URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [boards/] [xilinx/] [ml501/] [rtl/] [verilog/] [xilinx_ddr2/] [ddr2_usr_wr.v] - Rev 412
Compare with Previous | Blame | View Log
//***************************************************************************** // DISCLAIMER OF LIABILITY // // This file contains proprietary and confidential information of // Xilinx, Inc. ("Xilinx"), that is distributed under a license // from Xilinx, and may be used, copied and/or disclosed only // pursuant to the terms of a valid license agreement with Xilinx. // // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx // does not warrant that functions included in the Materials will // meet the requirements of Licensee, or that the operation of the // Materials will be uninterrupted or error-free, or that defects // in the Materials will be corrected. Furthermore, Xilinx does // not warrant or make any representations regarding use, or the // results of the use, of the Materials in terms of correctness, // accuracy, reliability or otherwise. // // Xilinx products are not designed or intended to be fail-safe, // or for use in any application requiring fail-safe performance, // such as life-support or safety devices or systems, Class III // medical devices, nuclear facilities, applications related to // the deployment of airbags, or any other applications that could // lead to death, personal injury or severe property or // environmental damage (individually and collectively, "critical // applications"). Customer assumes the sole risk and liability // of any use of Xilinx products in critical applications, // subject only to applicable laws and regulations governing // limitations on product liability. // // Copyright 2006, 2007 Xilinx, Inc. // All rights reserved. // // This disclaimer and copyright notice must be retained as part // of this file at all times. //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: 3.0 // \ \ Application: MIG // / / Filename: ddr2_usr_wr.v // /___/ /\ Date Last Modified: $Date: 2008/12/23 14:26:01 $ // \ \ / \ Date Created: Mon Aug 28 2006 // \___\/\___\ // //Device: Virtex-5 //Design Name: DDR/DDR2 //Purpose: // This module instantiates the modules containing internal FIFOs //Reference: //Revision History: //***************************************************************************** `timescale 1ns/1ps module ddr2_usr_wr # ( // Following parameters are for 72-bit RDIMM design (for ML561 Reference // board design). Actual values may be different. Actual parameters values // are passed from design top module ddr2_mig module. Please refer to // the ddr2_mig module for actual values. parameter BANK_WIDTH = 2, parameter COL_WIDTH = 10, parameter CS_BITS = 0, parameter DQ_WIDTH = 72, parameter APPDATA_WIDTH = 144, parameter ECC_ENABLE = 0, parameter ROW_WIDTH = 14 ) ( input clk0, input usr_clk, // jb input clk90, input rst0, // Write data FIFO interface input app_wdf_wren, input [APPDATA_WIDTH-1:0] app_wdf_data, input [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data, input wdf_rden, output app_wdf_afull, output [(2*DQ_WIDTH)-1:0] wdf_data, output [((2*DQ_WIDTH)/8)-1:0] wdf_mask_data ); // determine number of FIFO72's to use based on data width // round up to next integer value when determining WDF_FIFO_NUM localparam WDF_FIFO_NUM = (ECC_ENABLE) ? (APPDATA_WIDTH+63)/64 : ((2*DQ_WIDTH)+63)/64; // MASK_WIDTH = number of bytes in data bus localparam MASK_WIDTH = DQ_WIDTH/8; wire [WDF_FIFO_NUM-1:0] i_wdf_afull; wire [DQ_WIDTH-1:0] i_wdf_data_fall_in; wire [DQ_WIDTH-1:0] i_wdf_data_fall_out; wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_in; wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_out; wire [DQ_WIDTH-1:0] i_wdf_data_rise_in; wire [DQ_WIDTH-1:0] i_wdf_data_rise_out; wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_in; wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_out; wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_in; wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_out; wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_in; wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_out; reg rst_r; // ECC signals wire [(2*DQ_WIDTH)-1:0] i_wdf_data_out_ecc; wire [((2*DQ_WIDTH)/8)-1:0] i_wdf_mask_data_out_ecc; wire [63:0] i_wdf_mask_data_out_ecc_wire; wire [((2*DQ_WIDTH)/8)-1:0] mask_data_in_ecc; wire [63:0] mask_data_in_ecc_wire; //*************************************************************************** assign app_wdf_afull = i_wdf_afull[0]; always @(posedge clk0 ) rst_r <= rst0; genvar wdf_di_i; genvar wdf_do_i; genvar mask_i; genvar wdf_i; generate if(ECC_ENABLE) begin // ECC code assign wdf_data = i_wdf_data_out_ecc; // the byte 9 dm is always held to 0 assign wdf_mask_data = i_wdf_mask_data_out_ecc; // generate for write data fifo . for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf FIFO36_72 # ( .ALMOST_EMPTY_OFFSET (9'h007), .ALMOST_FULL_OFFSET (9'h00F), .DO_REG (1), // extra CC output delay .EN_ECC_WRITE ("TRUE"), .EN_ECC_READ ("FALSE"), .EN_SYN ("FALSE"), .FIRST_WORD_FALL_THROUGH ("FALSE") ) u_wdf_ecc ( .ALMOSTEMPTY (), .ALMOSTFULL (i_wdf_afull[wdf_i]), .DBITERR (), .DO (i_wdf_data_out_ecc[((64*(wdf_i+1))+(wdf_i *8))-1: (64*wdf_i)+(wdf_i *8)]), .DOP (i_wdf_data_out_ecc[(72*(wdf_i+1))-1: (64*(wdf_i+1))+ (8*wdf_i) ]), .ECCPARITY (), .EMPTY (), .FULL (), .RDCOUNT (), .RDERR (), .SBITERR (), .WRCOUNT (), .WRERR (), .DI (app_wdf_data[(64*(wdf_i+1))-1: (64*wdf_i)]), .DIP (), .RDCLK (clk90), .RDEN (wdf_rden), .RST (rst_r), // or can use rst0 .WRCLK (clk0), // .WRCLK (usr_clk), //jb .WREN (app_wdf_wren) ); end // remapping the mask data. The mask data from user i/f does not have // the mask for the ECC byte. Assigning 0 to the ECC mask byte. for (mask_i = 0; mask_i < (DQ_WIDTH)/36; mask_i = mask_i +1) begin: gen_mask assign mask_data_in_ecc[((8*(mask_i+1))+ mask_i)-1:((8*mask_i)+mask_i)] = app_wdf_mask_data[(8*(mask_i+1))-1:8*(mask_i)] ; assign mask_data_in_ecc[((8*(mask_i+1))+mask_i)] = 1'd0; end // assign ecc bits to temp variables to avoid // sim warnings. Not all the 64 bits of the fifo // are used in ECC mode. assign mask_data_in_ecc_wire[((2*DQ_WIDTH)/8)-1:0] = mask_data_in_ecc; assign mask_data_in_ecc_wire[63:((2*DQ_WIDTH)/8)] = {(64-((2*DQ_WIDTH)/8)){1'b0}}; assign i_wdf_mask_data_out_ecc = i_wdf_mask_data_out_ecc_wire[((2*DQ_WIDTH)/8)-1:0]; FIFO36_72 # ( .ALMOST_EMPTY_OFFSET (9'h007), .ALMOST_FULL_OFFSET (9'h00F), .DO_REG (1), // extra CC output delay .EN_ECC_WRITE ("TRUE"), .EN_ECC_READ ("FALSE"), .EN_SYN ("FALSE"), .FIRST_WORD_FALL_THROUGH ("FALSE") ) u_wdf_ecc_mask ( .ALMOSTEMPTY (), .ALMOSTFULL (), .DBITERR (), .DO (i_wdf_mask_data_out_ecc_wire), .DOP (), .ECCPARITY (), .EMPTY (), .FULL (), .RDCOUNT (), .RDERR (), .SBITERR (), .WRCOUNT (), .WRERR (), .DI (mask_data_in_ecc_wire), .DIP (), .RDCLK (clk90), .RDEN (wdf_rden), .RST (rst_r), // or can use rst0 .WRCLK (clk0), // .WRCLK (usr_clk), // jb .WREN (app_wdf_wren) ); end else begin //*********************************************************************** // Define intermediate buses: assign i_wdf_data_rise_in = app_wdf_data[DQ_WIDTH-1:0]; assign i_wdf_data_fall_in = app_wdf_data[(2*DQ_WIDTH)-1:DQ_WIDTH]; assign i_wdf_mask_data_rise_in = app_wdf_mask_data[MASK_WIDTH-1:0]; assign i_wdf_mask_data_fall_in = app_wdf_mask_data[(2*MASK_WIDTH)-1:MASK_WIDTH]; //*********************************************************************** // Write data FIFO Input: // Arrange DQ's so that the rise data and fall data are interleaved. // the data arrives at the input of the wdf fifo as {fall,rise}. // It is remapped as: // {...fall[15:8],rise[15:8],fall[7:0],rise[7:0]} // This is done to avoid having separate fifo's for rise and fall data // and to keep rise/fall data for the same DQ's on same FIFO // Data masks are interleaved in a similar manner // NOTE: Initialization data from PHY_INIT module does not need to be // interleaved - it's already in the correct format - and the same // initialization pattern from PHY_INIT is sent to all write FIFOs //*********************************************************************** for (wdf_di_i = 0; wdf_di_i < MASK_WIDTH; wdf_di_i = wdf_di_i + 1) begin: gen_wdf_data_in assign i_wdf_data_in[(16*wdf_di_i)+15:(16*wdf_di_i)] = {i_wdf_data_fall_in[(8*wdf_di_i)+7:(8*wdf_di_i)], i_wdf_data_rise_in[(8*wdf_di_i)+7:(8*wdf_di_i)]}; assign i_wdf_mask_data_in[(2*wdf_di_i)+1:(2*wdf_di_i)] = {i_wdf_mask_data_fall_in[wdf_di_i], i_wdf_mask_data_rise_in[wdf_di_i]}; end //*********************************************************************** // Write data FIFO Output: // FIFO DQ and mask outputs must be untangled and put in the standard // format of {fall,rise}. Same goes for mask output //*********************************************************************** for (wdf_do_i = 0; wdf_do_i < MASK_WIDTH; wdf_do_i = wdf_do_i + 1) begin: gen_wdf_data_out assign i_wdf_data_rise_out[(8*wdf_do_i)+7:(8*wdf_do_i)] = i_wdf_data_out[(16*wdf_do_i)+7:(16*wdf_do_i)]; assign i_wdf_data_fall_out[(8*wdf_do_i)+7:(8*wdf_do_i)] = i_wdf_data_out[(16*wdf_do_i)+15:(16*wdf_do_i)+8]; assign i_wdf_mask_data_rise_out[wdf_do_i] = i_wdf_mask_data_out[2*wdf_do_i]; assign i_wdf_mask_data_fall_out[wdf_do_i] = i_wdf_mask_data_out[(2*wdf_do_i)+1]; end assign wdf_data = {i_wdf_data_fall_out, i_wdf_data_rise_out}; assign wdf_mask_data = {i_wdf_mask_data_fall_out, i_wdf_mask_data_rise_out}; //*********************************************************************** for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf FIFO36_72 # ( .ALMOST_EMPTY_OFFSET (9'h007), .ALMOST_FULL_OFFSET (9'h00F), .DO_REG (1), // extra CC output delay .EN_ECC_WRITE ("FALSE"), .EN_ECC_READ ("FALSE"), .EN_SYN ("FALSE"), .FIRST_WORD_FALL_THROUGH ("FALSE") ) u_wdf ( .ALMOSTEMPTY (), .ALMOSTFULL (i_wdf_afull[wdf_i]), .DBITERR (), .DO (i_wdf_data_out[(64*(wdf_i+1))-1:64*wdf_i]), .DOP (i_wdf_mask_data_out[(8*(wdf_i+1))-1:8*wdf_i]), .ECCPARITY (), .EMPTY (), .FULL (), .RDCOUNT (), .RDERR (), .SBITERR (), .WRCOUNT (), .WRERR (), .DI (i_wdf_data_in[(64*(wdf_i+1))-1:64*wdf_i]), .DIP (i_wdf_mask_data_in[(8*(wdf_i+1))-1:8*wdf_i]), .RDCLK (clk90), .RDEN (wdf_rden), .RST (rst_r), // or can use rst0 .WRCLK (clk0), // .WRCLK (usr_clk), //jb .WREN (app_wdf_wren) ); end end endgenerate endmodule