_in_valid <= 0; wdqs_cntr = 0; wdq_cntr = 0; for (i=0; i<36; i=i+1) begin wdqs_pos_cntr[i] <= 0; end b2b_write <= 0; // disable outputs out_en = 0; dqs_n_en = 0; rdqs_en = 0; dq_out_en = 0; rdq_cntr = 0; dqs_out_en = 0; rdqs_cntr = 0; // disable ODT odt_en = 0; odt_state = 0; // reset bank state active_bank = {`BANKS{1'b1}}; auto_precharge_bank = 0; read_precharge_bank = 0; write_precharge_bank = 0; // require initialization sequence init_done = 0; init_step = 0; init_mode_reg = 0; // reset DLL dll_en = 0; dll_reset = 0; dll_locked = 0; ocd = 0; // exit power down and self refresh in_power_down = 0; in_self_refresh = 0; // clear pipelines al_pipeline = 0; wr_pipeline = 0; rd_pipeline = 0; odt_pipeline = 0; // clear memory `ifdef MAX_MEM for (i=0; i<=`MAX_SIZE; i=i+1) begin //erase memory ... one address at a time memory[i] <= 'bx; end `else memory_used <= 0; //erase memory `endif // clear maximum timing checks tm_refresh <= 'bx; for (i=0; i<`BANKS; i=i+1) begin tm_bank_activate[i] <= 'bx; end end endtask task chk_err; input samebank; input [BA_BITS-1:0] bank; input [3:0] fromcmd; input [3:0] cmd; reg err; begin // all matching case expressions will be evaluated casex ({samebank, fromcmd, cmd}) {1'b0, LOAD_MODE, 4'b0xxx } : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end {1'b0, LOAD_MODE, 4'b100x } : begin if (ck_cntr - ck_load_mode < TMRD) begin $display ("%m: at time %t INFO: Load Mode to Reset condition.", $time); init_done = 0; end end {1'b0, REFRESH , 4'b0xxx } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); end {1'b0, REFRESH , PWR_DOWN } : ; // 1 tCK {1'b0, REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) begin $display ("%m: at time %t INFO: Refresh to Reset condition", $time); init_done = 0; end end {1'b0, PRECHARGE, 4'b000x } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]); if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end {1'b1, PRECHARGE, PRECHARGE} : begin if (DEBUG && ($time - tm_precharge_all < TRPA)) $display ("%m: at time %t INFO: Precharge All interruption during %s", $time, cmd_string[cmd]); if (DEBUG && ($time - tm_bank_precharge[bank] < TRP)) $display ("%m: at time %t INFO: Precharge bank %d interruption during %s", $time, cmd_string[cmd], bank); end {1'b1, PRECHARGE, ACTIVATE } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]); if ($time - tm_bank_precharge[bank] < TRP) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, PRECHARGE, PWR_DOWN } : ; //1 tCK, can be concurrent with auto precharge {1'b0, PRECHARGE, SELF_REF } : begin if (($time - tm_precharge_all < TRPA) || ($time - tm_precharge < TRP)) begin $display ("%m: at time %t INFO: Precharge to Reset condition", $time); init_done = 0; end end {1'b0, ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end {1'b1, ACTIVATE , PRECHARGE} : begin if (($time - tm_bank_activate[bank] > TRAS_MAX) && (active_bank[bank] === 1'b1)) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank); if ($time - tm_bank_activate[bank] < TRAS_MIN) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end {1'b0, ACTIVATE , ACTIVATE } : begin if ($time - tm_activate < TRRD) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b1, ACTIVATE , 4'b010x } : ; // tRCD is checked outside this task {1'b1, ACTIVATE , PWR_DOWN } : ; // 1 tCK {1'b1, WRITE , PRECHARGE} : begin if ((ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2) || ($time - tm_bank_write_end[bank] < TWR)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, WRITE , READ } : begin if ((ck_load_mode < ck_write) && (ck_cntr - ck_write < write_latency + burst_length/2 + 2 - additive_latency)) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, WRITE , PWR_DOWN } : begin if ((ck_load_mode < ck_write) && ( |write_precharge_bank || (ck_cntr - ck_write_ap < 1) || (ck_cntr - ck_write < write_latency + burst_length/2 + 2) || ($time - tm_write_end < TWTR))) begin $display ("%m: at time %t INFO: Write to Reset condition", $time); init_done = 0; end end {1'b1, READ , PRECHARGE} : begin if ((ck_cntr - ck_bank_read[bank] < additive_latency + burst_length/2) || ($time - tm_bank_read_end[bank] < TRTP)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, READ , WRITE } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1 - write_latency)) $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end {1'b0, READ , PWR_DOWN } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1)) begin $display ("%m: at time %t INFO: Read to Reset condition", $time); init_done = 0; end end {1'b0, PWR_DOWN , 4'b00xx } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end {1'b0, PWR_DOWN , WRITE } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end {1'b0, PWR_DOWN , READ } : begin if (ck_cntr - ck_slow_exit_pd < TXARDS - additive_latency) $display ("%m: at time %t ERROR: tXARDS violation during %s", $time, cmd_string[cmd]); else if (ck_cntr - ck_power_down < TXARD) $display ("%m: at time %t ERROR: tXARD violation during %s", $time, cmd_string[cmd]); end {1'b0, SELF_REF , 4'b00xx } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end {1'b0, SELF_REF , WRITE } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end {1'b0, SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSRD) $display ("%m: at time %t ERROR: tXSRD violation during %s", $time, cmd_string[cmd]); end {1'b0, 4'b100x , 4'b100x } : begin if (ck_cntr - ck_cke < TCKE) begin $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); init_done = 0; end end endcase end endtask task cmd_task; input cke; input [2:0] cmd; input [BA_BITS-1:0] bank; input [ADDR_BITS-1:0] addr; reg [`BANKS:0] i; integer j; reg [`BANKS:0] tfaw_cntr; reg [COL_BITS-1:0] col; begin // tRFC max check if (!er_trfc_max && !in_self_refresh) begin if ($time - tm_refresh > TRFC_MAX) begin $display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]); er_trfc_max = 1; end end if (cke) begin if ((cmd < NOP) && ((cmd != PRECHARGE) || !addr[AP])) begin for (j=0; j<NOP; j=j+1) begin chk_err(1'b0, bank, j, cmd); chk_err(1'b1, bank, j, cmd); end chk_err(1'b0, bank, PWR_DOWN, cmd); chk_err(1'b0, bank, SELF_REF, cmd); end case (cmd) LOAD_MODE : begin if (|active_bank) begin $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank); case (bank) 0 : begin // Burst Length burst_length = 1<<addr[2:0]; if ((burst_length >= BL_MIN) && (burst_length <= BL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, burst_length); end // Burst Order burst_order = addr[3]; if (!burst_order) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank); end else if (burst_order) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order); end // CAS Latency cas_latency = addr[6:4]; read_latency = cas_latency + additive_latency; write_latency = read_latency - 1; if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); end else begin $display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency); end // Test Mode if (!addr[7]) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Test Mode = Normal", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Test Mode = %d", $time, cmd_string[cmd], bank, addr[7]); end // DLL Reset dll_reset = addr[8]; if (!dll_reset) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank); end else if (dll_reset) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank); dll_locked = 0; ck_dll_reset <= ck_cntr; end else begin $display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset); end // Write Recovery write_recovery = addr[11:9] + 1; if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery); end // Power Down Mode low_power = addr[12]; if (!low_power) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Fast Exit", $time, cmd_string[cmd], bank); end else if (low_power) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Slow Exit", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power); end end 1 : begin // DLL Enable dll_en = !addr[0]; if (!dll_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank); end else if (dll_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en); end // Output Drive Strength if (!addr[1]) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Full", $time, cmd_string[cmd], bank); end else if (addr[1]) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Reduced", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, addr[1]); end // ODT Rtt odt_rtt = {addr[6], addr[2]}; if (odt_rtt == 2'b00) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank); odt_en = 0; end else if (odt_rtt == 2'b01) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 75 Ohm", $time, cmd_string[cmd], bank); odt_en = 1; tm_odt_en <= $time; end else if (odt_rtt == 2'b10) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 150 Ohm", $time, cmd_string[cmd], bank); odt_en = 1; tm_odt_en <= $time; end else if (odt_rtt == 2'b11) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 50 Ohm", $time, cmd_string[cmd], bank); odt_en = 1; tm_odt_en <= $time; end else begin $display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt); odt_en = 0; end // Additive Latency additive_latency = addr[5:3]; read_latency = cas_latency + additive_latency; write_latency = read_latency - 1; if ((additive_latency >= AL_MIN) && (additive_latency <= AL_MAX)) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency); end // OCD Program ocd = addr[9:7]; if (ocd == 3'b000) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Exit", $time, cmd_string[cmd], bank); end else if (ocd == 3'b111) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Default", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal OCD Program = %b", $time, cmd_string[cmd], bank, ocd); end // DQS_N Enable dqs_n_en = !addr[10]; if (!dqs_n_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Disabled", $time, cmd_string[cmd], bank); end else if (dqs_n_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal DQS_N Enable = %d", $time, cmd_string[cmd], bank, dqs_n_en); end // RDQS Enable rdqs_en = addr[11]; if (!rdqs_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Disabled", $time, cmd_string[cmd], bank); end else if (rdqs_en) begin `ifdef x8 if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Enabled", $time, cmd_string[cmd], bank); `else $display ("%m: at time %t WARNING: %s %d Illegal RDQS Enable. RDQS only exists on a x8 part", $time, cmd_string[cmd], bank); rdqs_en = 0; `endif end else begin $display ("%m: at time %t ERROR: %s %d Illegal RDQS Enable = %d", $time, cmd_string[cmd], bank, rdqs_en); end // Output Enable out_en = !addr[12]; if (!out_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Disabled", $time, cmd_string[cmd], bank); end else if (out_en) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Enabled", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal Output Enable = %d", $time, cmd_string[cmd], bank, out_en); end end 2 : begin // High Temperature Self Refresh rate if (!addr[7]) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = 1X (0C-85C)", $time, cmd_string[cmd], bank); end else if (addr[7]) begin if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = 2X (>85C)", $time, cmd_string[cmd], bank); end else begin $display ("%m: at time %t ERROR: %s %d Illegal High Temperature Self Refresh rate = %d", $time, cmd_string[cmd], bank, addr[7]); end if ((addr & ~(1<<7)) !== 0) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank); end end 3 : begin if (addr !== 0) begin $display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank); end end endcase init_mode_reg[bank] = 1; ck_load_mode <= ck_cntr; end end REFRESH : begin if (|active_bank) begin $display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]); er_trfc_max = 0; ref_cntr = ref_cntr + 1; tm_refresh <= $time; end end PRECHARGE : begin if (addr[AP]) begin // tRPA timing applies when the PRECHARGE (ALL) command is issued, regardless of // the number of banks already open or closed. for (i=0; i<`BANKS; i=i+1) begin for (j=0; j<NOP; j=j+1) begin chk_err(1'b0, i, j, cmd); chk_err(1'b1, i, j, cmd); end chk_err(1'b0, i, PWR_DOWN, cmd); chk_err(1'b0, i, SELF_REF, cmd); end if (|auto_precharge_bank) begin $display ("%m: at time %t ERROR: %s All Failure. Auto Precharge is scheduled.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]); active_bank = 0; tm_precharge_all <= $time; end end else begin // A PRECHARGE command is allowed if there is no open row in that bank (idle state) // or if the previously open row is already in the process of precharging. // However, the precharge period will be determined by the last PRECHARGE command issued to the bank. if (auto_precharge_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], bank); active_bank[bank] = 1'b0; tm_bank_precharge[bank] <= $time; tm_precharge <= $time; end end end ACTIVATE : begin if (`BANKS == 8) begin tfaw_cntr = 0; for (i=0; i<`BANKS; i=i+1) begin if ($time - tm_bank_activate[i] < TFAW) begin tfaw_cntr = tfaw_cntr + 1; end end if (tfaw_cntr > 3) begin $display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank); end end if (!init_done) begin $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (active_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else begin if (addr >= 1<<ROW_BITS) begin $display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1); end if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr); active_bank[bank] = 1'b1; active_row[bank] = addr; tm_bank_activate[bank] <= $time; tm_activate <= $time; end end WRITE : begin if (!init_done) begin $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (!active_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else if (auto_precharge_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else if ((ck_cntr - ck_write < burst_length/2) && (ck_cntr - ck_write)%2) begin $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (addr[AP]) begin auto_precharge_bank[bank] = 1'b1; write_precharge_bank[bank] = 1'b1; end col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}}); if (col >= 1<<COL_BITS) begin $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1); end if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]); wr_pipeline[2*write_latency + 1] = 1; ba_pipeline[2*write_latency + 1] = bank; row_pipeline[2*write_latency + 1] = active_row[bank]; col_pipeline[2*write_latency + 1] = col; ck_bank_write[bank] <= ck_cntr; ck_write <= ck_cntr; end end READ : begin if (!dll_locked) $display ("%m: at time %t WARNING: %s prior to DLL locked. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters.", $time, cmd_string[cmd]); if (!init_done) begin $display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else if (!active_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else if (auto_precharge_bank[bank]) begin $display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank); if (STOP_ON_ERROR) $stop(0); end else if ((ck_cntr - ck_read < burst_length/2) && (ck_cntr - ck_read)%2) begin $display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]); if (STOP_ON_ERROR) $stop(0); end else begin if (addr[AP]) begin auto_precharge_bank[bank] = 1'b1; read_precharge_bank[bank] = 1'b1; end col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}}); if (col >= 1<<COL_BITS) begin $display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1); end if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]); rd_pipeline[2*read_latency - 1] = 1; ba_pipeline[2*read_latency - 1] = bank; row_pipeline[2*read_latency - 1] = active_row[bank]; col_pipeline[2*read_latency - 1] = col; ck_bank_read[bank] <= ck_cntr; ck_read <= ck_cntr; end end NOP: begin if (in_power_down) begin if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time); in_power_down = 0; if (|active_bank & low_power) begin // slow exit active power down ck_slow_exit_pd <= ck_cntr; end ck_power_down <= ck_cntr; end if (in_self_refresh) begin if ($time - tm_cke < TISXR) $display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time); if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time); in_self_refresh = 0; ck_dll_reset <= ck_cntr; ck_self_refresh <= ck_cntr; tm_self_refresh <= $time; tm_refresh <= $time; end end endcase if ((prev_cke !== 1) && (cmd !== NOP)) begin $display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time); end if (!init_done) begin case (init_step) 0 : begin if ($time < 200000000) $display ("%m: at time %t WARNING: 200 us is required before CKE goes active.", $time); // if (cmd_chk + 200000000 > $time) // $display("%m: at time %t WARNING: NOP or DESELECT is required for 200 us before CKE is brought high", $time); init_step = init_step + 1; end 1 : if (dll_en) init_step = init_step + 1; 2 : begin if (&init_mode_reg && dll_reset) begin active_bank = {`BANKS{1'b1}}; // require Precharge All or bank Precharges ref_cntr = 0; // require refresh init_step = init_step + 1; end end 3 : if (ref_cntr == 2) begin init_step = init_step + 1; end 4 : if (!dll_reset) init_step = init_step + 1; 5 : if (ocd == 3'b111) init_step = init_step + 1; 6 : begin if (ocd == 3'b000) begin if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time); init_done = 1; end end endcase end end else if (prev_cke) begin if ((!init_done) && (init_step > 1)) begin $display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time); if (STOP_ON_ERROR) $stop(0); end case (cmd) REFRESH : begin for (j=0; j<NOP; j=j+1) begin chk_err(1'b0, bank, j, SELF_REF); end chk_err(1'b0, bank, PWR_DOWN, SELF_REF); chk_err(1'b0, bank, SELF_REF, SELF_REF); if (|active_bank) begin $display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time); if (STOP_ON_ERROR) $stop(0); init_done = 0; end else if (odt_en && odt_state) begin $display ("%m: at time %t ERROR: ODT must be off prior to entering Self Refresh", $time); if (STOP_ON_ERROR) $stop(0); init_done = 0; end else if (!init_done) begin $display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time); in_self_refresh = 1; dll_locked = 0; end end NOP : begin // entering slow_exit or precharge power down and tANPD has not been satisfied if ((low_power || (active_bank == 0)) && (ck_cntr - ck_odt < TANPD)) $display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]); for (j=0; j<NOP; j=j+1) begin chk_err(1'b0, bank, j, PWR_DOWN); end chk_err(1'b0, bank, PWR_DOWN, PWR_DOWN); chk_err(1'b0, bank, SELF_REF, PWR_DOWN); if (!init_done) begin $display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time); if (STOP_ON_ERROR) $stop(0); end else begin if (DEBUG) begin if (|active_bank) begin $display ("%m: at time %t INFO: Active Power Down Enter", $time); end else begin $display ("%m: at time %t INFO: Precharge Power Down Enter", $time); end end in_power_down = 1; end end default : begin $display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time); init_done = 0; end endcase if (!init_done) begin if (DEBUG) $display ("%m: at time %t WARNING: Reset has occurred. Device must be re-initialized.", $time); reset_task; end end prev_cke = cke; end endtask task data_task; reg [BA_BITS-1:0] bank; reg [ROW_BITS-1:0] row; reg [COL_BITS-1:0] col; integer i; integer j; begin if (diff_ck) begin for (i=0; i<36; i=i+1) begin if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg))) $display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/18], i%18); if (check_write_dqs_high[i]) $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/18], i%18); end check_write_dqs_high <= 0; end else begin for (i=0; i<36; i=i+1) begin if (dll_locked && dq_in_valid) begin tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]); if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg)) $display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/18], i%18); end if (check_write_dqs_low[i]) $display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/18], i%18); end check_write_preamble <= 0; check_write_postamble <= 0; check_write_dqs_low <= 0; end if (wr_pipeline[0] || rd_pipeline[0]) begin bank = ba_pipeline[0]; row = row_pipeline[0]; col = col_pipeline[0]; burst_cntr = 0; memory_read(bank, row, col, memory_data); end // burst counter if (burst_cntr < burst_length) begin burst_position = col ^ burst_cntr; if (!burst_order) begin burst_position[BO_BITS-1:0] = col + burst_cntr; end burst_cntr = burst_cntr + 1; end // write dqs counter if (wr_pipeline[WDQS_PRE + 1]) begin wdqs_cntr = WDQS_PRE + burst_length + WDQS_PST - 1; end // write dqs if ((wdqs_cntr == burst_length + WDQS_PST) && (wdq_cntr == 0)) begin //write preamble check_write_preamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; end if (wdqs_cntr > 1) begin // write data if ((wdqs_cntr - WDQS_PST)%2) begin check_write_dqs_high <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; end else begin check_write_dqs_low <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; end end if (wdqs_cntr == WDQS_PST) begin // write postamble check_write_postamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}}; end if (wdqs_cntr > 0) begin wdqs_cntr = wdqs_cntr - 1; end // write dq if (dq_in_valid) begin // write data bit_mask = 0; if (diff_ck) begin for (i=0; i<DM_BITS; i=i+1) begin bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS)); end memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask); end else begin for (i=0; i<DM_BITS; i=i+1) begin bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS)); end memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask); end dq_temp = memory_data>>(burst_position*DQ_BITS); if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); if (burst_cntr%BL_MIN == 0) begin memory_write(bank, row, col, memory_data); end end if (wr_pipeline[1]) begin wdq_cntr = burst_length; end if (wdq_cntr > 0) begin wdq_cntr = wdq_cntr - 1; dq_in_valid = 1'b1; end else begin dq_in_valid = 1'b0; dqs_in_valid <= 1'b0; for (i=0; i<36; i=i+1) begin wdqs_pos_cntr[i] <= 0; end end if (wr_pipeline[0]) begin b2b_write <= 1'b0; end if (wr_pipeline[2]) begin if (dqs_in_valid) begin b2b_write <= 1'b1; end dqs_in_valid <= 1'b1; end // read dqs enable counter if (rd_pipeline[RDQSEN_PRE]) begin rdqsen_cntr = RDQSEN_PRE + burst_length + RDQSEN_PST - 1; end if (rdqsen_cntr > 0) begin rdqsen_cntr = rdqsen_cntr - 1; dqs_out_en = 1'b1; end else begin dqs_out_en = 1'b0; end // read dqs counter if (rd_pipeline[RDQS_PRE]) begin rdqs_cntr = RDQS_PRE + burst_length + RDQS_PST - 1; end // read dqs if ((rdqs_cntr >= burst_length + RDQS_PST) && (rdq_cntr == 0)) begin //read preamble dqs_out = 1'b0; end else if (rdqs_cntr > RDQS_PST) begin // read data dqs_out = rdqs_cntr - RDQS_PST; end else if (rdqs_cntr > 0) begin // read postamble dqs_out = 1'b0; end else begin dqs_out = 1'b1; end if (rdqs_cntr > 0) begin rdqs_cntr = rdqs_cntr - 1; end // read dq enable counter if (rd_pipeline[RDQEN_PRE]) begin rdqen_cntr = RDQEN_PRE + burst_length + RDQEN_PST; end if (rdqen_cntr > 0) begin rdqen_cntr = rdqen_cntr - 1; dq_out_en = 1'b1; end else begin dq_out_en = 1'b0; end // read dq if (rd_pipeline[0]) begin rdq_cntr = burst_length; end if (rdq_cntr > 0) begin // read data dq_temp = memory_data>>(burst_position*DQ_BITS); dq_out = dq_temp; if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp); rdq_cntr = rdq_cntr - 1; end else begin dq_out = {DQ_BITS{1'b1}}; end // delay signals prior to output if (RANDOM_OUT_DELAY && (dqs_out_en || |dqs_out_en_dly || dq_out_en || |dq_out_en_dly)) begin for (i=0; i<DQS_BITS; i=i+1) begin // DQSCK requirements // 1.) less than tDQSCK // 2.) greater than -tDQSCK // 3.) cannot change more than tQHS + tDQSQ from previous DQS edge dqsck_max = TDQSCK; if (dqsck_max > dqsck[i] + TQHS + TDQSQ) begin dqsck_max = dqsck[i] + TQHS + TDQSQ; end dqsck_min = -1*TDQSCK; if (dqsck_min < dqsck[i] - TQHS - TDQSQ) begin dqsck_min = dqsck[i] - TQHS - TDQSQ; end // DQSQ requirements // 1.) less than tAC - DQSCK // 2.) less than tDQSQ // 3.) greater than -tAC // 4.) greater than tQH from previous DQS edge dqsq_min = -1*TAC; if (dqsq_min < dqsck[i] - TQHS) begin dqsq_min = dqsck[i] - TQHS; end if (dqsck_min == dqsck_max) begin dqsck[i] = dqsck_min; end else begin dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max); end dqsq_max = TAC; if (dqsq_max > TDQSQ + dqsck[i]) begin dqsq_max = TDQSQ + dqsck[i]; end dqs_out_en_dly[i] <= #(tck_avg/2.0 + ($random % TAC)) dqs_out_en; dqs_out_dly[i] <= #(tck_avg/2.0 + dqsck[i]) dqs_out; for (j=0; j<`DQ_PER_DQS; j=j+1) begin if (dq_out_en) begin // tLZ2 dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, -2*TAC, dqsq_max)) dq_out_en; end else begin // tHZ dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + ($random % TAC)) dq_out_en; end if (dqsq_min == dqsq_max) begin dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + dqsq_min) dq_out[i*`DQ_PER_DQS + j]; end else begin dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j]; end end end end else begin out_delay = tck_avg/2.0; dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}}; dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }}; dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }}; dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }}; end end endtask always @(diff_ck) begin : main integer i; if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1)) $display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time); data_task; if (diff_ck) begin // check setup of command signals if ($time > TIS) begin if ($time - tm_cke < TIS) $display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time); if (cke_in) begin for (i=0; i<22; i=i+1) begin if ($time - tm_cmd_addr[i] < TIS) $display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time); end end end // update current state if (!dll_locked && !in_self_refresh && (ck_cntr - ck_dll_reset == TDLLK)) begin // check CL value against the clock frequency if (cas_latency*tck_avg < CL_TIME) $display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg); // check WR value against the clock frequency if (write_recovery*tck_avg < TWR) $display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg); dll_locked = 1; end if (|auto_precharge_bank) begin for (i=0; i<`BANKS; i=i+1) begin // Write with Auto Precharge Calculation // 1. Meet minimum tRAS requirement // 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command if (write_precharge_bank[i] && ($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery)) begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); write_precharge_bank[i] = 0; active_bank[i] = 0; auto_precharge_bank[i] = 0; ck_write_ap = ck_cntr; tm_bank_precharge[i] = $time; tm_precharge = $time; end // Read with Auto Precharge Calculation // 1. Meet minimum tRAS requirement // 2. Additive Latency plus BL/2 cycles after Read command // 3. tRTP after the last 4-bit prefetch if (read_precharge_bank[i] && ($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_read[i] >= additive_latency + burst_length/2)) begin read_precharge_bank[i] = 0; // In case the internal precharge is pushed out by tRTP, tRP starts at the point where // the internal precharge happens (not at the next rising clock edge after this event). if ($time - tm_bank_read_end[i] < TRTP) begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i); active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0; tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP; end else begin if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i); active_bank[i] = 0; auto_precharge_bank[i] = 0; tm_bank_precharge[i] = $time; tm_precharge = $time; end end end end // respond to incoming command if (cke_in ^ prev_cke) begin ck_cke <= ck_cntr; end cmd_task(cke_in, cmd_n_in, ba_in, addr_in); if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin al_pipeline[2*additive_latency] = 1'b1; end if (al_pipeline[0]) begin // check tRCD after additive latency if ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD) begin if (rd_pipeline[2*cas_latency - 1]) begin $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]); end else begin $display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]); end end // check tWTR after additive latency if (rd_pipeline[2*cas_latency - 1]) begin if ($time - tm_write_end < TWTR) $display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]); end end if (rd_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]) begin tm_bank_read_end[ba_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]] <= $time; end for (i=0; i<`BANKS; i=i+1) begin if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin tm_bank_write_end[i] <= $time; tm_write_end <= $time; end end // clk pin is disabled during self refresh if (!in_self_refresh) begin tjit_cc_time = $time - tm_ck_pos - tck_i; tck_i = $time - tm_ck_pos; tck_avg = tck_avg - tck_sample[ck_cntr%TDLLK]/$itor(TDLLK); tck_avg = tck_avg + tck_i/$itor(TDLLK); tck_sample[ck_cntr%TDLLK] = tck_i; tjit_per_rtime = tck_i - tck_avg; if (dll_locked) begin // check accumulated error terr_nper_rtime = 0; for (i=0; i<50; i=i+1) begin terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg; terr_nper_rtime = abs_value(terr_nper_rtime); case (i) 0 :; 1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER); 2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER); 3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER); 4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER); 5,6,7,8,9 : if (terr_nper_rtime - TERR_N1PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n1per) violation by %f ps.", $time, terr_nper_rtime - TERR_N1PER); default : if (terr_nper_rtime - TERR_N2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n2per) violation by %f ps.", $time, terr_nper_rtime - TERR_N2PER); endcase end // check tCK min/max/jitter if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0) $display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER); if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0) $display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC); if (TCK_MIN - tck_avg >= 1.0) $display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg); if (tck_avg - TCK_MAX >= 1.0) $display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX); if (tm_ck_pos + TCK_MIN - TJIT_PER > $time) $display ("%m: at time %t ERROR: tCK(abs) minimum violation by %t", $time, tm_ck_pos + TCK_MIN - TJIT_PER - $time); if (tm_ck_pos + TCK_MAX + TJIT_PER < $time) $display ("%m: at time %t ERROR: tCK(abs) maximum violation by %t", $time, $time - tm_ck_pos - TCK_MAX - TJIT_PER); // check tCL if (tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY > $time) $display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY - $time); if (tm_ck_neg + TCL_MAX*tck_avg + TJIT_DUTY < $time) $display ("%m: at time %t ERROR: tCL(abs) maximum violation on CLK by %t", $time, $time - tm_ck_neg - TCL_MAX*tck_avg - TJIT_DUTY); if (tcl_avg < TCL_MIN*tck_avg) $display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_MIN*tck_avg - tcl_avg); if (tcl_avg > TCL_MAX*tck_avg) $display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_MAX*tck_avg); end // calculate the tch avg jitter tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK); tch_avg = tch_avg + tch_i/$itor(TDLLK); tch_sample[ck_cntr%TDLLK] = tch_i; // update timers/counters tcl_i <= $time - tm_ck_neg; end prev_odt <= odt_in; // update timers/counters ck_cntr <= ck_cntr + 1; tm_ck_pos <= $time; end else begin // clk pin is disabled during self refresh if (!in_self_refresh) begin if (dll_locked) begin if (tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY > $time) $display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY + $time); if (tm_ck_pos + TCH_MAX*tck_avg + TJIT_DUTY < $time) $display ("%m: at time %t ERROR: tCH(abs) maximum violation on CLK by %t", $time, $time - tm_ck_pos - TCH_MAX*tck_avg - TJIT_DUTY); if (tch_avg < TCH_MIN*tck_avg) $display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_MIN*tck_avg - tch_avg); if (tch_avg > TCH_MAX*tck_avg) $display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_MAX*tck_avg); end // calculate the tcl avg jitter tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK); tcl_avg = tcl_avg + tcl_i/$itor(TDLLK); tcl_sample[ck_cntr%TDLLK] = tcl_i; // update timers/counters tch_i <= $time - tm_ck_pos; end tm_ck_neg <= $time; end // on die termination if (odt_en) begin // clk pin is disabled during self refresh if (!in_self_refresh && diff_ck) begin if ($time - tm_odt < TIS) begin $display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time); end if (prev_odt ^ odt_in) begin if (!dll_locked) $display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time); if (odt_in && ($time - tm_odt_en < TMOD)) $display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time); if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during ODT transition", $time); if (in_self_refresh) $display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time); // async ODT mode applies: // 1.) during active power down with slow exit // 2.) during precharge power down // 3.) if tANPD has not been satisfied // 4.) until tAXPD has been satisfied if ((in_power_down && (low_power || (active_bank == 0))) || (ck_cntr - ck_slow_exit_pd < TAXPD)) begin if (ck_cntr - ck_slow_exit_pd < TAXPD) $display ("%m: at time %t WARNING: tAXPD violation during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time); if (odt_in) begin if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAONPD, 1'b1); odt_state <= #(TAONPD) 1'b1; end else begin if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAOFPD, 1'b0); odt_state <= #(TAOFPD) 1'b0; end // sync ODT mode applies: // 1.) during normal operation // 2.) during active power down with fast exit end else begin if (odt_in) begin i = TAOND*2; odt_pipeline[i] = 1'b1; end else begin i = TAOFD*2; odt_pipeline[i] = 1'b1; end end ck_odt <= ck_cntr; end end if (odt_pipeline[0]) begin odt_state = ~odt_state; if (DEBUG) $display ("%m: at time %t INFO: Sync On Die Termination = %d", $time, odt_state); end end // shift pipelines if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin al_pipeline = al_pipeline>>1; wr_pipeline = wr_pipeline>>1; rd_pipeline = rd_pipeline>>1; for (i=0; i<`MAX_PIPE; i=i+1) begin ba_pipeline[i] = ba_pipeline[i+1]; row_pipeline[i] = row_pipeline[i+1]; col_pipeline[i] = col_pipeline[i+1]; end end if (|odt_pipeline) begin odt_pipeline = odt_pipeline>>1; end end // receiver(s) task dqs_even_receiver; input [4:0] i; reg [71:0] bit_mask; begin bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); if (dqs_even[i]) begin if (rdqs_en) begin // rdqs disables dm dm_in_pos[i] = 1'b0; end else begin dm_in_pos[i] = dm_in[i]; end dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask); end end endtask always @(posedge dqs_even[ 0]) dqs_even_receiver( 0); always @(posedge dqs_even[ 1]) dqs_even_receiver( 1); always @(posedge dqs_even[ 2]) dqs_even_receiver( 2); always @(posedge dqs_even[ 3]) dqs_even_receiver( 3); always @(posedge dqs_even[ 4]) dqs_even_receiver( 4); always @(posedge dqs_even[ 5]) dqs_even_receiver( 5); always @(posedge dqs_even[ 6]) dqs_even_receiver( 6); always @(posedge dqs_even[ 7]) dqs_even_receiver( 7); always @(posedge dqs_even[ 8]) dqs_even_receiver( 8); always @(posedge dqs_even[ 9]) dqs_even_receiver( 9); always @(posedge dqs_even[10]) dqs_even_receiver(10); always @(posedge dqs_even[11]) dqs_even_receiver(11); always @(posedge dqs_even[12]) dqs_even_receiver(12); always @(posedge dqs_even[13]) dqs_even_receiver(13); always @(posedge dqs_even[14]) dqs_even_receiver(14); always @(posedge dqs_even[15]) dqs_even_receiver(15); always @(posedge dqs_even[16]) dqs_even_receiver(16); always @(posedge dqs_even[17]) dqs_even_receiver(17); task dqs_odd_receiver; input [4:0] i; reg [71:0] bit_mask; begin bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS); if (dqs_odd[i]) begin if (rdqs_en) begin // rdqs disables dm dm_in_neg[i] = 1'b0; end else begin dm_in_neg[i] = dm_in[i]; end dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask); end end endtask always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0); always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1); always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2); always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3); always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4); always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5); always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6); always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7); always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8); always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9); always @(posedge dqs_odd[10]) dqs_odd_receiver(10); always @(posedge dqs_odd[11]) dqs_odd_receiver(11); always @(posedge dqs_odd[12]) dqs_odd_receiver(12); always @(posedge dqs_odd[13]) dqs_odd_receiver(13); always @(posedge dqs_odd[14]) dqs_odd_receiver(14); always @(posedge dqs_odd[15]) dqs_odd_receiver(15); always @(posedge dqs_odd[16]) dqs_odd_receiver(16); always @(posedge dqs_odd[17]) dqs_odd_receiver(17); // Processes to check hold and pulse width of control signals always @(cke_in) begin if ($time > TIH) begin if ($time - tm_ck_pos < TIH) $display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time); end if (dll_locked && ($time - tm_cke < $rtoi(TIPW*tck_avg))) $display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW*tck_avg - $time); tm_cke = $time; end always @(odt_in) begin if (odt_en && !in_self_refresh) begin if ($time - tm_ck_pos < TIH) $display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time); if (dll_locked && ($time - tm_odt < $rtoi(TIPW*tck_avg))) $display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW*tck_avg - $time); end tm_odt = $time; end task cmd_addr_timing_check; input i; reg [4:0] i; begin if (prev_cke) begin if ((i == 0) && ($time - tm_ck_pos < TIH)) // Always check tIH for CS# $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time); if ((i > 0) && (cs_n_in == 1'b0) && ($time - tm_ck_pos < TIH)) // Only check tIH for cmd_addr if CS# low $display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time); if (dll_locked && ($time - tm_cmd_addr[i] < $rtoi(TIPW*tck_avg))) $display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW*tck_avg - $time); end tm_cmd_addr[i] = $time; end endtask always @(cs_n_in ) cmd_addr_timing_check( 0); always @(ras_n_in ) cmd_addr_timing_check( 1); always @(cas_n_in ) cmd_addr_timing_check( 2); always @(we_n_in ) cmd_addr_timing_check( 3); always @(ba_in [ 0]) cmd_addr_timing_check( 4); always @(ba_in [ 1]) cmd_addr_timing_check( 5); always @(ba_in [ 2]) cmd_addr_timing_check( 6); always @(addr_in[ 0]) cmd_addr_timing_check( 7); always @(addr_in[ 1]) cmd_addr_timing_check( 8); always @(addr_in[ 2]) cmd_addr_timing_check( 9); always @(addr_in[ 3]) cmd_addr_timing_check(10); always @(addr_in[ 4]) cmd_addr_timing_check(11); always @(addr_in[ 5]) cmd_addr_timing_check(12); always @(addr_in[ 6]) cmd_addr_timing_check(13); always @(addr_in[ 7]) cmd_addr_timing_check(14); always @(addr_in[ 8]) cmd_addr_timing_check(15); always @(addr_in[ 9]) cmd_addr_timing_check(16); always @(addr_in[10]) cmd_addr_timing_check(17); always @(addr_in[11]) cmd_addr_timing_check(18); always @(addr_in[12]) cmd_addr_timing_check(19); always @(addr_in[13]) cmd_addr_timing_check(20); always @(addr_in[14]) cmd_addr_timing_check(21); always @(addr_in[15]) cmd_addr_timing_check(22); // Processes to check setup and hold of data signals task dm_timing_check; input i; reg [4:0] i; begin if (dqs_in_valid) begin if ($time - tm_dqs[i] < TDH) $display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time); if (check_dm_tdipw[i]) begin if (dll_locked && ($time - tm_dm[i] < $rtoi(TDIPW*tck_avg))) $display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW*tck_avg - $time); end end check_dm_tdipw[i] <= 1'b0; tm_dm[i] = $time; end endtask always @(dm_in[ 0]) dm_timing_check( 0); always @(dm_in[ 1]) dm_timing_check( 1); always @(dm_in[ 2]) dm_timing_check( 2); always @(dm_in[ 3]) dm_timing_check( 3); always @(dm_in[ 4]) dm_timing_check( 4); always @(dm_in[ 5]) dm_timing_check( 5); always @(dm_in[ 6]) dm_timing_check( 6); always @(dm_in[ 7]) dm_timing_check( 7); always @(dm_in[ 8]) dm_timing_check( 8); always @(dm_in[ 9]) dm_timing_check( 9); always @(dm_in[10]) dm_timing_check(10); always @(dm_in[11]) dm_timing_check(11); always @(dm_in[12]) dm_timing_check(12); always @(dm_in[13]) dm_timing_check(13); always @(dm_in[14]) dm_timing_check(14); always @(dm_in[15]) dm_timing_check(15); always @(dm_in[16]) dm_timing_check(16); always @(dm_in[17]) dm_timing_check(17); task dq_timing_check; input i; reg [6:0] i; begin if (dqs_in_valid) begin if ($time - tm_dqs[i/`DQ_PER_DQS] < TDH) $display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time); if (check_dq_tdipw[i]) begin if (dll_locked && ($time - tm_dq[i] < $rtoi(TDIPW*tck_avg))) $display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW*tck_avg - $time); end end check_dq_tdipw[i] <= 1'b0; tm_dq[i] = $time; end endtask always @(dq_in[ 0]) dq_timing_check( 0); always @(dq_in[ 1]) dq_timing_check( 1); always @(dq_in[ 2]) dq_timing_check( 2); always @(dq_in[ 3]) dq_timing_check( 3); always @(dq_in[ 4]) dq_timing_check( 4); always @(dq_in[ 5]) dq_timing_check( 5); always @(dq_in[ 6]) dq_timing_check( 6); always @(dq_in[ 7]) dq_timing_check( 7); always @(dq_in[ 8]) dq_timing_check( 8); always @(dq_in[ 9]) dq_timing_check( 9); always @(dq_in[10]) dq_timing_check(10); always @(dq_in[11]) dq_timing_check(11); always @(dq_in[12]) dq_timing_check(12); always @(dq_in[13]) dq_timing_check(13); always @(dq_in[14]) dq_timing_check(14); always @(dq_in[15]) dq_timing_check(15); always @(dq_in[16]) dq_timing_check(16); always @(dq_in[17]) dq_timing_check(17); always @(dq_in[18]) dq_timing_check(18); always @(dq_in[19]) dq_timing_check(19); always @(dq_in[20]) dq_timing_check(20); always @(dq_in[21]) dq_timing_check(21); always @(dq_in[22]) dq_timing_check(22); always @(dq_in[23]) dq_timing_check(23); always @(dq_in[24]) dq_timing_check(24); always @(dq_in[25]) dq_timing_check(25); always @(dq_in[26]) dq_timing_check(26); always @(dq_in[27]) dq_timing_check(27); always @(dq_in[28]) dq_timing_check(28); always @(dq_in[29]) dq_timing_check(29); always @(dq_in[30]) dq_timing_check(30); always @(dq_in[31]) dq_timing_check(31); always @(dq_in[32]) dq_timing_check(32); always @(dq_in[33]) dq_timing_check(33); always @(dq_in[34]) dq_timing_check(34); always @(dq_in[35]) dq_timing_check(35); always @(dq_in[36]) dq_timing_check(36); always @(dq_in[37]) dq_timing_check(37); always @(dq_in[38]) dq_timing_check(38); always @(dq_in[39]) dq_timing_check(39); always @(dq_in[40]) dq_timing_check(40); always @(dq_in[41]) dq_timing_check(41); always @(dq_in[42]) dq_timing_check(42); always @(dq_in[43]) dq_timing_check(43); always @(dq_in[44]) dq_timing_check(44); always @(dq_in[45]) dq_timing_check(45); always @(dq_in[46]) dq_timing_check(46); always @(dq_in[47]) dq_timing_check(47); always @(dq_in[48]) dq_timing_check(48); always @(dq_in[49]) dq_timing_check(49); always @(dq_in[50]) dq_timing_check(50); always @(dq_in[51]) dq_timing_check(51); always @(dq_in[52]) dq_timing_check(52); always @(dq_in[53]) dq_timing_check(53); always @(dq_in[54]) dq_timing_check(54); always @(dq_in[55]) dq_timing_check(55); always @(dq_in[56]) dq_timing_check(56); always @(dq_in[57]) dq_timing_check(57); always @(dq_in[58]) dq_timing_check(58); always @(dq_in[59]) dq_timing_check(59); always @(dq_in[60]) dq_timing_check(60); always @(dq_in[61]) dq_timing_check(61); always @(dq_in[62]) dq_timing_check(62); always @(dq_in[63]) dq_timing_check(63); always @(dq_in[64]) dq_timing_check(64); always @(dq_in[65]) dq_timing_check(65); always @(dq_in[66]) dq_timing_check(66); always @(dq_in[67]) dq_timing_check(67); always @(dq_in[68]) dq_timing_check(68); always @(dq_in[69]) dq_timing_check(69); always @(dq_in[70]) dq_timing_check(70); always @(dq_in[71]) dq_timing_check(71); task dqs_pos_timing_check; input i; reg [5:0] i; reg [3:0] j; begin if (dqs_in_valid && ((wdqs_pos_cntr[i] < burst_length/2) || b2b_write) && (dqs_n_en || i<18)) begin if (dqs_in[i] ^ prev_dqs_in[i]) begin if (dll_locked) begin if (check_write_preamble[i]) begin if ($time - tm_dqs_neg[i] < $rtoi(TWPRE*tck_avg)) $display ("%m: at time %t ERROR: tWPRE violation on &s bit %d", $time, dqs_string[i/18], i%18); end else if (check_write_postamble[i]) begin if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg)) $display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/18], i%18); end else begin if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg)) $display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/18], i%18); end end if ($time - tm_dm[i%18] < TDS) $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time); if (!dq_out_en) begin for (j=0; j<`DQ_PER_DQS; j=j+1) begin if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS) $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time); check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1; end end if ((wdqs_pos_cntr[i] < burst_length/2) && !b2b_write) begin wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1; end else begin wdqs_pos_cntr[i] <= 1; end check_dm_tdipw[i%18] <= 1'b1; check_write_preamble[i] <= 1'b0; check_write_postamble[i] <= 1'b0; check_write_dqs_low[i] <= 1'b0; tm_dqs[i%18] <= $time; end else begin $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18); end end tm_dqss_pos[i] <= $time; tm_dqs_pos[i] = $time; prev_dqs_in[i] <= dqs_in[i]; end endtask always @(posedge dqs_in[ 0]) dqs_pos_timing_check( 0); always @(posedge dqs_in[ 1]) dqs_pos_timing_check( 1); always @(posedge dqs_in[ 2]) dqs_pos_timing_check( 2); always @(posedge dqs_in[ 3]) dqs_pos_timing_check( 3); always @(posedge dqs_in[ 4]) dqs_pos_timing_check( 4); always @(posedge dqs_in[ 5]) dqs_pos_timing_check( 5); always @(posedge dqs_in[ 6]) dqs_pos_timing_check( 6); always @(posedge dqs_in[ 7]) dqs_pos_timing_check( 7); always @(posedge dqs_in[ 8]) dqs_pos_timing_check( 8); always @(posedge dqs_in[ 9]) dqs_pos_timing_check( 9); always @(posedge dqs_in[10]) dqs_pos_timing_check(10); always @(posedge dqs_in[11]) dqs_pos_timing_check(11); always @(posedge dqs_in[12]) dqs_pos_timing_check(12); always @(posedge dqs_in[13]) dqs_pos_timing_check(13); always @(posedge dqs_in[14]) dqs_pos_timing_check(14); always @(posedge dqs_in[15]) dqs_pos_timing_check(15); always @(posedge dqs_in[16]) dqs_pos_timing_check(16); always @(posedge dqs_in[17]) dqs_pos_timing_check(17); always @(negedge dqs_in[18]) dqs_pos_timing_check(18); always @(negedge dqs_in[19]) dqs_pos_timing_check(19); always @(negedge dqs_in[20]) dqs_pos_timing_check(20); always @(negedge dqs_in[21]) dqs_pos_timing_check(21); always @(negedge dqs_in[22]) dqs_pos_timing_check(22); always @(negedge dqs_in[23]) dqs_pos_timing_check(23); always @(negedge dqs_in[24]) dqs_pos_timing_check(24); always @(negedge dqs_in[25]) dqs_pos_timing_check(25); always @(negedge dqs_in[26]) dqs_pos_timing_check(26); always @(negedge dqs_in[27]) dqs_pos_timing_check(27); always @(negedge dqs_in[28]) dqs_pos_timing_check(28); always @(negedge dqs_in[29]) dqs_pos_timing_check(29); always @(negedge dqs_in[30]) dqs_pos_timing_check(30); always @(negedge dqs_in[31]) dqs_pos_timing_check(31); always @(negedge dqs_in[32]) dqs_neg_timing_check(32); always @(negedge dqs_in[33]) dqs_neg_timing_check(33); always @(negedge dqs_in[34]) dqs_neg_timing_check(34); always @(negedge dqs_in[35]) dqs_neg_timing_check(35); task dqs_neg_timing_check; input i; reg [5:0] i; reg [3:0] j; begin if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i] && (dqs_n_en || i < 18)) begin if (dqs_in[i] ^ prev_dqs_in[i]) begin if (dll_locked) begin if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg)) $display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/18], i%18); if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg)) $display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/18], i%18); end if ($time - tm_dm[i%18] < TDS) $display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time); if (!dq_out_en) begin for (j=0; j<`DQ_PER_DQS; j=j+1) begin if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS) $display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time); check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1; end end check_dm_tdipw[i%18] <= 1'b1; check_write_dqs_high[i] <= 1'b0; tm_dqs[i%18] <= $time; end else begin $display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18); end end tm_dqs_neg[i] = $time; prev_dqs_in[i] <= dqs_in[i]; end endtask always @(negedge dqs_in[ 0]) dqs_neg_timing_check( 0); always @(negedge dqs_in[ 1]) dqs_neg_timing_check( 1); always @(negedge dqs_in[ 2]) dqs_neg_timing_check( 2); always @(negedge dqs_in[ 3]) dqs_neg_timing_check( 3); always @(negedge dqs_in[ 4]) dqs_neg_timing_check( 4); always @(negedge dqs_in[ 5]) dqs_neg_timing_check( 5); always @(negedge dqs_in[ 6]) dqs_neg_timing_check( 6); always @(negedge dqs_in[ 7]) dqs_neg_timing_check( 7); always @(negedge dqs_in[ 8]) dqs_neg_timing_check( 8); always @(negedge dqs_in[ 9]) dqs_neg_timing_check( 9); always @(negedge dqs_in[10]) dqs_neg_timing_check(10); always @(negedge dqs_in[11]) dqs_neg_timing_check(11); always @(negedge dqs_in[12]) dqs_neg_timing_check(12); always @(negedge dqs_in[13]) dqs_neg_timing_check(13); always @(negedge dqs_in[14]) dqs_neg_timing_check(14); always @(negedge dqs_in[15]) dqs_neg_timing_check(15); always @(negedge dqs_in[16]) dqs_neg_timing_check(16); always @(negedge dqs_in[17]) dqs_neg_timing_check(17); always @(posedge dqs_in[18]) dqs_neg_timing_check(18); always @(posedge dqs_in[19]) dqs_neg_timing_check(19); always @(posedge dqs_in[20]) dqs_neg_timing_check(20); always @(posedge dqs_in[21]) dqs_neg_timing_check(21); always @(posedge dqs_in[22]) dqs_neg_timing_check(22); always @(posedge dqs_in[23]) dqs_neg_timing_check(23); always @(posedge dqs_in[24]) dqs_neg_timing_check(24); always @(posedge dqs_in[25]) dqs_neg_timing_check(25); always @(posedge dqs_in[26]) dqs_neg_timing_check(26); always @(posedge dqs_in[27]) dqs_neg_timing_check(27); always @(posedge dqs_in[28]) dqs_neg_timing_check(28); always @(posedge dqs_in[29]) dqs_neg_timing_check(29); always @(posedge dqs_in[30]) dqs_neg_timing_check(30); always @(posedge dqs_in[31]) dqs_neg_timing_check(31); always @(posedge dqs_in[32]) dqs_neg_timing_check(32); always @(posedge dqs_in[33]) dqs_neg_timing_check(33); always @(posedge dqs_in[34]) dqs_neg_timing_check(34); always @(posedge dqs_in[35]) dqs_neg_timing_check(35); endmodule
Go to most recent revision | Compare with Previous | Blame | View Log