OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [orpsocv2/] [boards/] [xilinx/] [ml501/] [rtl/] [verilog/] [xilinx_ddr2/] [ddr2_usr_wr.v] - Rev 868

Go to most recent revision | Compare with Previous | Blame | View Log

//*****************************************************************************
// DISCLAIMER OF LIABILITY
//
// This file contains proprietary and confidential information of
// Xilinx, Inc. ("Xilinx"), that is distributed under a license
// from Xilinx, and may be used, copied and/or disclosed only
// pursuant to the terms of a valid license agreement with Xilinx.
//
// XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION
// ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
// EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT
// LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT,
// MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx
// does not warrant that functions included in the Materials will
// meet the requirements of Licensee, or that the operation of the
// Materials will be uninterrupted or error-free, or that defects
// in the Materials will be corrected. Furthermore, Xilinx does
// not warrant or make any representations regarding use, or the
// results of the use, of the Materials in terms of correctness,
// accuracy, reliability or otherwise.
//
// Xilinx products are not designed or intended to be fail-safe,
// or for use in any application requiring fail-safe performance,
// such as life-support or safety devices or systems, Class III
// medical devices, nuclear facilities, applications related to
// the deployment of airbags, or any other applications that could
// lead to death, personal injury or severe property or
// environmental damage (individually and collectively, "critical
// applications"). Customer assumes the sole risk and liability
// of any use of Xilinx products in critical applications,
// subject only to applicable laws and regulations governing
// limitations on product liability.
//
// Copyright 2006, 2007 Xilinx, Inc.
// All rights reserved.
//
// This disclaimer and copyright notice must be retained as part
// of this file at all times.
//*****************************************************************************
//   ____  ____
//  /   /\/   /
// /___/  \  /    Vendor: Xilinx
// \   \   \/     Version: 3.0
//  \   \         Application: MIG
//  /   /         Filename: ddr2_usr_wr.v
// /___/   /\     Date Last Modified: $Date: 2008/12/23 14:26:01 $
// \   \  /  \    Date Created: Mon Aug 28 2006
//  \___\/\___\
//
//Device: Virtex-5
//Design Name: DDR/DDR2
//Purpose:
//   This module instantiates the modules containing internal FIFOs
//Reference:
//Revision History:
//*****************************************************************************
 
`timescale 1ns/1ps
 
module ddr2_usr_wr #
  (
   // Following parameters are for 72-bit RDIMM design (for ML561 Reference 
   // board design). Actual values may be different. Actual parameters values 
   // are passed from design top module ddr2_mig module. Please refer to
   // the ddr2_mig module for actual values.
   parameter BANK_WIDTH    = 2,
   parameter COL_WIDTH     = 10,
   parameter CS_BITS       = 0,
   parameter DQ_WIDTH      = 72,
   parameter APPDATA_WIDTH = 144,
   parameter ECC_ENABLE    = 0,
   parameter ROW_WIDTH     = 14
   )
  (
   input                         clk0,
    input 			 usr_clk, // jb
   input                         clk90,
   input                         rst0,
   // Write data FIFO interface
   input                         app_wdf_wren,
   input [APPDATA_WIDTH-1:0]     app_wdf_data,
   input [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data,
   input                         wdf_rden,
   output                        app_wdf_afull,
   output [(2*DQ_WIDTH)-1:0]     wdf_data,
   output [((2*DQ_WIDTH)/8)-1:0] wdf_mask_data
   );
 
  // determine number of FIFO72's to use based on data width
  // round up to next integer value when determining WDF_FIFO_NUM
  localparam WDF_FIFO_NUM = (ECC_ENABLE) ? (APPDATA_WIDTH+63)/64 :
             ((2*DQ_WIDTH)+63)/64;
  // MASK_WIDTH = number of bytes in data bus
  localparam MASK_WIDTH = DQ_WIDTH/8;
 
  wire [WDF_FIFO_NUM-1:0]      i_wdf_afull;
  wire [DQ_WIDTH-1:0]          i_wdf_data_fall_in;
  wire [DQ_WIDTH-1:0]          i_wdf_data_fall_out;
  wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_in;
  wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_out;
  wire [DQ_WIDTH-1:0]          i_wdf_data_rise_in;
  wire [DQ_WIDTH-1:0]          i_wdf_data_rise_out;
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_fall_in;
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_fall_out;
  wire [(8*WDF_FIFO_NUM)-1:0]  i_wdf_mask_data_in;
  wire [(8*WDF_FIFO_NUM)-1:0]  i_wdf_mask_data_out;
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_rise_in;
  wire [MASK_WIDTH-1:0]        i_wdf_mask_data_rise_out;
  reg                          rst_r;
 
  // ECC signals
  wire [(2*DQ_WIDTH)-1:0]      i_wdf_data_out_ecc;
  wire [((2*DQ_WIDTH)/8)-1:0]  i_wdf_mask_data_out_ecc;
  wire [63:0]                  i_wdf_mask_data_out_ecc_wire;
  wire [((2*DQ_WIDTH)/8)-1:0]  mask_data_in_ecc;
  wire [63:0]                  mask_data_in_ecc_wire;
 
  //***************************************************************************
 
  assign app_wdf_afull = i_wdf_afull[0];
 
  always @(posedge clk0 )
      rst_r <= rst0;
 
  genvar wdf_di_i;
  genvar wdf_do_i;
  genvar mask_i;
  genvar wdf_i;
  generate
    if(ECC_ENABLE) begin    // ECC code
 
      assign wdf_data = i_wdf_data_out_ecc;
 
      // the byte 9 dm is always held to 0
      assign wdf_mask_data = i_wdf_mask_data_out_ecc;
 
 
 
      // generate for write data fifo .
      for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf
 
        FIFO36_72  #
          (
           .ALMOST_EMPTY_OFFSET     (9'h007),
           .ALMOST_FULL_OFFSET      (9'h00F),
           .DO_REG                  (1),          // extra CC output delay
           .EN_ECC_WRITE            ("TRUE"),
           .EN_ECC_READ             ("FALSE"),
           .EN_SYN                  ("FALSE"),
           .FIRST_WORD_FALL_THROUGH ("FALSE")
           )
          u_wdf_ecc
            (
             .ALMOSTEMPTY (),
             .ALMOSTFULL  (i_wdf_afull[wdf_i]),
             .DBITERR     (),
             .DO          (i_wdf_data_out_ecc[((64*(wdf_i+1))+(wdf_i *8))-1:
                                              (64*wdf_i)+(wdf_i *8)]),
             .DOP         (i_wdf_data_out_ecc[(72*(wdf_i+1))-1:
                                              (64*(wdf_i+1))+ (8*wdf_i) ]),
             .ECCPARITY   (),
             .EMPTY       (),
             .FULL        (),
             .RDCOUNT     (),
             .RDERR       (),
             .SBITERR     (),
             .WRCOUNT     (),
             .WRERR       (),
             .DI          (app_wdf_data[(64*(wdf_i+1))-1:
                                        (64*wdf_i)]),
             .DIP         (),
             .RDCLK       (clk90),
             .RDEN        (wdf_rden),
             .RST         (rst_r),          // or can use rst0
             .WRCLK       (clk0),
//	     .WRCLK       (usr_clk), //jb
             .WREN        (app_wdf_wren)
             );
      end
 
      // remapping the mask data. The mask data from user i/f does not have
      // the mask for the ECC byte. Assigning 0 to the ECC mask byte.
      for (mask_i = 0; mask_i < (DQ_WIDTH)/36;
           mask_i = mask_i +1) begin: gen_mask
        assign mask_data_in_ecc[((8*(mask_i+1))+ mask_i)-1:((8*mask_i)+mask_i)]
                 = app_wdf_mask_data[(8*(mask_i+1))-1:8*(mask_i)] ;
        assign mask_data_in_ecc[((8*(mask_i+1))+mask_i)] = 1'd0;
      end
 
      // assign ecc bits to temp variables to avoid
      // sim warnings. Not all the 64 bits of the fifo
      // are used in ECC mode.
       assign  mask_data_in_ecc_wire[((2*DQ_WIDTH)/8)-1:0] = mask_data_in_ecc;
       assign  mask_data_in_ecc_wire[63:((2*DQ_WIDTH)/8)]  =
              {(64-((2*DQ_WIDTH)/8)){1'b0}};
       assign i_wdf_mask_data_out_ecc =
               i_wdf_mask_data_out_ecc_wire[((2*DQ_WIDTH)/8)-1:0];
 
 
      FIFO36_72  #
        (
         .ALMOST_EMPTY_OFFSET     (9'h007),
         .ALMOST_FULL_OFFSET      (9'h00F),
         .DO_REG                  (1),          // extra CC output delay
         .EN_ECC_WRITE            ("TRUE"),
         .EN_ECC_READ             ("FALSE"),
         .EN_SYN                  ("FALSE"),
         .FIRST_WORD_FALL_THROUGH ("FALSE")
         )
        u_wdf_ecc_mask
          (
           .ALMOSTEMPTY (),
           .ALMOSTFULL  (),
           .DBITERR     (),
           .DO          (i_wdf_mask_data_out_ecc_wire),
           .DOP         (),
           .ECCPARITY   (),
           .EMPTY       (),
           .FULL        (),
           .RDCOUNT     (),
           .RDERR       (),
           .SBITERR     (),
           .WRCOUNT     (),
           .WRERR       (),
           .DI          (mask_data_in_ecc_wire),
           .DIP         (),
           .RDCLK       (clk90),
           .RDEN        (wdf_rden),
           .RST         (rst_r),          // or can use rst0
           .WRCLK       (clk0),
//	   .WRCLK       (usr_clk), // jb
           .WREN        (app_wdf_wren)
           );
    end else begin
 
      //***********************************************************************
 
      // Define intermediate buses:
      assign i_wdf_data_rise_in
        = app_wdf_data[DQ_WIDTH-1:0];
      assign i_wdf_data_fall_in
        = app_wdf_data[(2*DQ_WIDTH)-1:DQ_WIDTH];
      assign i_wdf_mask_data_rise_in
        = app_wdf_mask_data[MASK_WIDTH-1:0];
      assign i_wdf_mask_data_fall_in
        = app_wdf_mask_data[(2*MASK_WIDTH)-1:MASK_WIDTH];
 
      //***********************************************************************
      // Write data FIFO Input:
      // Arrange DQ's so that the rise data and fall data are interleaved.
      // the data arrives at the input of the wdf fifo as {fall,rise}.
      // It is remapped as:
      //     {...fall[15:8],rise[15:8],fall[7:0],rise[7:0]}
      // This is done to avoid having separate fifo's for rise and fall data
      // and to keep rise/fall data for the same DQ's on same FIFO
      // Data masks are interleaved in a similar manner
      // NOTE: Initialization data from PHY_INIT module does not need to be
      //  interleaved - it's already in the correct format - and the same
      //  initialization pattern from PHY_INIT is sent to all write FIFOs
      //***********************************************************************
 
      for (wdf_di_i = 0; wdf_di_i < MASK_WIDTH;
           wdf_di_i = wdf_di_i + 1) begin: gen_wdf_data_in
        assign i_wdf_data_in[(16*wdf_di_i)+15:(16*wdf_di_i)]
                 = {i_wdf_data_fall_in[(8*wdf_di_i)+7:(8*wdf_di_i)],
                    i_wdf_data_rise_in[(8*wdf_di_i)+7:(8*wdf_di_i)]};
        assign i_wdf_mask_data_in[(2*wdf_di_i)+1:(2*wdf_di_i)]
                 = {i_wdf_mask_data_fall_in[wdf_di_i],
                    i_wdf_mask_data_rise_in[wdf_di_i]};
      end
 
      //***********************************************************************
      // Write data FIFO Output:
      // FIFO DQ and mask outputs must be untangled and put in the standard
      // format of {fall,rise}. Same goes for mask output
      //***********************************************************************
 
      for (wdf_do_i = 0; wdf_do_i < MASK_WIDTH;
           wdf_do_i = wdf_do_i + 1) begin: gen_wdf_data_out
        assign i_wdf_data_rise_out[(8*wdf_do_i)+7:(8*wdf_do_i)]
                 = i_wdf_data_out[(16*wdf_do_i)+7:(16*wdf_do_i)];
        assign i_wdf_data_fall_out[(8*wdf_do_i)+7:(8*wdf_do_i)]
                 = i_wdf_data_out[(16*wdf_do_i)+15:(16*wdf_do_i)+8];
        assign i_wdf_mask_data_rise_out[wdf_do_i]
                 = i_wdf_mask_data_out[2*wdf_do_i];
        assign i_wdf_mask_data_fall_out[wdf_do_i]
                 = i_wdf_mask_data_out[(2*wdf_do_i)+1];
      end
 
      assign wdf_data = {i_wdf_data_fall_out,
                         i_wdf_data_rise_out};
 
      assign wdf_mask_data = {i_wdf_mask_data_fall_out,
                              i_wdf_mask_data_rise_out};
 
      //***********************************************************************
 
      for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf
 
        FIFO36_72  #
          (
           .ALMOST_EMPTY_OFFSET     (9'h007),
           .ALMOST_FULL_OFFSET      (9'h00F),
           .DO_REG                  (1),          // extra CC output delay
           .EN_ECC_WRITE            ("FALSE"),
           .EN_ECC_READ             ("FALSE"),
           .EN_SYN                  ("FALSE"),
           .FIRST_WORD_FALL_THROUGH ("FALSE")
           )
          u_wdf
            (
             .ALMOSTEMPTY (),
             .ALMOSTFULL  (i_wdf_afull[wdf_i]),
             .DBITERR     (),
             .DO          (i_wdf_data_out[(64*(wdf_i+1))-1:64*wdf_i]),
             .DOP         (i_wdf_mask_data_out[(8*(wdf_i+1))-1:8*wdf_i]),
             .ECCPARITY   (),
             .EMPTY       (),
             .FULL        (),
             .RDCOUNT     (),
             .RDERR       (),
             .SBITERR     (),
             .WRCOUNT     (),
             .WRERR       (),
             .DI          (i_wdf_data_in[(64*(wdf_i+1))-1:64*wdf_i]),
             .DIP         (i_wdf_mask_data_in[(8*(wdf_i+1))-1:8*wdf_i]),
             .RDCLK       (clk90),
             .RDEN        (wdf_rden),
             .RST         (rst_r),          // or can use rst0
             .WRCLK       (clk0),
//	     .WRCLK       (usr_clk), //jb
             .WREN        (app_wdf_wren)
             );
      end
    end
  endgenerate
 
endmodule
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.