URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [rtl/] [verilog/] [ethmac/] [eth_wishbone.v] - Rev 409
Go to most recent revision | Compare with Previous | Blame | View Log
////////////////////////////////////////////////////////////////////// //// //// //// eth_wishbone.v //// //// //// //// This file is part of the Ethernet IP core project //// //// http://www.opencores.org/project,ethmac //// //// //// //// Author(s): //// //// - Igor Mohor (igorM@opencores.org) //// //// //// //// All additional information is available in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001, 2002 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// `include "ethmac_defines.v" `include "timescale.v" module eth_wishbone ( // WISHBONE common WB_CLK_I, WB_DAT_I, WB_DAT_O, // WISHBONE slave WB_ADR_I, WB_WE_I, WB_ACK_O, BDCs, Reset, // WISHBONE master m_wb_adr_o, m_wb_sel_o, m_wb_we_o, m_wb_dat_o, m_wb_dat_i, m_wb_cyc_o, m_wb_stb_o, m_wb_ack_i, m_wb_err_i, `ifdef ETH_WISHBONE_B3 m_wb_cti_o, m_wb_bte_o, `endif //TX MTxClk, TxStartFrm, TxEndFrm, TxUsedData, TxData, TxRetry, TxAbort, TxUnderRun, TxDone, PerPacketCrcEn, PerPacketPad, //RX MRxClk, RxData, RxValid, RxStartFrm, RxEndFrm, RxAbort, RxStatusWriteLatched_sync2, // Register r_TxEn, r_RxEn, r_TxBDNum, r_RxFlow, r_PassAll, // Interrupts TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ, // Rx Status InvalidSymbol, LatchedCrcError, RxLateCollision, ShortFrame, DribbleNibble, ReceivedPacketTooBig, RxLength, LoadRxStatus, ReceivedPacketGood, AddressMiss, ReceivedPauseFrm, // Tx Status RetryCntLatched, RetryLimit, LateCollLatched, DeferLatched, RstDeferLatched, CarrierSenseLost // Bist `ifdef ETH_BIST , // debug chain signals mbist_si_i, // bist scan serial in mbist_so_o, // bist scan serial out mbist_ctrl_i // bist chain shift control `endif `ifdef WISHBONE_DEBUG , dbg_dat0 `endif ); //parameter Tp = 1; parameter Tp = 0; // WISHBONE common input WB_CLK_I; // WISHBONE clock input [31:0] WB_DAT_I; // WISHBONE data input output [31:0] WB_DAT_O; // WISHBONE data output // WISHBONE slave input [9:2] WB_ADR_I; // WISHBONE address input input WB_WE_I; // WISHBONE write enable input input [3:0] BDCs; // Buffer descriptors are selected output WB_ACK_O; // WISHBONE acknowledge output // WISHBONE master output [29:0] m_wb_adr_o; // output [3:0] m_wb_sel_o; // output m_wb_we_o; // output [31:0] m_wb_dat_o; // output m_wb_cyc_o; // output m_wb_stb_o; // input [31:0] m_wb_dat_i; // input m_wb_ack_i; // input m_wb_err_i; // `ifdef ETH_WISHBONE_B3 output [2:0] m_wb_cti_o; // Cycle Type Identifier `ifdef BURST_4BEAT output reg [1:0] m_wb_bte_o; // Burst Type Extension `else output [1:0] m_wb_bte_o; // Burst Type Extension `endif reg [2:0] m_wb_cti_o; // Cycle Type Identifier `endif input Reset; // Reset signal // Rx Status signals input InvalidSymbol; // Invalid symbol was received during // reception in 100 Mbps mode input LatchedCrcError; // CRC error input RxLateCollision; // Late collision occured while receiving // frame input ShortFrame; // Frame shorter then the minimum size // (r_MinFL) was received while small // packets are enabled (r_RecSmall) input DribbleNibble; // Extra nibble received input ReceivedPacketTooBig;// Received packet is bigger than // r_MaxFL input [15:0] RxLength; // Length of the incoming frame input LoadRxStatus; // Rx status was loaded input ReceivedPacketGood;// Received packet's length and CRC are // good input AddressMiss; // When a packet is received AddressMiss // status is written to the Rx BD input r_RxFlow; input r_PassAll; input ReceivedPauseFrm; // Tx Status signals input [3:0] RetryCntLatched; // Latched Retry Counter input RetryLimit; // Retry limit reached (Retry Max value + // 1 attempts were made) input LateCollLatched; // Late collision occured input DeferLatched; // Defer indication (Frame was defered // before sucessfully sent) output RstDeferLatched; input CarrierSenseLost; // Carrier Sense was lost during the // frame transmission // Tx input MTxClk; // Transmit clock (from PHY) input TxUsedData; // Transmit packet used data input TxRetry; // Transmit packet retry input TxAbort; // Transmit packet abort input TxDone; // Transmission ended output TxStartFrm; // Transmit packet start frame output TxEndFrm; // Transmit packet end frame output [7:0] TxData; // Transmit packet data byte output TxUnderRun; // Transmit packet under-run output PerPacketCrcEn; // Per packet crc enable output PerPacketPad; // Per packet pading // Rx input MRxClk; // Receive clock (from PHY) input [7:0] RxData; // Received data byte (from PHY) input RxValid; // input RxStartFrm; // input RxEndFrm; // input RxAbort; // This signal is set when address doesn't // match. output RxStatusWriteLatched_sync2; //Register input r_TxEn; // Transmit enable input r_RxEn; // Receive enable input [7:0] r_TxBDNum; // Receive buffer descriptor number // Interrupts output TxB_IRQ; output TxE_IRQ; output RxB_IRQ; output RxE_IRQ; output Busy_IRQ; // Bist `ifdef ETH_BIST input mbist_si_i; // bist scan serial in output mbist_so_o; // bist scan serial out input [`ETH_MBIST_CTRL_WIDTH - 1:0] mbist_ctrl_i; // bist chain shift control `endif `ifdef WISHBONE_DEBUG output [31:0] dbg_dat0; `endif reg TxB_IRQ; reg TxE_IRQ; reg RxB_IRQ; reg RxE_IRQ; reg TxStartFrm; reg TxEndFrm; reg [7:0] TxData; reg TxUnderRun; reg TxUnderRun_wb; reg TxBDRead; wire TxStatusWrite; reg [1:0] TxValidBytesLatched; reg [15:0] TxLength; reg [15:0] LatchedTxLength; reg [14:11] TxStatus; reg [14:13] RxStatus; reg TxStartFrm_wb; reg TxRetry_wb; reg TxAbort_wb; reg TxDone_wb; reg TxDone_wb_q; reg TxAbort_wb_q; reg TxRetry_wb_q; reg TxRetryPacket; reg TxRetryPacket_NotCleared; reg TxDonePacket; reg TxDonePacket_NotCleared; reg TxAbortPacket; reg TxAbortPacket_NotCleared; reg RxBDReady; reg RxBDOK; reg TxBDReady; reg RxBDRead; reg [31:0] TxDataLatched; reg [1:0] TxByteCnt; reg LastWord; reg ReadTxDataFromFifo_tck; reg BlockingTxStatusWrite; reg BlockingTxBDRead; reg Flop; reg [7:1] TxBDAddress; reg [7:1] RxBDAddress; reg TxRetrySync1; reg TxAbortSync1; reg TxDoneSync1; reg TxAbort_q; reg TxRetry_q; reg TxUsedData_q; reg [31:0] RxDataLatched2; reg [31:8] RxDataLatched1; // Big Endian Byte Ordering reg [1:0] RxValidBytes; reg [1:0] RxByteCnt; reg LastByteIn; reg ShiftWillEnd; reg WriteRxDataToFifo; reg [15:0] LatchedRxLength; reg RxAbortLatched; reg ShiftEnded; reg RxOverrun; reg [3:0] BDWrite; // BD Write Enable for access from WISHBONE side reg BDRead; // BD Read access from WISHBONE side wire [31:0] RxBDDataIn; // Rx BD data in wire [31:0] TxBDDataIn; // Tx BD data in reg TxEndFrm_wb; wire TxRetryPulse; wire TxDonePulse; wire TxAbortPulse; wire StartRxBDRead; wire StartTxBDRead; wire TxIRQEn; wire WrapTxStatusBit; wire RxIRQEn; wire WrapRxStatusBit; wire [1:0] TxValidBytes; wire [7:1] TempTxBDAddress; wire [7:1] TempRxBDAddress; wire RxStatusWrite; wire RxBufferFull; wire RxBufferAlmostEmpty; wire RxBufferEmpty; reg WB_ACK_O; wire [8:0] RxStatusIn; reg [8:0] RxStatusInLatched; reg WbEn, WbEn_q; reg RxEn, RxEn_q; reg TxEn, TxEn_q; reg r_TxEn_q; reg r_RxEn_q; wire ram_ce; wire [3:0] ram_we; wire ram_oe; reg [7:0] ram_addr; reg [31:0] ram_di; wire [31:0] ram_do; wire StartTxPointerRead; reg TxPointerRead; reg TxEn_needed; reg RxEn_needed; wire StartRxPointerRead; reg RxPointerRead; // RX shift ending signals reg ShiftEnded_rck; reg ShiftEndedSync1; reg ShiftEndedSync2; reg ShiftEndedSync3; reg ShiftEndedSync_c1; reg ShiftEndedSync_c2; wire StartShiftWillEnd; // Pulse for wishbone side having finished writing back reg rx_wb_writeback_finished; // Indicator of last set of writes from the Wishbone master coming up reg rx_wb_last_writes; `ifdef TXBD_POLL reg [31:0] TxBDReadySamples; // -- jb wire TxBDNotReady; // -- jb `endif `ifdef ETH_WISHBONE_B3 `ifndef BURST_4BEAT assign m_wb_bte_o = 2'b00; // Linear burst `endif `endif assign m_wb_stb_o = m_wb_cyc_o; always @ (posedge WB_CLK_I) begin WB_ACK_O <= (|BDWrite) & WbEn & WbEn_q | BDRead & WbEn & ~WbEn_q; end assign WB_DAT_O = ram_do; // Generic synchronous single-port RAM interface eth_spram_256x32 #(1) // Write enable width bd_ram ( .clk (WB_CLK_I), .rst (Reset), .ce (ram_ce), .we (ram_we[0]), .oe (ram_oe), .addr (ram_addr), .di (ram_di), .do (ram_do) `ifdef ETH_BIST , .mbist_si_i (mbist_si_i), .mbist_so_o (mbist_so_o), .mbist_ctrl_i (mbist_ctrl_i) `endif ); assign ram_ce = 1'b1; assign ram_we = (BDWrite & {4{(WbEn & WbEn_q)}}) | {4{(TxStatusWrite | RxStatusWrite)}}; assign ram_oe = BDRead & WbEn & WbEn_q | TxEn & TxEn_q & (TxBDRead | TxPointerRead) | RxEn & RxEn_q & (RxBDRead | RxPointerRead); always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxEn_needed <= 1'b0; else if(~TxBDReady & r_TxEn & WbEn & ~WbEn_q) TxEn_needed <= 1'b1; else if(TxPointerRead & TxEn & TxEn_q) TxEn_needed <= 1'b0; end // Enabling access to the RAM for three devices. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) begin WbEn <= 1'b1; RxEn <= 1'b0; TxEn <= 1'b0; ram_addr <= 8'h0; ram_di <= 32'h0; BDRead <= 1'b0; BDWrite <= 1'b0; end else begin // Switching between three stages depends on enable signals case ({WbEn_q, RxEn_q, TxEn_q, RxEn_needed, TxEn_needed}) // synopsys parallel_case 5'b100_10, 5'b100_11 : begin WbEn <= 1'b0; RxEn <= 1'b1; // wb access stage and r_RxEn is enabled TxEn <= 1'b0; ram_addr <= {RxBDAddress, RxPointerRead}; ram_di <= RxBDDataIn; end 5'b100_01 : begin WbEn <= 1'b0; RxEn <= 1'b0; TxEn <= 1'b1; // wb access stage, r_RxEn is disabled but // r_TxEn is enabled ram_addr <= {TxBDAddress, TxPointerRead}; ram_di <= TxBDDataIn; end 5'b010_00, 5'b010_10 : begin WbEn <= 1'b1; // RxEn access stage and r_TxEn is disabled RxEn <= 1'b0; TxEn <= 1'b0; ram_addr <= WB_ADR_I[9:2]; ram_di <= WB_DAT_I; BDWrite <= BDCs[3:0] & {4{WB_WE_I}}; BDRead <= (|BDCs) & ~WB_WE_I; end 5'b010_01, 5'b010_11 : begin WbEn <= 1'b0; RxEn <= 1'b0; TxEn <= 1'b1; // RxEn access stage and r_TxEn is enabled ram_addr <= {TxBDAddress, TxPointerRead}; ram_di <= TxBDDataIn; end 5'b001_00, 5'b001_01, 5'b001_10, 5'b001_11 : begin WbEn <= 1'b1; // TxEn access stage (we always go to wb // access stage) RxEn <= 1'b0; TxEn <= 1'b0; ram_addr <= WB_ADR_I[9:2]; ram_di <= WB_DAT_I; BDWrite <= BDCs[3:0] & {4{WB_WE_I}}; BDRead <= (|BDCs) & ~WB_WE_I; end 5'b100_00 : begin WbEn <= 1'b0; // WbEn access stage and there is no need // for other stages. WbEn needs to be // switched off for a bit end 5'b000_00 : begin WbEn <= 1'b1; // Idle state. We go to WbEn access stage. RxEn <= 1'b0; TxEn <= 1'b0; ram_addr <= WB_ADR_I[9:2]; ram_di <= WB_DAT_I; BDWrite <= BDCs[3:0] & {4{WB_WE_I}}; BDRead <= (|BDCs) & ~WB_WE_I; end endcase end end // Delayed stage signals always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) begin WbEn_q <= 1'b0; RxEn_q <= 1'b0; TxEn_q <= 1'b0; r_TxEn_q <= 1'b0; r_RxEn_q <= 1'b0; end else begin WbEn_q <= WbEn; RxEn_q <= RxEn; TxEn_q <= TxEn; r_TxEn_q <= r_TxEn; r_RxEn_q <= r_RxEn; end end // Changes for tx occur every second clock. Flop is used for this manner. always @ (posedge MTxClk or posedge Reset) begin if(Reset) Flop <= 1'b0; else if(TxDone | TxAbort | TxRetry_q) Flop <= 1'b0; else if(TxUsedData) Flop <= ~Flop; end wire ResetTxBDReady; assign ResetTxBDReady = TxDonePulse | TxAbortPulse | TxRetryPulse; // Latching READY status of the Tx buffer descriptor always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxBDReady <= 1'b0; else if(TxEn & TxEn_q & TxBDRead) // TxBDReady is sampled only once at the beginning. TxBDReady <= ram_do[15] & (ram_do[31:16] > 4); else // Only packets larger then 4 bytes are transmitted. if(ResetTxBDReady) TxBDReady <= 1'b0; end `ifdef TXBD_POLL // Register TxBDReady 4 times, when all are low we know this one is not // good to transmit always @(posedge WB_CLK_I or posedge Reset) // -- jb begin if (Reset) TxBDReadySamples <= 32'hffffffff; else begin if (r_TxEn) begin if (TxBDNotReady) TxBDReadySamples <= 32'hffffffff; else TxBDReadySamples[31:0] <= {TxBDReadySamples[30:0],TxBDReady}; end else TxBDReadySamples <= 32'hffffffff; end // else: !if(Reset) end // always @ (posedge WB_CLK_I or posedge Reset) // When all low, this goes high -- jb assign TxBDNotReady = ~(|TxBDReadySamples); `endif // Reading the Tx buffer descriptor assign StartTxBDRead = (TxRetryPacket_NotCleared | TxStatusWrite) & ~BlockingTxBDRead & ~TxBDReady; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxBDRead <= 1'b1; else if(StartTxBDRead) TxBDRead <= 1'b1; else if(TxBDReady) TxBDRead <= 1'b0; end // Reading Tx BD pointer assign StartTxPointerRead = TxBDRead & TxBDReady; // Reading Tx BD Pointer always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxPointerRead <= 1'b0; else if(StartTxPointerRead) TxPointerRead <= 1'b1; else if(TxEn_q) TxPointerRead <= 1'b0; end // Writing status back to the Tx buffer descriptor assign TxStatusWrite = (TxDonePacket_NotCleared | TxAbortPacket_NotCleared)& TxEn & TxEn_q & ~BlockingTxStatusWrite; // Status writing must occur only once. Meanwhile it is blocked. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) BlockingTxStatusWrite <= 1'b0; else if(~TxDone_wb & ~TxAbort_wb) BlockingTxStatusWrite <= 1'b0; else if(TxStatusWrite) BlockingTxStatusWrite <= 1'b1; end reg BlockingTxStatusWrite_sync1; reg BlockingTxStatusWrite_sync2; reg BlockingTxStatusWrite_sync3; // Synchronizing BlockingTxStatusWrite to MTxClk always @ (posedge MTxClk or posedge Reset) begin if(Reset) BlockingTxStatusWrite_sync1 <= 1'b0; else BlockingTxStatusWrite_sync1 <= BlockingTxStatusWrite; end // Synchronizing BlockingTxStatusWrite to MTxClk always @ (posedge MTxClk or posedge Reset) begin if(Reset) BlockingTxStatusWrite_sync2 <= 1'b0; else BlockingTxStatusWrite_sync2 <= BlockingTxStatusWrite_sync1; end // Synchronizing BlockingTxStatusWrite to MTxClk always @ (posedge MTxClk or posedge Reset) begin if(Reset) BlockingTxStatusWrite_sync3 <= 1'b0; else BlockingTxStatusWrite_sync3 <= BlockingTxStatusWrite_sync2; end assign RstDeferLatched = BlockingTxStatusWrite_sync2 & ~BlockingTxStatusWrite_sync3; // TxBDRead state is activated only once. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) BlockingTxBDRead <= 1'b0; else if(StartTxBDRead) BlockingTxBDRead <= 1'b1; else if(~StartTxBDRead & ~TxBDReady) BlockingTxBDRead <= 1'b0; end // Latching status from the tx buffer descriptor // Data is avaliable one cycle after the access is started (at that time // signal TxEn is not active) always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxStatus <= 4'h0; else if(TxEn & TxEn_q & TxBDRead) TxStatus <= ram_do[14:11]; end reg ReadTxDataFromMemory; wire WriteRxDataToMemory; reg WriteRxDataToMemory_r; // Register WriteRxDataToMemory in Wishbone clock domain // so it doesn't get out of sync with burst capability indication signals always @(posedge WB_CLK_I or posedge Reset) if (Reset) WriteRxDataToMemory_r <= 0; else WriteRxDataToMemory_r <= WriteRxDataToMemory; reg MasterWbTX; reg MasterWbRX; reg [29:0] m_wb_adr_o; reg m_wb_cyc_o; reg [3:0] m_wb_sel_o; reg m_wb_we_o; wire TxLengthEq0; wire TxLengthLt4; reg BlockingIncrementTxPointer; reg [31:2] TxPointerMSB; reg [1:0] TxPointerLSB; reg [1:0] TxPointerLSB_rst; reg [31:2] RxPointerMSB; reg [1:0] RxPointerLSB_rst; wire RxBurstAcc; wire RxWordAcc; wire RxHalfAcc; wire RxByteAcc; //Latching length from the buffer descriptor; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxLength <= 16'h0; else if(TxEn & TxEn_q & TxBDRead) TxLength <= ram_do[31:16]; else if(MasterWbTX & m_wb_ack_i) begin if(TxLengthLt4) TxLength <= 16'h0; else if(TxPointerLSB_rst==2'h0) TxLength <= TxLength - 3'h4; // Length is subtracted at // the data request else if(TxPointerLSB_rst==2'h1) TxLength <= TxLength - 3'h3; // Length is subtracted // at the data request else if(TxPointerLSB_rst==2'h2) TxLength <= TxLength - 3'h2; // Length is subtracted // at the data request else if(TxPointerLSB_rst==2'h3) TxLength <= TxLength - 3'h1; // Length is subtracted // at the data request end end //Latching length from the buffer descriptor; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) LatchedTxLength <= 16'h0; else if(TxEn & TxEn_q & TxBDRead) LatchedTxLength <= ram_do[31:16]; end assign TxLengthEq0 = TxLength == 0; assign TxLengthLt4 = TxLength < 4; reg cyc_cleared; reg IncrTxPointer; // Latching Tx buffer pointer from buffer descriptor. Only 30 MSB bits are // latched because TxPointerMSB is only used for word-aligned accesses. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxPointerMSB <= 30'h0; else if(TxEn & TxEn_q & TxPointerRead) TxPointerMSB <= ram_do[31:2]; else if(IncrTxPointer & ~BlockingIncrementTxPointer) // TxPointer is word-aligned TxPointerMSB <= TxPointerMSB + 1'b1; end // Latching 2 MSB bits of the buffer descriptor. Since word accesses are // performed, valid data does not necesserly start at byte 0 (could be byte // 0, 1, 2 or 3). This signals are used for proper selection of the start // byte (TxData and TxByteCnt) are set by this two bits. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxPointerLSB[1:0] <= 0; else if(TxEn & TxEn_q & TxPointerRead) TxPointerLSB[1:0] <= ram_do[1:0]; end // Latching 2 MSB bits of the buffer descriptor. // After the read access, TxLength needs to be decremented for the number of // the valid bytes (1 to 4 bytes are valid in the first word). After the // first read all bytes are valid so this two bits are reset to zero. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxPointerLSB_rst[1:0] <= 0; else if(TxEn & TxEn_q & TxPointerRead) TxPointerLSB_rst[1:0] <= ram_do[1:0]; else // After first access pointer is word alligned if(MasterWbTX & m_wb_ack_i) TxPointerLSB_rst[1:0] <= 0; end reg [3:0] RxByteSel; wire MasterAccessFinished; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) BlockingIncrementTxPointer <= 0; else if(MasterAccessFinished) BlockingIncrementTxPointer <= 0; else if(IncrTxPointer) BlockingIncrementTxPointer <= 1'b1; end wire TxBufferAlmostFull; wire TxBufferFull; wire TxBufferEmpty; wire TxBufferAlmostEmpty; wire SetReadTxDataFromMemory; reg BlockReadTxDataFromMemory; assign SetReadTxDataFromMemory = TxEn & TxEn_q & TxPointerRead; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ReadTxDataFromMemory <= 1'b0; else if(TxLengthEq0 | TxAbortPulse | TxRetryPulse) ReadTxDataFromMemory <= 1'b0; else if(SetReadTxDataFromMemory) ReadTxDataFromMemory <= 1'b1; end reg tx_burst_en; reg rx_burst_en; reg [`ETH_BURST_CNT_WIDTH-1:0] tx_burst_cnt; wire ReadTxDataFromMemory_2; wire tx_burst; wire [31:0] TxData_wb; wire ReadTxDataFromFifo_wb; assign ReadTxDataFromMemory_2 = ReadTxDataFromMemory & ~BlockReadTxDataFromMemory | (|tx_burst_cnt); assign tx_burst = ReadTxDataFromMemory_2 & tx_burst_en; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) BlockReadTxDataFromMemory <= 1'b0; else if((TxBufferAlmostFull | TxLength <= 4)& MasterWbTX & (~cyc_cleared) & (!(TxAbortPacket_NotCleared | TxRetryPacket_NotCleared))) BlockReadTxDataFromMemory <= 1'b1; else if(ReadTxDataFromFifo_wb | TxDonePacket | TxAbortPacket | TxRetryPacket) BlockReadTxDataFromMemory <= 1'b0; end `define TX_BURST_EN_CONDITION (txfifo_cnt<(`ETH_TX_FIFO_DEPTH-`ETH_BURST_LENGTH) & (TxLength>(`ETH_BURST_LENGTH*4+4))) assign MasterAccessFinished = m_wb_ack_i | m_wb_err_i; wire [`ETH_TX_FIFO_CNT_WIDTH-1:0] txfifo_cnt; wire [`ETH_RX_FIFO_CNT_WIDTH-1:0] rxfifo_cnt; reg [`ETH_BURST_CNT_WIDTH-1:0] rx_burst_cnt; wire rx_burst; wire enough_data_in_rxfifo_for_burst; wire enough_data_in_rxfifo_for_burst_plus1; // Enabling master wishbone access to the memory for two devices TX and RX. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) begin MasterWbTX <= 1'b0; MasterWbRX <= 1'b0; m_wb_adr_o <= 30'h0; m_wb_cyc_o <= 1'b0; m_wb_we_o <= 1'b0; m_wb_sel_o <= 4'h0; cyc_cleared<= 1'b0; tx_burst_cnt<= 0; rx_burst_cnt<= 0; IncrTxPointer<= 1'b0; tx_burst_en<= 1'b1; rx_burst_en<= 1'b0; `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b0; `ifdef BURST_4BEAT m_wb_bte_o <= 2'b00; `endif `endif end else begin // Switching between two stages depends on enable signals casex ({MasterWbTX, MasterWbRX, ReadTxDataFromMemory_2, WriteRxDataToMemory_r, MasterAccessFinished, cyc_cleared, tx_burst, rx_burst}) // synopsys parallel_case 8'b00_10_00_10, // Idle and MRB needed 8'b10_1x_10_1x, // MRB continues 8'b10_10_01_10, // Clear (previously MR) and MRB needed 8'b01_1x_01_1x: // Clear (previously MW) and MRB needed begin MasterWbTX <= 1'b1; // tx burst MasterWbRX <= 1'b0; m_wb_cyc_o <= 1'b1; m_wb_we_o <= 1'b0; m_wb_sel_o <= 4'hf; cyc_cleared<= 1'b0; IncrTxPointer<= 1'b1; tx_burst_cnt <= tx_burst_cnt+3'h1; if(tx_burst_cnt==0) m_wb_adr_o <= TxPointerMSB; else m_wb_adr_o <= m_wb_adr_o+1'b1; if(tx_burst_cnt==(`ETH_BURST_LENGTH-1)) begin tx_burst_en<= 1'b0; `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b111; `endif end else begin `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b010; `ifdef BURST_4BEAT m_wb_bte_o <= 2'b01; `endif `endif end end // case: 8'b00_10_00_10,... `ifdef ETH_RX_BURST_EN 8'b00_x1_00_x1, // Idle and MWB needed 8'b01_x1_10_x1, // MWB continues 8'b01_01_01_01, // Clear (previously MW) and MWB needed 8'b10_x1_01_x1 : // Clear (previously MR) and MWB needed begin MasterWbTX <= 1'b0; // rx burst MasterWbRX <= 1'b1; m_wb_cyc_o <= 1'b1; m_wb_we_o <= 1'b1; m_wb_sel_o <= RxByteSel; IncrTxPointer<= 1'b0; cyc_cleared<= 1'b0; rx_burst_cnt <= rx_burst_cnt+3'h1; if(rx_burst_cnt==0) m_wb_adr_o <= RxPointerMSB; else m_wb_adr_o <= m_wb_adr_o+1'b1; if(rx_burst_cnt==(`ETH_BURST_LENGTH-1)) begin rx_burst_en<= 1'b0; `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b111; `endif end else begin `ifdef ETH_WISHBONE_B3 `ifdef BURST_4BEAT m_wb_cti_o <= 3'b010; m_wb_bte_o <= 2'b01; `endif `endif end end // case: 8'b00_x1_00_x1,... `endif // `ifdef ETH_RX_BURST_EN 8'b00_x1_00_x0 ,//idle and MW is needed (data write to rx buffer) 8'b01_x1_00_x0 :// Sometimes gets caught changing states - JB begin MasterWbTX <= 1'b0; MasterWbRX <= !RxBufferEmpty; m_wb_adr_o <= RxPointerMSB; m_wb_cyc_o <= !RxBufferEmpty; m_wb_we_o <= !RxBufferEmpty; m_wb_sel_o <= RxByteSel; IncrTxPointer<= 1'b0; `ifdef ETH_WISHBONE_B3 `ifdef ETH_RX_BURST_EN `ifdef BURST_4BEAT if ((RxPointerMSB[3:2]==2'b00) & !RxBufferEmpty & enough_data_in_rxfifo_for_burst & !m_wb_cyc_o) // Added "& !_m_wb_cyc_o" here to stop burst signals // going high during a transfer begin rx_burst_en<= 1'b1; m_wb_cti_o <= 3'b010; m_wb_bte_o <= 2'b01; rx_burst_cnt<= 1; end `endif `endif `endif // `ifdef ETH_WISHBONE_B3 end 8'b00_10_00_00 : // idle and MR is needed (data read from tx // buffer) begin MasterWbTX <= 1'b1; MasterWbRX <= 1'b0; m_wb_adr_o <= TxPointerMSB; m_wb_cyc_o <= 1'b1; m_wb_we_o <= 1'b0; m_wb_sel_o <= 4'hf; IncrTxPointer<= 1'b1; `ifdef BURST_4BEAT // Attempt ethernet bugfix, start bursts later if ((TxPointerMSB[3:2]==2'b00) && `TX_BURST_EN_CONDITION) begin `ifdef TX_BURST_EN_VERBOSE $display("(%t)(%m): %b enabling tx_burst_en",$time, {MasterWbTX,MasterWbRX,ReadTxDataFromMemory_2, WriteRxDataToMemory,MasterAccessFinished, cyc_cleared,tx_burst,rx_burst}); `endif tx_burst_en<= 1'b1; tx_burst_cnt <= 3'h1; `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b010; m_wb_bte_o <= 2'b01; `endif end `endif end 8'b10_10_01_00,// MR and MR is needed (data read from tx buffer) 8'b01_1x_01_0x :// MW and MR is needed (data read from tx // buffer) begin MasterWbTX <= 1'b1; // Only switch to TX here // when not end of RX MasterWbRX <= 1'b0; m_wb_adr_o <= TxPointerMSB; m_wb_cyc_o <= 1'b1; m_wb_we_o <= 1'b0; m_wb_sel_o <= 4'hf; cyc_cleared<= 1'b0; IncrTxPointer<= 1'b1; `ifdef BURST_4BEAT if ((TxPointerMSB[3:2]==2'b00) & `TX_BURST_EN_CONDITION) begin `ifdef TX_BURST_EN_VERBOSE $display("(%t)(%m): %b enabling tx_burst_en",$time, {MasterWbTX,MasterWbRX, ReadTxDataFromMemory_2, WriteRxDataToMemory, MasterAccessFinished, cyc_cleared, tx_burst, rx_burst}); `endif tx_burst_en<= 1'b1; tx_burst_cnt <= 3'h1; `ifdef ETH_WISHBONE_B3 m_wb_cti_o <= 3'b010; m_wb_bte_o <= 2'b01; `endif end `endif end 8'b01_01_01_00,// MW and MW needed (data write to rx buffer) 8'b10_x1_01_x0 ://MR and MW is needed (data write to rx buffer) begin MasterWbTX <= 1'b0; MasterWbRX <= !RxBufferEmpty; rx_burst_cnt<= 0; m_wb_adr_o <= RxPointerMSB; m_wb_cyc_o <= !RxBufferEmpty; m_wb_we_o <= !RxBufferEmpty; m_wb_sel_o <= RxByteSel; `ifdef ETH_WISHBONE_B3 `ifdef ETH_RX_BURST_EN `ifdef BURST_4BEAT if ((RxPointerMSB[3:2]==2'b00) & enough_data_in_rxfifo_for_burst & !RxBufferEmpty) //enough_data_in_rxfifo_for_burst_plus1) begin rx_burst_en<= 1'b1; m_wb_cti_o <= 3'b010; m_wb_bte_o <= 2'b01; rx_burst_cnt<= 1; end `endif `endif // `ifdef ETH_RX_BURST_EN `endif // `ifdef ETH_WISHBONE_B3 cyc_cleared<= 1'b0; IncrTxPointer<= 1'b0; end 8'b01_01_10_00,// MW and MW needed (cycle is cleared between // previous and next access) 8'b01_1x_10_x0,// MW and MW or MR or MRB needed (cycle is // cleared between previous and next access) 8'b10_10_10_00,// MR and MR needed (cycle is cleared between // previous and next access) 8'b10_x1_10_0x :// MR and MR or MW or MWB (cycle is cleared // between previous and next access) begin m_wb_cyc_o <= 1'b0;// whatever and master read or write is // needed. We need to clear m_wb_cyc_o // before next access is started cyc_cleared<= 1'b1; IncrTxPointer<= 1'b0; tx_burst_cnt<= 0; `ifdef BURST_4BEAT // Caused a bug! // if (TxPointerMSB[3:2]==2'b00) //tx_burst_en<= `TX_BURST_EN_CONDITION; // Set this to 0 here tx_burst_en<= 0; `endif rx_burst_cnt<= 0; `ifdef ETH_WISHBONE_B3 m_wb_bte_o <= 2'b00; m_wb_cti_o <= 3'b0; `endif end 8'bxx_00_10_00,// whatever and no master read or write is needed // (ack or err comes finishing previous access) 8'bxx_00_01_00 : // Between cyc_cleared request was cleared begin MasterWbTX <= 1'b0; MasterWbRX <= 1'b0; m_wb_cyc_o <= 1'b0; cyc_cleared<= 1'b0; IncrTxPointer<= 1'b0; rx_burst_cnt<= 0; m_wb_bte_o <= 2'b00; m_wb_cti_o <= 3'b0; end 8'b00_00_00_00: // whatever and no master read or write is // needed (ack or err comes finishing previous // access) begin tx_burst_cnt<= 0; `ifdef BURST_4BEAT // This caused tx_burst to remain set between // transmits, and sometimes we would burst immediately // and maybe get the wrong data because the offset of // the buffer pointer wasn't 16-byte aligned. //if (TxPointerMSB[3:2]==2'b00) // tx_burst_en<= `TX_BURST_EN_CONDITION; // Fix for transmit problems... maybe - jb if(TxEn & TxEn_q & TxPointerRead & (ram_do[3:0]===4'h0)) begin `ifdef TX_BURST_EN_VERBOSE $display("(%t)(%m): %b enabling tx_burst_en",$time, {MasterWbTX,MasterWbRX,ReadTxDataFromMemory_2, WriteRxDataToMemory,MasterAccessFinished, cyc_cleared,tx_burst,rx_burst}); `endif tx_burst_en<= `TX_BURST_EN_CONDITION; end else tx_burst_en<= 0; `endif end default: // Don't touch begin MasterWbTX <= MasterWbTX; MasterWbRX <= MasterWbRX; m_wb_cyc_o <= m_wb_cyc_o; m_wb_sel_o <= m_wb_sel_o; IncrTxPointer<= IncrTxPointer; end endcase end end wire TxFifoClear; assign TxFifoClear = (TxAbortPacket | TxRetryPacket | StartTxPointerRead); eth_fifo #( `ETH_TX_FIFO_DATA_WIDTH, `ETH_TX_FIFO_DEPTH, `ETH_TX_FIFO_CNT_WIDTH ) tx_fifo ( .data_in(m_wb_dat_i), .data_out(TxData_wb), .clk(WB_CLK_I), .reset(Reset), .write(MasterWbTX & m_wb_ack_i), .read(ReadTxDataFromFifo_wb & ~TxBufferEmpty), .clear(TxFifoClear), .full(TxBufferFull), .almost_full(TxBufferAlmostFull), .almost_empty(TxBufferAlmostEmpty), .empty(TxBufferEmpty), .cnt(txfifo_cnt) ); reg StartOccured; reg TxStartFrm_sync1; reg TxStartFrm_sync2; reg TxStartFrm_syncb1; reg TxStartFrm_syncb2; // Start: Generation of the TxStartFrm_wb which is then synchronized to the MTxClk always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxStartFrm_wb <= 1'b0; else if(TxBDReady & ~StartOccured & (TxBufferFull | TxLengthEq0)) TxStartFrm_wb <= 1'b1; else if(TxStartFrm_syncb2) TxStartFrm_wb <= 1'b0; end // StartOccured: TxStartFrm_wb occurs only ones at the beginning. Then it's // blocked. always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) StartOccured <= 1'b0; else if(TxStartFrm_wb) StartOccured <= 1'b1; else if(ResetTxBDReady) StartOccured <= 1'b0; end // Synchronizing TxStartFrm_wb to MTxClk always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxStartFrm_sync1 <= 1'b0; else TxStartFrm_sync1 <= TxStartFrm_wb; end always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxStartFrm_sync2 <= 1'b0; else TxStartFrm_sync2 <= TxStartFrm_sync1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxStartFrm_syncb1 <= 1'b0; else TxStartFrm_syncb1 <= TxStartFrm_sync2; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxStartFrm_syncb2 <= 1'b0; else TxStartFrm_syncb2 <= TxStartFrm_syncb1; end always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxStartFrm <= 1'b0; else if(TxStartFrm_sync2) TxStartFrm <= 1'b1; else if(TxUsedData_q | ~TxStartFrm_sync2 & (TxRetry & (~TxRetry_q) | TxAbort & (~TxAbort_q))) TxStartFrm <= 1'b0; end // End: Generation of the TxStartFrm_wb which is then synchronized to the // MTxClk // TxEndFrm_wb: indicator of the end of frame always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxEndFrm_wb <= 1'b0; else if(TxLengthEq0 & TxBufferAlmostEmpty & TxUsedData) TxEndFrm_wb <= 1'b1; else if(TxRetryPulse | TxDonePulse | TxAbortPulse) TxEndFrm_wb <= 1'b0; end // Marks which bytes are valid within the word. assign TxValidBytes = TxLengthLt4 ? TxLength[1:0] : 2'b0; reg LatchValidBytes; reg LatchValidBytes_q; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) LatchValidBytes <= 1'b0; else if(TxLengthLt4 & TxBDReady) LatchValidBytes <= 1'b1; else LatchValidBytes <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) LatchValidBytes_q <= 1'b0; else LatchValidBytes_q <= LatchValidBytes; end // Latching valid bytes always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxValidBytesLatched <= 2'h0; else if(LatchValidBytes & ~LatchValidBytes_q) TxValidBytesLatched <= TxValidBytes; else if(TxRetryPulse | TxDonePulse | TxAbortPulse) TxValidBytesLatched <= 2'h0; end assign TxIRQEn = TxStatus[14]; assign WrapTxStatusBit = TxStatus[13]; assign PerPacketPad = TxStatus[12]; assign PerPacketCrcEn = TxStatus[11]; assign RxIRQEn = RxStatus[14]; assign WrapRxStatusBit = RxStatus[13]; // Temporary Tx and Rx buffer descriptor address `ifdef TXBD_POLL assign TempTxBDAddress[7:1] = {7{ (TxStatusWrite|TxBDNotReady) & ~WrapTxStatusBit}} & (TxBDAddress + 1'b1) ; // Tx BD increment or wrap (last BD) -- jb `else assign TempTxBDAddress[7:1] = {7{ TxStatusWrite & ~WrapTxStatusBit}} & (TxBDAddress + 1'b1) ; // Tx BD increment or wrap (last BD) `endif assign TempRxBDAddress[7:1] = {7{ WrapRxStatusBit}} & (r_TxBDNum[6:0]) | // Using first Rx BD {7{~WrapRxStatusBit}} & (RxBDAddress + 1'b1) ; // Using next Rx BD (incremenrement address) // Latching Tx buffer descriptor address always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxBDAddress <= 7'h0; else if (r_TxEn & (~r_TxEn_q)) TxBDAddress <= 7'h0; `ifdef TXBD_POLL else if (TxStatusWrite | TxBDNotReady) // -- jb `else else if (TxStatusWrite) `endif TxBDAddress <= TempTxBDAddress; end // Latching Rx buffer descriptor address always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxBDAddress <= 7'h0; else if(r_RxEn & (~r_RxEn_q)) RxBDAddress <= r_TxBDNum[6:0]; else if(RxStatusWrite) RxBDAddress <= TempRxBDAddress; end wire [8:0] TxStatusInLatched = {TxUnderRun, RetryCntLatched[3:0], RetryLimit, LateCollLatched, DeferLatched, CarrierSenseLost}; assign RxBDDataIn = {LatchedRxLength, 1'b0, RxStatus, 4'h0, RxStatusInLatched}; assign TxBDDataIn = {LatchedTxLength, 1'b0, TxStatus, 2'h0, TxStatusInLatched}; // Signals used for various purposes assign TxRetryPulse = TxRetry_wb & ~TxRetry_wb_q; assign TxDonePulse = TxDone_wb & ~TxDone_wb_q; assign TxAbortPulse = TxAbort_wb & ~TxAbort_wb_q; // Generating delayed signals always @ (posedge MTxClk or posedge Reset) begin if(Reset) begin TxAbort_q <= 1'b0; TxRetry_q <= 1'b0; TxUsedData_q <= 1'b0; end else begin TxAbort_q <= TxAbort; TxRetry_q <= TxRetry; TxUsedData_q <= TxUsedData; end end // Generating delayed signals always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) begin TxDone_wb_q <= 1'b0; TxAbort_wb_q <= 1'b0; TxRetry_wb_q <= 1'b0; end else begin TxDone_wb_q <= TxDone_wb; TxAbort_wb_q <= TxAbort_wb; TxRetry_wb_q <= TxRetry_wb; end end reg TxAbortPacketBlocked; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxAbortPacket <= 1'b0; else if(TxAbort_wb & (~tx_burst_en) & MasterWbTX & MasterAccessFinished & (~TxAbortPacketBlocked) | TxAbort_wb & (~MasterWbTX) & (~TxAbortPacketBlocked)) TxAbortPacket <= 1'b1; else TxAbortPacket <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxAbortPacket_NotCleared <= 1'b0; else if(TxEn & TxEn_q & TxAbortPacket_NotCleared) TxAbortPacket_NotCleared <= 1'b0; else if(TxAbort_wb & (~tx_burst_en) & MasterWbTX & MasterAccessFinished & (~TxAbortPacketBlocked) | TxAbort_wb & (~MasterWbTX) & (~TxAbortPacketBlocked)) TxAbortPacket_NotCleared <= 1'b1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxAbortPacketBlocked <= 1'b0; else if(!TxAbort_wb & TxAbort_wb_q) TxAbortPacketBlocked <= 1'b0; else if(TxAbortPacket) TxAbortPacketBlocked <= 1'b1; end reg TxRetryPacketBlocked; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxRetryPacket <= 1'b0; else if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxRetryPacketBlocked | TxRetry_wb & !MasterWbTX & !TxRetryPacketBlocked) TxRetryPacket <= 1'b1; else TxRetryPacket <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxRetryPacket_NotCleared <= 1'b0; else if(StartTxBDRead) TxRetryPacket_NotCleared <= 1'b0; else if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxRetryPacketBlocked | TxRetry_wb & !MasterWbTX & !TxRetryPacketBlocked) TxRetryPacket_NotCleared <= 1'b1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxRetryPacketBlocked <= 1'b0; else if(!TxRetry_wb & TxRetry_wb_q) TxRetryPacketBlocked <= 1'b0; else if(TxRetryPacket) TxRetryPacketBlocked <= 1'b1; end reg TxDonePacketBlocked; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxDonePacket <= 1'b0; else if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & !TxDonePacketBlocked | TxDone_wb & !MasterWbTX & !TxDonePacketBlocked) TxDonePacket <= 1'b1; else TxDonePacket <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxDonePacket_NotCleared <= 1'b0; else if(TxEn & TxEn_q & TxDonePacket_NotCleared) TxDonePacket_NotCleared <= 1'b0; else if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished & (~TxDonePacketBlocked) | TxDone_wb & !MasterWbTX & (~TxDonePacketBlocked)) TxDonePacket_NotCleared <= 1'b1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxDonePacketBlocked <= 1'b0; else if(!TxDone_wb & TxDone_wb_q) TxDonePacketBlocked <= 1'b0; else if(TxDonePacket) TxDonePacketBlocked <= 1'b1; end // Indication of the last word always @ (posedge MTxClk or posedge Reset) begin if(Reset) LastWord <= 1'b0; else if((TxEndFrm | TxAbort | TxRetry) & Flop) LastWord <= 1'b0; else if(TxUsedData & Flop & TxByteCnt == 2'h3) LastWord <= TxEndFrm_wb; end // Tx end frame generation always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxEndFrm <= 1'b0; else if(Flop & TxEndFrm | TxAbort | TxRetry_q) TxEndFrm <= 1'b0; else if(Flop & LastWord) begin case (TxValidBytesLatched) // synopsys parallel_case 1 : TxEndFrm <= TxByteCnt == 2'h0; 2 : TxEndFrm <= TxByteCnt == 2'h1; 3 : TxEndFrm <= TxByteCnt == 2'h2; 0 : TxEndFrm <= TxByteCnt == 2'h3; default : TxEndFrm <= 1'b0; endcase end end // Tx data selection (latching) always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxData <= 0; else if(TxStartFrm_sync2 & ~TxStartFrm) case(TxPointerLSB) // synopsys parallel_case 2'h0 : TxData <= TxData_wb[31:24];// Big Endian Byte Ordering 2'h1 : TxData <= TxData_wb[23:16];// Big Endian Byte Ordering 2'h2 : TxData <= TxData_wb[15:08];// Big Endian Byte Ordering 2'h3 : TxData <= TxData_wb[07:00];// Big Endian Byte Ordering endcase else if(TxStartFrm & TxUsedData & TxPointerLSB==2'h3) TxData <= TxData_wb[31:24];// Big Endian Byte Ordering else if(TxUsedData & Flop) begin case(TxByteCnt) // synopsys parallel_case // Big Endian Byte Ordering 0 : TxData <= TxDataLatched[31:24]; 1 : TxData <= TxDataLatched[23:16]; 2 : TxData <= TxDataLatched[15:8]; 3 : TxData <= TxDataLatched[7:0]; endcase end end // Latching tx data always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxDataLatched[31:0] <= 32'h0; else if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0) TxDataLatched[31:0] <= TxData_wb[31:0]; end // Tx under run always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxUnderRun_wb <= 1'b0; else if(TxAbortPulse) TxUnderRun_wb <= 1'b0; else if(TxBufferEmpty & ReadTxDataFromFifo_wb) TxUnderRun_wb <= 1'b1; end reg TxUnderRun_sync1; // Tx under run always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxUnderRun_sync1 <= 1'b0; else if(TxUnderRun_wb) TxUnderRun_sync1 <= 1'b1; else if(BlockingTxStatusWrite_sync2) TxUnderRun_sync1 <= 1'b0; end // Tx under run always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxUnderRun <= 1'b0; else if(BlockingTxStatusWrite_sync2) TxUnderRun <= 1'b0; else if(TxUnderRun_sync1) TxUnderRun <= 1'b1; end // Tx Byte counter always @ (posedge MTxClk or posedge Reset) begin if(Reset) TxByteCnt <= 2'h0; else if(TxAbort_q | TxRetry_q) TxByteCnt <= 2'h0; else if(TxStartFrm & ~TxUsedData) case(TxPointerLSB) // synopsys parallel_case 2'h0 : TxByteCnt <= 2'h1; 2'h1 : TxByteCnt <= 2'h2; 2'h2 : TxByteCnt <= 2'h3; 2'h3 : TxByteCnt <= 2'h0; endcase else if(TxUsedData & Flop) TxByteCnt <= TxByteCnt + 1'b1; end // Start: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I reg ReadTxDataFromFifo_sync1; reg ReadTxDataFromFifo_sync2; reg ReadTxDataFromFifo_sync3; reg ReadTxDataFromFifo_syncb1; reg ReadTxDataFromFifo_syncb2; reg ReadTxDataFromFifo_syncb3; always @ (posedge MTxClk or posedge Reset) begin if(Reset) ReadTxDataFromFifo_tck <= 1'b0; else if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 & ~LastWord | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0) ReadTxDataFromFifo_tck <= 1'b1; else if(ReadTxDataFromFifo_syncb2 & ~ReadTxDataFromFifo_syncb3) ReadTxDataFromFifo_tck <= 1'b0; end // Synchronizing TxStartFrm_wb to MTxClk always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ReadTxDataFromFifo_sync1 <= 1'b0; else ReadTxDataFromFifo_sync1 <= ReadTxDataFromFifo_tck; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ReadTxDataFromFifo_sync2 <= 1'b0; else ReadTxDataFromFifo_sync2 <= ReadTxDataFromFifo_sync1; end always @ (posedge MTxClk or posedge Reset) begin if(Reset) ReadTxDataFromFifo_syncb1 <= 1'b0; else ReadTxDataFromFifo_syncb1 <= ReadTxDataFromFifo_sync2; end always @ (posedge MTxClk or posedge Reset) begin if(Reset) ReadTxDataFromFifo_syncb2 <= 1'b0; else ReadTxDataFromFifo_syncb2 <= ReadTxDataFromFifo_syncb1; end always @ (posedge MTxClk or posedge Reset) begin if(Reset) ReadTxDataFromFifo_syncb3 <= 1'b0; else ReadTxDataFromFifo_syncb3 <= ReadTxDataFromFifo_syncb2; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ReadTxDataFromFifo_sync3 <= 1'b0; else ReadTxDataFromFifo_sync3 <= ReadTxDataFromFifo_sync2; end assign ReadTxDataFromFifo_wb = ReadTxDataFromFifo_sync2 & ~ReadTxDataFromFifo_sync3; // End: Generation of the ReadTxDataFromFifo_tck signal and synchronization // to the WB_CLK_I // Synchronizing TxRetry signal (synchronized to WISHBONE clock) always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxRetrySync1 <= 1'b0; else TxRetrySync1 <= TxRetry; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxRetry_wb <= 1'b0; else TxRetry_wb <= TxRetrySync1; end // Synchronized TxDone_wb signal (synchronized to WISHBONE clock) always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxDoneSync1 <= 1'b0; else TxDoneSync1 <= TxDone; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxDone_wb <= 1'b0; else TxDone_wb <= TxDoneSync1; end // Synchronizing TxAbort signal (synchronized to WISHBONE clock) always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxAbortSync1 <= 1'b0; else TxAbortSync1 <= TxAbort; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxAbort_wb <= 1'b0; else TxAbort_wb <= TxAbortSync1; end reg RxAbortSync1; reg RxAbortSync2; reg RxAbortSync3; reg RxAbortSync4; reg RxAbortSyncb1; reg RxAbortSyncb2; assign StartRxBDRead = RxStatusWrite | RxAbortSync3 & ~RxAbortSync4 | r_RxEn & ~r_RxEn_q; // Reading the Rx buffer descriptor always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxBDRead <= 1'b0; else if(StartRxBDRead) RxBDRead <= 1'b1; else if(RxBDReady) RxBDRead <= 1'b0; end // Reading of the next receive buffer descriptor starts after reception // status is written to the previous one. // Latching READY status of the Rx buffer descriptor always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxBDReady <= 1'b0; else if(RxPointerRead) RxBDReady <= 1'b0; else if(RxEn & RxEn_q & RxBDRead) // RxBDReady is sampled only once at the beginning RxBDReady <= ram_do[15]; end // always @ (posedge WB_CLK_I or posedge Reset) // Indicate we just read the RX buffer descriptor and that RxBDReady is // valid. reg rx_just_read_bd; always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_just_read_bd <= 0; else if (rx_just_read_bd) rx_just_read_bd <= 0; else rx_just_read_bd <= (RxEn & RxEn_q & RxBDRead); // Signal to indicate we've checked and the RxBD we want to use is not free reg rx_waiting_for_bd_to_become_free; always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_waiting_for_bd_to_become_free <= 0; else if (rx_just_read_bd & !RxBDReady) // Assert if we read the BD and it's not cool rx_waiting_for_bd_to_become_free <= 1; else if (RxBDOK) rx_waiting_for_bd_to_become_free <= 0; // Latching Rx buffer descriptor status // Data is avaliable one cycle after the access is started (at that time // signal RxEn is not active) always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxStatus <= 2'h0; else if(RxEn & RxEn_q & RxBDRead) RxStatus <= ram_do[14:13]; end // RxBDOK generation always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxBDOK <= 1'b0; else if(rx_wb_writeback_finished | RxAbortSync2 & ~RxAbortSync3 | ~r_RxEn & r_RxEn_q) RxBDOK <= 1'b0; else if(RxBDReady) RxBDOK <= 1'b1; end // Reading Rx BD pointer assign StartRxPointerRead = RxBDRead & RxBDReady; // Reading Tx BD Pointer always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxPointerRead <= 1'b0; else if(StartRxPointerRead) RxPointerRead <= 1'b1; else if(RxEn & RxEn_q) RxPointerRead <= 1'b0; end //Latching Rx buffer pointer from buffer descriptor; always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxPointerMSB <= 30'h0; else if(RxEn & RxEn_q & RxPointerRead) RxPointerMSB <= ram_do[31:2]; else if(MasterWbRX & m_wb_ack_i) // Word access (always word access. m_wb_sel_o are used for // selecting bytes) RxPointerMSB <= RxPointerMSB + 1'b1; end //Latching last addresses from buffer descriptor (used as byte-half-word // indicator); always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxPointerLSB_rst[1:0] <= 0; else if(MasterWbRX & m_wb_ack_i) // After first write all RxByteSel are active RxPointerLSB_rst[1:0] <= 0; else if(RxEn & RxEn_q & RxPointerRead) RxPointerLSB_rst[1:0] <= ram_do[1:0]; end always @ (RxPointerLSB_rst) begin case(RxPointerLSB_rst[1:0]) // synopsys parallel_case 2'h0 : RxByteSel[3:0] = 4'hf; 2'h1 : RxByteSel[3:0] = 4'h7; 2'h2 : RxByteSel[3:0] = 4'h3; 2'h3 : RxByteSel[3:0] = 4'h1; endcase end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxEn_needed <= 1'b0; else if(/*~RxReady &*/ r_RxEn & WbEn & ~WbEn_q) RxEn_needed <= 1'b1; else if(RxPointerRead & RxEn & RxEn_q) RxEn_needed <= 1'b0; end // Reception status is written back to the buffer descriptor after the end // of frame is detected. assign RxStatusWrite = rx_wb_writeback_finished & RxEn & RxEn_q; reg RxEnableWindow; // Indicating that last byte is being reveived always @ (posedge MRxClk or posedge Reset) begin if(Reset) LastByteIn <= 1'b0; else if(ShiftWillEnd & (&RxByteCnt) | RxAbort) LastByteIn <= 1'b0; else if(RxValid /*& RxReady*/& RxEndFrm & ~(&RxByteCnt) & RxEnableWindow) LastByteIn <= 1'b1; end assign StartShiftWillEnd = LastByteIn | RxValid & RxEndFrm & (&RxByteCnt) & RxEnableWindow; // Indicating that data reception will end always @ (posedge MRxClk or posedge Reset) begin if(Reset) ShiftWillEnd <= 1'b0; else if(ShiftEnded_rck | RxAbort) ShiftWillEnd <= 1'b0; else if(StartShiftWillEnd) ShiftWillEnd <= 1'b1; end // Receive byte counter always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxByteCnt <= 2'h0; else if(ShiftEnded_rck | RxAbort) RxByteCnt <= 2'h0; else if(RxValid & RxStartFrm /*& RxReady*/) case(RxPointerLSB_rst) // synopsys parallel_case 2'h0 : RxByteCnt <= 2'h1; 2'h1 : RxByteCnt <= 2'h2; 2'h2 : RxByteCnt <= 2'h3; 2'h3 : RxByteCnt <= 2'h0; endcase else if(RxValid & RxEnableWindow /*& RxReady*/ | LastByteIn) RxByteCnt <= RxByteCnt + 1'b1; end // Indicates how many bytes are valid within the last word always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxValidBytes <= 2'h1; else if(RxValid & RxStartFrm) case(RxPointerLSB_rst) // synopsys parallel_case 2'h0 : RxValidBytes <= 2'h1; 2'h1 : RxValidBytes <= 2'h2; 2'h2 : RxValidBytes <= 2'h3; 2'h3 : RxValidBytes <= 2'h0; endcase else if(RxValid & ~LastByteIn & ~RxStartFrm & RxEnableWindow) RxValidBytes <= RxValidBytes + 1'b1; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxDataLatched1 <= 24'h0; else if(RxValid /*& RxReady*/ & ~LastByteIn) if(RxStartFrm) begin case(RxPointerLSB_rst) // synopsys parallel_case // Big Endian Byte Ordering 2'h0: RxDataLatched1[31:24] <= RxData; 2'h1: RxDataLatched1[23:16] <= RxData; 2'h2: RxDataLatched1[15:8] <= RxData; 2'h3: RxDataLatched1 <= RxDataLatched1; endcase end else if (RxEnableWindow) begin case(RxByteCnt) // synopsys parallel_case // Big Endian Byte Ordering 2'h0: RxDataLatched1[31:24] <= RxData; 2'h1: RxDataLatched1[23:16] <= RxData; 2'h2: RxDataLatched1[15:8] <= RxData; 2'h3: RxDataLatched1 <= RxDataLatched1; endcase end end wire SetWriteRxDataToFifo; // Assembling data that will be written to the rx_fifo always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxDataLatched2 <= 32'h0; else if(SetWriteRxDataToFifo & ~ShiftWillEnd) // Big Endian Byte Ordering RxDataLatched2 <= {RxDataLatched1[31:8], RxData}; else if(SetWriteRxDataToFifo & ShiftWillEnd) case(RxValidBytes) // synopsys parallel_case // Big Endian Byte Ordering 0 : RxDataLatched2 <= {RxDataLatched1[31:8], RxData}; 1 : RxDataLatched2 <= {RxDataLatched1[31:24], 24'h0}; 2 : RxDataLatched2 <= {RxDataLatched1[31:16], 16'h0}; 3 : RxDataLatched2 <= {RxDataLatched1[31:8], 8'h0}; endcase end reg WriteRxDataToFifoSync1; reg WriteRxDataToFifoSync2; reg WriteRxDataToFifoSync3; // Indicating start of the reception process assign SetWriteRxDataToFifo = (RxValid &/* RxReady &*/ ~RxStartFrm & RxEnableWindow & (&RxByteCnt)) | (RxValid &/* RxReady &*/ RxStartFrm & (&RxPointerLSB_rst)) | (ShiftWillEnd & LastByteIn & (&RxByteCnt)); always @ (posedge MRxClk or posedge Reset) begin if(Reset) WriteRxDataToFifo <= 1'b0; else if(SetWriteRxDataToFifo & ~RxAbort) WriteRxDataToFifo <= 1'b1; else if(WriteRxDataToFifoSync2 | RxAbort) WriteRxDataToFifo <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) WriteRxDataToFifoSync1 <= 1'b0; else if(WriteRxDataToFifo) WriteRxDataToFifoSync1 <= 1'b1; else WriteRxDataToFifoSync1 <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) WriteRxDataToFifoSync2 <= 1'b0; else WriteRxDataToFifoSync2 <= WriteRxDataToFifoSync1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) WriteRxDataToFifoSync3 <= 1'b0; else WriteRxDataToFifoSync3 <= WriteRxDataToFifoSync2; end wire WriteRxDataToFifo_wb; assign WriteRxDataToFifo_wb = WriteRxDataToFifoSync2 & ~WriteRxDataToFifoSync3; // Receive fifo selection register - JB reg [3:0] rx_shift_ended_wb_shr; reg rx_ethside_fifo_sel; reg rx_wbside_fifo_sel; // Shift in this - our detection of end of data RX always @(posedge WB_CLK_I) rx_shift_ended_wb_shr <= {rx_shift_ended_wb_shr[2:0], ShiftEndedSync1 & ~ShiftEndedSync2}; always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_ethside_fifo_sel <= 0; else if(rx_shift_ended_wb_shr[3:2] == 2'b01) // Switch over whenever we've finished receiving last frame's data rx_ethside_fifo_sel <= ~rx_ethside_fifo_sel; // Wishbone side looks at other FIFO when we write back the status of this // received frame always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_wbside_fifo_sel <= 0; else if(rx_wb_writeback_finished & RxEn & RxEn_q) // Switch over whenever we've finished receiving last frame's data rx_wbside_fifo_sel <= ~rx_wbside_fifo_sel; reg LatchedRxStartFrm; reg SyncRxStartFrm; reg SyncRxStartFrm_q; reg SyncRxStartFrm_q2; wire RxFifoReset; always @ (posedge MRxClk or posedge Reset) begin if(Reset) LatchedRxStartFrm <= 0; else if(RxStartFrm & ~SyncRxStartFrm_q) LatchedRxStartFrm <= 1; else if(SyncRxStartFrm_q) LatchedRxStartFrm <= 0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) SyncRxStartFrm <= 0; else if(LatchedRxStartFrm) SyncRxStartFrm <= 1; else SyncRxStartFrm <= 0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) SyncRxStartFrm_q <= 0; else SyncRxStartFrm_q <= SyncRxStartFrm; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) SyncRxStartFrm_q2 <= 0; else SyncRxStartFrm_q2 <= SyncRxStartFrm_q; end wire rx_startfrm_wb; assign rx_startfrm_wb = SyncRxStartFrm_q & ~SyncRxStartFrm_q2; assign RxFifoReset = rx_startfrm_wb; wire [31:0] rx_fifo0_data_out; wire rx_fifo0_write; wire rx_fifo0_read; wire rx_fifo0_clear; wire rx_fifo0_full; wire rx_fifo0_afull; wire rx_fifo0_empty; wire rx_fifo0_aempty; wire [31:0] rx_fifo1_data_out; wire rx_fifo1_write; wire rx_fifo1_read; wire rx_fifo1_clear; wire rx_fifo1_full; wire rx_fifo1_afull; wire rx_fifo1_empty; wire rx_fifo1_aempty; wire [`ETH_RX_FIFO_CNT_WIDTH-1:0] rx_fifo0_cnt; wire [`ETH_RX_FIFO_CNT_WIDTH-1:0] rx_fifo1_cnt; // RX FIFO buffer 0 controls assign rx_fifo0_write = (!rx_ethside_fifo_sel) & WriteRxDataToFifo_wb & ~rx_fifo0_full; assign rx_fifo0_read = (!rx_wbside_fifo_sel) & MasterWbRX & m_wb_ack_i & ~rx_fifo0_empty; assign rx_fifo0_clear = (!rx_ethside_fifo_sel) & RxFifoReset; // RX FIFO buffer 1 controls assign rx_fifo1_write = (rx_ethside_fifo_sel) & WriteRxDataToFifo_wb & ~rx_fifo1_full; assign rx_fifo1_read = (rx_wbside_fifo_sel) & MasterWbRX & m_wb_ack_i & ~rx_fifo1_empty; assign rx_fifo1_clear = (rx_ethside_fifo_sel) & RxFifoReset; eth_fifo #( `ETH_RX_FIFO_DATA_WIDTH, `ETH_RX_FIFO_DEPTH, `ETH_RX_FIFO_CNT_WIDTH ) rx_fifo0 ( .clk (WB_CLK_I ), .reset (Reset ), // Inputs .data_in (RxDataLatched2 ), .write (rx_fifo0_write ), .read (rx_fifo0_read ), .clear (rx_fifo0_clear ), // Outputs .data_out (rx_fifo0_data_out), .full (rx_fifo0_full ), .almost_full (), .almost_empty (rx_fifo0_aempty ), .empty (rx_fifo0_empty ), .cnt (rx_fifo0_cnt ) ); eth_fifo #( `ETH_RX_FIFO_DATA_WIDTH, `ETH_RX_FIFO_DEPTH, `ETH_RX_FIFO_CNT_WIDTH ) rx_fifo1 ( .clk (WB_CLK_I ), .reset (Reset ), // Inputs .data_in (RxDataLatched2 ), .write (rx_fifo1_write ), .read (rx_fifo1_read ), .clear (rx_fifo1_clear ), // Outputs .data_out (rx_fifo1_data_out), .full (rx_fifo1_full ), .almost_full (), .almost_empty (rx_fifo1_aempty ), .empty (rx_fifo1_empty ), .cnt (rx_fifo1_cnt ) ); assign m_wb_dat_o = rx_wbside_fifo_sel ? rx_fifo1_data_out : rx_fifo0_data_out; assign rxfifo_cnt = rx_wbside_fifo_sel ? rx_fifo1_cnt : rx_fifo0_cnt; assign RxBufferAlmostEmpty = rx_wbside_fifo_sel ? rx_fifo1_aempty : rx_fifo0_aempty; assign RxBufferEmpty = rx_wbside_fifo_sel ? rx_fifo1_empty : rx_fifo0_empty; assign RxBufferFull = rx_wbside_fifo_sel ? rx_fifo1_full : rx_fifo0_full; wire write_rx_data_to_memory_wait; assign write_rx_data_to_memory_wait = !RxBDOK | RxPointerRead; wire write_rx_data_to_memory_go; `ifdef ETH_RX_BURST_EN assign enough_data_in_rxfifo_for_burst = rxfifo_cnt>=(`ETH_BURST_LENGTH); assign enough_data_in_rxfifo_for_burst_plus1 = rxfifo_cnt>(`ETH_BURST_LENGTH - 1); // While receiving, don't flog the bus too hard, only write out when // we can burst. But when finishing keep going until we've emptied the fifo assign write_rx_data_to_memory_go = RxEnableWindow & (rx_wbside_fifo_sel == rx_ethside_fifo_sel) ? (rxfifo_cnt>(`ETH_BURST_LENGTH)+2) | (|rx_burst_cnt) : ~RxBufferEmpty; `else assign enough_data_in_rxfifo_for_burst = rxfifo_cnt>=`ETH_BURST_LENGTH; assign enough_data_in_rxfifo_for_burst_plus1 = rxfifo_cnt>`ETH_BURST_LENGTH; assign write_rx_data_to_memory_go = ~RxBufferEmpty; `endif // !`ifdef ETH_RX_BURST_EN assign WriteRxDataToMemory = write_rx_data_to_memory_go & !write_rx_data_to_memory_wait; assign rx_burst = rx_burst_en & WriteRxDataToMemory; // Generation of the end-of-frame signal always @ (posedge MRxClk or posedge Reset) begin if(Reset) ShiftEnded_rck <= 1'b0; else if(~RxAbort & SetWriteRxDataToFifo & StartShiftWillEnd) ShiftEnded_rck <= 1'b1; else if(RxAbort | ShiftEndedSync_c1 & ShiftEndedSync_c2) ShiftEnded_rck <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ShiftEndedSync1 <= 1'b0; else ShiftEndedSync1 <= ShiftEnded_rck; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) ShiftEndedSync2 <= 1'b0; else ShiftEndedSync2 <= ShiftEndedSync1; end // indicate end of wishbone RX is coming up always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_wb_last_writes <= 1'b0; else if (!rx_wb_last_writes) rx_wb_last_writes <= ShiftEndedSync1 & ~ShiftEndedSync2; else if (rx_wb_writeback_finished & RxEn & RxEn_q) rx_wb_last_writes <= 0; // Pulse indicating last of RX data has been written out always @ (posedge WB_CLK_I or posedge Reset) if(Reset) rx_wb_writeback_finished <= 0; else if (rx_wb_writeback_finished & RxEn & RxEn_q) rx_wb_writeback_finished <= 0; else rx_wb_writeback_finished <= rx_wb_last_writes & RxBufferEmpty & !WriteRxDataToFifo_wb; always @ (posedge MRxClk or posedge Reset) begin if(Reset) ShiftEndedSync_c1 <= 1'b0; else ShiftEndedSync_c1 <= ShiftEndedSync2; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) ShiftEndedSync_c2 <= 1'b0; else ShiftEndedSync_c2 <= ShiftEndedSync_c1; end // Generation of the end-of-frame signal always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxEnableWindow <= 1'b0; else if(RxStartFrm) RxEnableWindow <= 1'b1; else if(RxEndFrm | RxAbort) RxEnableWindow <= 1'b0; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxAbortSync1 <= 1'b0; else RxAbortSync1 <= RxAbortLatched; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxAbortSync2 <= 1'b0; else RxAbortSync2 <= RxAbortSync1; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxAbortSync3 <= 1'b0; else RxAbortSync3 <= RxAbortSync2; end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxAbortSync4 <= 1'b0; else RxAbortSync4 <= RxAbortSync3; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxAbortSyncb1 <= 1'b0; else RxAbortSyncb1 <= RxAbortSync2; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxAbortSyncb2 <= 1'b0; else RxAbortSyncb2 <= RxAbortSyncb1; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxAbortLatched <= 1'b0; else if(RxAbortSyncb2) RxAbortLatched <= 1'b0; else if(RxAbort) RxAbortLatched <= 1'b1; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) LatchedRxLength[15:0] <= 16'h0; else if(LoadRxStatus) LatchedRxLength[15:0] <= RxLength[15:0]; end assign RxStatusIn = {ReceivedPauseFrm, AddressMiss, RxOverrun, InvalidSymbol, DribbleNibble, ReceivedPacketTooBig, ShortFrame, LatchedCrcError, RxLateCollision}; always @ (posedge MRxClk or posedge Reset) begin if(Reset) RxStatusInLatched <= 'h0; else if(LoadRxStatus) RxStatusInLatched <= RxStatusIn; end // Rx overrun always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxOverrun <= 1'b0; else if(RxStatusWrite) RxOverrun <= 1'b0; else if(RxBufferFull & WriteRxDataToFifo_wb) RxOverrun <= 1'b1; end wire TxError; assign TxError = TxUnderRun | RetryLimit | LateCollLatched | CarrierSenseLost; wire RxError; // ShortFrame (RxStatusInLatched[2]) can not set an error because short // frames are aborted when signal r_RecSmall is set to 0 in MODER register. // AddressMiss is identifying that a frame was received because of the // promiscous mode and is not an error assign RxError = (|RxStatusInLatched[6:3]) | (|RxStatusInLatched[1:0]); reg RxStatusWriteLatched; reg RxStatusWriteLatched_sync1; reg RxStatusWriteLatched_sync2; reg RxStatusWriteLatched_syncb1; reg RxStatusWriteLatched_syncb2; // Latching and synchronizing RxStatusWrite signal. This signal is used for // clearing the ReceivedPauseFrm signal always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxStatusWriteLatched <= 1'b0; else if(RxStatusWriteLatched_syncb2) RxStatusWriteLatched <= 1'b0; else if(RxStatusWrite) RxStatusWriteLatched <= 1'b1; end always @ (posedge MRxClk or posedge Reset) begin if(Reset) begin RxStatusWriteLatched_sync1 <= 1'b0; RxStatusWriteLatched_sync2 <= 1'b0; end else begin RxStatusWriteLatched_sync1 <= RxStatusWriteLatched; RxStatusWriteLatched_sync2 <= RxStatusWriteLatched_sync1; end end always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) begin RxStatusWriteLatched_syncb1 <= 1'b0; RxStatusWriteLatched_syncb2 <= 1'b0; end else begin RxStatusWriteLatched_syncb1 <= RxStatusWriteLatched_sync2; RxStatusWriteLatched_syncb2 <= RxStatusWriteLatched_syncb1; end end // Tx Done Interrupt always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxB_IRQ <= 1'b0; else if(TxStatusWrite & TxIRQEn) TxB_IRQ <= ~TxError; else TxB_IRQ <= 1'b0; end // Tx Error Interrupt always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) TxE_IRQ <= 1'b0; else if(TxStatusWrite & TxIRQEn) TxE_IRQ <= TxError; else TxE_IRQ <= 1'b0; end // Rx Done Interrupt always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxB_IRQ <= 1'b0; else if(RxStatusWrite & RxIRQEn & ReceivedPacketGood & (~ReceivedPauseFrm | ReceivedPauseFrm & r_PassAll & (~r_RxFlow))) RxB_IRQ <= (~RxError); else RxB_IRQ <= 1'b0; end // Rx Error Interrupt always @ (posedge WB_CLK_I or posedge Reset) begin if(Reset) RxE_IRQ <= 1'b0; else if(RxStatusWrite & RxIRQEn & (~ReceivedPauseFrm | ReceivedPauseFrm & r_PassAll & (~r_RxFlow))) RxE_IRQ <= RxError; else RxE_IRQ <= 1'b0; end // Set this high when we started receiving another packet while the wishbone // side was still writing out the last one. This makes sure we check at the // right time if the next buffer descriptor is free. reg rxstartfrm_occurred; always @ (posedge WB_CLK_I) if (Reset) rxstartfrm_occurred <= 0; else if (rx_just_read_bd) rxstartfrm_occurred <= 0; else if (((rx_ethside_fifo_sel != rx_wbside_fifo_sel) | StartRxBDRead | RxBDRead) & rx_startfrm_wb) rxstartfrm_occurred <= 1; reg busy_wb; always @ (posedge WB_CLK_I or posedge Reset) if(Reset) busy_wb <= 0; else if (busy_wb) busy_wb <= 0; else if // Indicate busy if either: // a) RX is idle and we get a start frame and current BD indicates not // ready. // b) RX is already receiving another packet and we got a startframe, // indicated by rx_startfrm_occurred, and we then read the BD and // it says it's not ready. // This actually may not work since it's in the MII RX clock domain. ((rx_ethside_fifo_sel == rx_wbside_fifo_sel) & ((rxstartfrm_occurred & rx_just_read_bd & ~RxBDReady) | (!rxstartfrm_occurred & !StartRxBDRead & !RxBDRead & rx_startfrm_wb & rx_waiting_for_bd_to_become_free)) ) busy_wb <= 1; assign Busy_IRQ = busy_wb; always @(posedge Busy_IRQ) $display("(%t)(%m) Ethernet MAC BUSY signal asserted", $time); // Assign the debug output `ifdef WISHBONE_DEBUG // Top byte, burst progress counters assign dbg_dat0[31] = 0; assign dbg_dat0[30] = 0; assign dbg_dat0[29:28] = rx_burst_cnt; assign dbg_dat0[27] = 0; assign dbg_dat0[26] = 0; assign dbg_dat0[25:24] = tx_burst_cnt; // Third byte assign dbg_dat0[23] = 0; assign dbg_dat0[22] = 0; assign dbg_dat0[21] = rx_burst; assign dbg_dat0[20] = rx_burst_en; assign dbg_dat0[19] = 0; assign dbg_dat0[18] = 0; assign dbg_dat0[17] = tx_burst; assign dbg_dat0[16] = tx_burst_en; // Second byte - TxBDAddress - or TX BD address pointer assign dbg_dat0[15:8] = { 1'b0, TxBDAddress}; // Bottom byte - FSM controlling vector assign dbg_dat0[7:0] = {MasterWbTX,MasterWbRX, ReadTxDataFromMemory_2,WriteRxDataToMemory, MasterAccessFinished,cyc_cleared, tx_burst,rx_burst}; `endif endmodule
Go to most recent revision | Compare with Previous | Blame | View Log