URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [rtl/] [verilog/] [ethmac/] [eth_spram_256x32.v] - Rev 803
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// eth_spram_256x32.v //// //// //// //// This file is part of the Ethernet IP core project //// //// http://www.opencores.org/project,ethmac //// //// //// //// Author(s): //// //// - Igor Mohor (igorM@opencores.org) //// //// //// //// All additional information is available in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001, 2002 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.9 2003/12/05 12:43:06 tadejm // Corrected address mismatch for xilinx RAMB4_S8 model which has wider address than RAMB4_S16. // // Revision 1.8 2003/12/04 14:59:13 simons // Lapsus fixed (!we -> ~we). // // Revision 1.7 2003/11/12 18:24:59 tadejm // WISHBONE slave changed and tested from only 32-bit accesss to byte access. // // Revision 1.6 2003/10/17 07:46:15 markom // mbist signals updated according to newest convention // // Revision 1.5 2003/08/14 16:42:58 simons // Artisan ram instance added. // // Revision 1.4 2002/10/18 17:04:20 tadejm // Changed BIST scan signals. // // Revision 1.3 2002/10/10 16:29:30 mohor // BIST added. // // Revision 1.2 2002/09/23 18:24:31 mohor // ETH_VIRTUAL_SILICON_RAM supported (for ASIC implementation). // // Revision 1.1 2002/07/23 16:36:09 mohor // ethernet spram added. So far a generic ram and xilinx RAMB4 are used. // // // `include "ethmac_defines.v" `include "timescale.v" module eth_spram_256x32( // Generic synchronous single-port RAM interface clk, rst, ce, we, oe, addr, di, dato `ifdef ETH_BIST , // debug chain signals mbist_si_i, // bist scan serial in mbist_so_o, // bist scan serial out mbist_ctrl_i // bist chain shift control `endif ); parameter we_width = 4; // // Generic synchronous single-port RAM interface // input clk; // Clock, rising edge input rst; // Reset, active high input ce; // Chip enable input, active high input [we_width-1:0] we; // Write enable input, active high input oe; // Output enable input, active high input [7:0] addr; // address bus inputs input [31:0] di; // input data bus output [31:0] dato; // output data bus `ifdef ETH_BIST input mbist_si_i; // bist scan serial in output mbist_so_o; // bist scan serial out input [`ETH_MBIST_CTRL_WIDTH - 1:0] mbist_ctrl_i; // bist chain shift control `endif `ifdef ETH_XILINX_RAMB4 /*RAMB4_S16 ram0 ( .DO (do[15:0]), .ADDR (addr), .DI (di[15:0]), .EN (ce), .CLK (clk), .WE (we), .RST (rst) ); RAMB4_S16 ram1 ( .DO (do[31:16]), .ADDR (addr), .DI (di[31:16]), .EN (ce), .CLK (clk), .WE (we), .RST (rst) );*/ RAMB4_S8 ram0 ( .DO (dato[7:0]), .ADDR ({1'b0, addr}), .DI (di[7:0]), .EN (ce), .CLK (clk), .WE (we[0]), .RST (rst) ); RAMB4_S8 ram1 ( .DO (dato[15:8]), .ADDR ({1'b0, addr}), .DI (di[15:8]), .EN (ce), .CLK (clk), .WE (we[1]), .RST (rst) ); RAMB4_S8 ram2 ( .DO (dato[23:16]), .ADDR ({1'b0, addr}), .DI (di[23:16]), .EN (ce), .CLK (clk), .WE (we[2]), .RST (rst) ); RAMB4_S8 ram3 ( .DO (dato[31:24]), .ADDR ({1'b0, addr}), .DI (di[31:24]), .EN (ce), .CLK (clk), .WE (we[3]), .RST (rst) ); `else // !ETH_XILINX_RAMB4 `ifdef ETH_VIRTUAL_SILICON_RAM `ifdef ETH_BIST //vs_hdsp_256x32_bist ram0_bist vs_hdsp_256x32_bw_bist ram0_bist `else //vs_hdsp_256x32 ram0 vs_hdsp_256x32_bw ram0 `endif ( .CK (clk), .CEN (!ce), .WEN (~we), .OEN (!oe), .ADR (addr), .DI (di), .DOUT (dato) `ifdef ETH_BIST , // debug chain signals .mbist_si_i (mbist_si_i), .mbist_so_o (mbist_so_o), .mbist_ctrl_i (mbist_ctrl_i) `endif ); `else // !ETH_VIRTUAL_SILICON_RAM `ifdef ETH_ARTISAN_RAM `ifdef ETH_BIST //art_hssp_256x32_bist ram0_bist art_hssp_256x32_bw_bist ram0_bist `else //art_hssp_256x32 ram0 art_hssp_256x32_bw ram0 `endif ( .CLK (clk), .CEN (!ce), .WEN (~we), .OEN (!oe), .A (addr), .D (di), .Q (dato) `ifdef ETH_BIST , // debug chain signals .mbist_si_i (mbist_si_i), .mbist_so_o (mbist_so_o), .mbist_ctrl_i (mbist_ctrl_i) `endif ); `else // !ETH_ARTISAN_RAM `ifdef ETH_ALTERA_ALTSYNCRAM altera_spram_256x32 altera_spram_256x32_inst ( .address (addr), .wren (ce & we), .clock (clk), .data (di), .q (dato) ); //exemplar attribute altera_spram_256x32_inst NOOPT TRUE `else // !ETH_ALTERA_ALTSYNCRAM // // Generic single-port synchronous RAM model // // // Generic RAM's registers and wires // reg [ 7: 0] mem0 [255:0]; // RAM content reg [15: 8] mem1 [255:0]; // RAM content reg [23:16] mem2 [255:0]; // RAM content reg [31:24] mem3 [255:0]; // RAM content wire [31:0] q; // RAM output reg [7:0] raddr; // RAM read address reg [31:0] mem[255:0]; // // Data output drivers // //assign do = (oe & ce) ? q : {32{1'bz}}; assign dato = (oe & ce) ? q : {32{1'bx}}; // // RAM read and write // // read operation always@(posedge clk) if (ce) raddr <= addr; // read address needs to be registered to read clock generate if (we_width > 1) begin assign q = rst ? {32{1'b0}} : {mem3[raddr], mem2[raddr], mem1[raddr], mem0[raddr]}; // write operation always@(posedge clk) begin if (ce && we[3]) mem3[addr] <= di[31:24]; if (ce && we[2]) mem2[addr] <= di[23:16]; if (ce && we[1]) mem1[addr] <= di[15: 8]; if (ce && we[0]) mem0[addr] <= di[ 7: 0]; end end // if (we_width > 1) else begin assign q = rst ? {32{1'b0}} : {mem[raddr]}; // write operation always@(posedge clk) begin if (ce && we[0]) mem[addr] <= di[ 31: 0]; end end // else: !if(we_width > 1) endgenerate // Task prints range of memory // *** Remember that tasks are non reentrant, don't call this task in parallel for multiple instantiations. task print_ram; input [7:0] start; input [7:0] finish; integer rnum; begin for (rnum={24'd0,start};rnum<={24'd0,finish};rnum=rnum+1) $display("Addr %h = %0h %0h %0h %0h",rnum,mem3[rnum],mem2[rnum],mem1[rnum],mem0[rnum]); end endtask `endif // !ETH_ALTERA_ALTSYNCRAM `endif // !ETH_ARTISAN_RAM `endif // !ETH_VIRTUAL_SILICON_RAM `endif // !ETH_XILINX_RAMB4 endmodule
Go to most recent revision | Compare with Previous | Blame | View Log