URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [orpsocv2/] [sim/] [bin/] [Makefile] - Rev 66
Go to most recent revision | Compare with Previous | Blame | View Log
########################################################################## ######## ORPSoCv2 Testbenches Makefile ######## ######## Description ######## ORPSoCv2 Testbenches Makefile, containing rules for ######## configuring and running different tests on the current ######## ORPSoC(v2) design. ######## ######## To do: ######## * Test if each software test file gets made properly ######## before it's run in whatever model we're using ######## * Expand software test-suite (uClibc, ecos tests, LTP?) ######## ######## Author(s): ######## - jb, jb@orsoc.se ######## ######## ############################################################################## ######## Copyright (C) 2009 Authors and OPENCORES.ORG ######## ######## This source file may be used and distributed without ######## restriction provided that this copyright statement is not ######## removed from the file and that any derivative work contains ######## the original copyright notice and the associated disclaimer. ######## ######## This source file is free software; you can redistribute it ######## and/or modify it under the terms of the GNU Lesser General ######## Public License as published by the Free Software Foundation; ######## either version 2.1 of the License, or (at your option) any ######## later version. ######## ######## This source is distributed in the hope that it will be ######## useful, but WITHOUT ANY WARRANTY; without even the implied ######## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ######## PURPOSE. See the GNU Lesser General Public License for more ######## details. ######## ######## You should have received a copy of the GNU Lesser General ######## Public License along with this source; if not, download it ######## from http://www.opencores.org/lgpl.shtml ######## ########################################################################### Usage:## make rtl-tests## Run the software tests in the RTL model of the ORPSoC being# simulated with an event-driven simulator like Icarus. It's also# possible to use Modelsim's vsim and Cadence's Verilog simulators.## make vlt-tests## Run all the software tests in the RTL model which has been# converted into a cycle-accurate SystemC model with Verilator.## make sim-tests## Run all the software tests in the architectural simulator### Debugging modes:## make rtl-debug## Enable a GDB stub integrated into the simulation via VPI. This will# start a simulation, then the GDB server, and allow the user to connect# using the OpenRISC GDB port. It should provide the same functionality# as GDB to a physical target, although a little slower.# It is provided here as an example of how to compile and run an OpenRISC# model at RTL level with support for debugging from GDB.# UART output from printf() is enabled by default. The model loads with# the dhrystone test running as default, but can be changed by defining# VPI_TEST_SW at the command line. Logging of the processor's execution# is also disabled by default to speed up simulation.## Simulation results:## The results and output of the event-driven simulations are in the# results path, in parallel to the simulation run and bin paths.# Specific tests:## To run an individual test, specify it in the variable TESTS when# calling make, eg:## make rtl-tests TESTS="mmu-nocache mul-idcd-O2"# UART printf:## It is possible to enable printf to the console via the UART when# running the event-driven simulators. To do this define UART_PRINTF=1# when calling make. The SystemC cycle-acccurate model uses this by# default.# Also note when switching between runs with and without UART printf# enabled, run a clean-sw so the library files are recompiled when# the tests are run - this is not done automatically.# VCDs:## VCD (value change dumps, usable in a waveform viewer, such as gtkwave# to inspect the internals of the system graphically) files can be# generated by defining a variable VCD, eg.## make rtl-tests VCD=1## and a dump file will be created in the simulation results directory,# and named according to the test run which generated it. This is# possible for both event-driven and cycle-accurate simulations.# However the cycle-accurate# NO_SIM_LOGGING:## It is possible to speed up the event-driven simulation slightly by# disabling log output of the processor's state to files by defining# NO_SIM_LOGGING, eg:## make rtl-tests TESTS=except-icdc NO_SIM_LOGGING=1## Cleaning:# A simple "make clean" cleans everything - software and all temporary# simulation files and directories. To clean just the software run:## make clean-sw## and to clean just the temporary simulation files (including VCDs,# results logs - everything under, and including, sim/results/, run## make clean-sim## Note:## The way each of the test loops is written is probably a bit overly complex# but this is to save maintaining, and calling, multiple files.## Model configuration:## Currently, the ORPSoCv2, by default, contains an internal SRAM (configurable# size - check the defparam in rtl/verilog/orpsoc_top.v), standard OR1200 (check# the config in rtl/verilog/or1200_defines.v) and UART.# Switches can be passed to enable certain parts of the design if testing with# these is desired.## SDRAM and controller## To enable the use of SDRAM, define USE_SDRAM when calling the sim -this# only has an effect in the event-driven simulators as the external SDRAM model# is not availble in SystemC format. eg:## make rtl-tests USE_SDRAM=1## This not only enables SDRAM but also enables the booting from external SPI# interfaced flash memory. This causes significant increase in the time taken# for simulation as the program to test is first loaded out of SPI flash memory# and into SDRAM before it is executed. Although this more closely mimics the# behaviour of the hardware, for simulation purposes it is purely time-consuming# however it may be useful to track down any problems with this boot-loading# process. Therefore, becuase it enables SDRAM memory, it also enables the flash# memory model and SPI controller inside ORPSoC.## Ethernet## Ethernet is disabled by default. This is due to the fact that it is not# supported in the verilator/systemC model. Also, there is currently no software# which tests it in any meaningful way.### Event-driven simulation compilation## The way the event-driven simulations are compiled is simply using the# configuration script file in this directory, currently called icarus.scr -# however it is first processesed to replace the variables, beginning with $'s,# with the appropriate paths. Instead of naming each file to be compiled, the# paths to be searched for each module are instead defined ( -y paths), and# only the toplevel testbench and library source files are explicitly named.# This simplifies the script, and also requires that the name of each verilog# source file is the same as the module it contains (a good convention# regardless.) In addition to the script/command file, defines are passed to# the compiler via the command line in the EVENT_SIM_FLAGS variable.# Additionally, a source file, test_define.v, is created with some defines# that cannot be passed to the compiled reliably (there are differences between# the way, for instance, icarus and ncverilog parse strings +define+'d on the# command line). This file is then included at the appropriate places.# It is probably not ideal that the entire design be re-compiled for each test,# but currently the design is small enough so that this doesn't cause a# significant overhead, unlike the cycle-accurate model compile time.### SystemC cycle-accurate model compilation## A new addition to ORPSoC v2 is the cycle-accurate model. The primary enabler# behind this is verilator, which processes the RTL source and generates a c++# description of the system. This c++ description is then compiled, with a# SystemC wrapper. Finally a top-level SystemC testbench instantiates the# model, and other useful modules - in this case a reset generation, UART# decoder, and monitor module are included at the top level. These additional# modules and models are written in SystemC. Finally, everything is linked with# the cycle-accurate ORPSoC model to create the simulation executable. This# executable is the cycle-representation of the system.## Run the resulting executable with the -h switch for usage.## The compilation is all done with the GNU c++ compiler, g++.## The compilation process is a little more complicated than the event-driven# simulator. It proceeds basically by generating the makefiles for compiling# the design with verilator, running these makes which produces a library# containing the cycle-accurate ORPSoC design, compiling the additional# top-level, and testbench, systemC models into a library, and then linking it# all together into the simulation executable.## The major advantage of the cycle-accurate model is that it is quicker, in# terms of simulated cycles/second, when compared with event-driven simulators.# It is, of course, less accurate in that it cannot model propegation delays.# However this is usually not an issue for simulating a design which is known# to synthesize and run OK. It is very useful for running complex software,# such as the linux kernel and real-time OS applications, which generally# result in long simulation times.## Currently the cycle-accurate model being used doesn't contain much more than# the processor and a UART, however it's exepected in future this will be# expanded on and more complex software test suites will be implemented to put# the system through its paces.#### Name of the directory we're currently inCUR_DIR=$(shell pwd)# The root path of the whole projectPROJECT_ROOT=$(CUR_DIR)/../..# Tests is only defined if it wasn't already defined when make was called# This is the default list of every test that is currently possibleTESTS ?= basic-nocache cbasic-nocache-O2 dhry-nocache-O2 except-nocache mmu-nocache mul-nocache-O2 syscall-nocache tick-nocache uart-nocache basic-icdc cbasic-icdc-O2 dhry-icdc-O2 except-icdc mmu-icdc mul-icdc-O2 syscall-icdc tick-icdc uart-icdc# Paths to other important parts of this test suiteSIM_DIR=$(PROJECT_ROOT)/simSIM_RUN_DIR=$(SIM_DIR)/runSIM_BIN_DIR=$(SIM_DIR)/binSIM_RESULTS_DIR=$(SIM_DIR)/resultsSIM_VLT_DIR=$(SIM_DIR)/vltBENCH_DIR=$(PROJECT_ROOT)/benchBACKEND_DIR=$(PROJECT_ROOT)/backendBENCH_VERILOG_DIR=$(BENCH_DIR)/verilogBENCH_SYSC_DIR=$(BENCH_DIR)/syscBENCH_SYSC_SRC_DIR=$(BENCH_SYSC_DIR)/srcBENCH_SYSC_INCLUDE_DIR=$(BENCH_SYSC_DIR)/includeRTL_VERILOG_DIR=$(PROJECT_ROOT)/rtl/verilogSW_DIR=$(PROJECT_ROOT)/swICARUS=iverilogICARUS_VVP=vvpVSIM_COMP=vlogVSIM=vsimNCVERILOG=ncverilogICARUS_COMMAND_FILE=icarus.scrVLT_COMMAND_FILE=verilator.scrSIM_SUCCESS_MESSAGE=deaddeadMGC_COMMAND_FILE=modelsim.scrARCH_SIM_EXE=or32-elf-simARCH_SIM_CFG_FILE=or1ksim-orpsocv2.cfg# Set V=1 when calling make to enable verbose output# mainly for debugging purposes.ifeq ($(V), 1)Q=elseQ=@endif# If USE_SDRAM is defined we'll add it to the simulator's defines on the# command line becuase it's used by many different modules and it's easier# to do it this way than make them all include a file.ifdef USE_SDRAMEVENT_SIM_FLAGS += "-D USE_SDRAM=$(USE_SDRAM)"endif# Enable ethernet if defined on the command lineifdef USE_ETHERNETEVENT_SIM_FLAGS += "-D USE_ETHERNET=$(USE_ETHERNET) -D USE_ETHERNET_IO=$(USE_ETHERNET)"# Extra tests we do if ethernet is enabledTESTS += eth-basic eth-intendif#Default simulator is Icarus Verilog# Set SIMULATOR=vsim to use Modelsim# Set SIMULATOR=ncverilog to use Cadence's NC-VerilogSIMULATOR ?= $(ICARUS)# Set the command file to use, simulator dependentifeq ($(SIMULATOR), $(ICARUS))# Icarus Verilog SimulatorSIM_COMMANDFILE=$(ICARUS_COMMAND_FILE)endififeq ($(SIMULATOR), $(VSIM))# Modelsim has own command file (it's a little more stupid than Icarus & NC)SIM_COMMANDFILE=$(MGC_COMMAND_FILE)endififeq ($(SIMULATOR), $(NCVERILOG))# NCVerilog uses same command file as IcarusSIM_COMMANDFILE=$(ICARUS_COMMAND_FILE)endifGENERATED_COMMANDFILE=$(SIM_COMMANDFILE).generated# When Modelsim is selected as simulator, we compile# the ORPSoC system into one library called orpsoc and# then simply re-compile the testbench and or1200_monitor# whenever we run the simulation, so just that part is# recompiled for every test, instead of the whole thing.MGC_ORPSOC_LIB=orpsocMGC_ORPSOC_LIB_DIR=$(SIM_RUN_DIR)/$(MGC_ORPSOC_LIB)# If VCD dump is desired, tell Modelsim not to optimise# away everything.ifeq ($(VCD), 1)VOPT_ARGS=-voptargs="+acc=rnp"endif# Simulation compile and run commands, depending on your# simulator.# Icarus Verilogifeq ($(SIMULATOR), $(ICARUS))# Icarus Verilog Simulator compile and run commandsSIM_COMMANDCOMPILE=rm -f $(SIM_RUN_DIR)/a.out; $(ICARUS) -sorpsoc_testbench -c $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE) $(EVENT_SIM_FLAGS)# Icarus Verilog run commandSIM_COMMANDRUN=$(ICARUS_VVP) -l $(SIM_RESULTS_DIR)/$$TEST-vvp-out.log a.outendif# Modelsimifeq ($(SIMULATOR), $(VSIM))# Line to compile the orpsoc design into a modelsim library.SIM_COMMANDCOMPILE=if [ ! -e work ]; then vlib work; vlib $(MGC_ORPSOC_LIB); vlog -work orpsoc -f $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); fi# Final modelsim compile, done each time, pulling in or1200# monitor and the new test_defines.v file:VSIM_COMPILE_TB=vlog +incdir+. +incdir+$(BENCH_VERILOG_DIR) +incdir+$(RTL_VERILOG_DIR) +define+TEST_DEFINE_FILE $(BENCH_VERILOG_DIR)/or1200_monitor.v $(BENCH_VERILOG_DIR)/orpsoc_testbench.v# Simulation run command:SIM_COMMANDRUN=$(VSIM_COMPILE_TB); $(VSIM) -c -quiet +nowarnTFMPC -L $(MGC_ORPSOC_LIB) $(VOPT_ARGS) -do "run -all; exit" orpsoc_testbenchendif# NCVerilogifeq ($(SIMULATOR), $(NCVERILOG))SIM_COMMANDCOMPILE=echoSIM_COMMANDRUN=$(NCVERILOG) -f $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE) -Q -l $(SIM_RESULTS_DIR)/$$TEST-$(NCVERILOG)-out.log $(EVENT_SIM_FLAGS)endif# Names of memory files used in simulationSIM_FLASH_MEM_FILE="flash.in"FLASH_MEM_FILE_SUFFIX="-twobyte-sizefirst.hex"SIM_SRAM_MEM_FILE="sram.vmem"TESTS_PASSED=0TESTS_PERFORMED=0;################################################################################# Event-driven simulator build rules################################################################################$(RTL_VERILOG_DIR)/components/wb_sdram_ctrl/wb_sdram_ctrl_fsm.v:@cd $(RTL_VERILOG_DIR)/components/wb_sdram_ctrl && perl fizzim.pl -encoding onehot -terse < wb_sdram_ctrl_fsm.fzm > wb_sdram_ctrl_fsm.v.PHONY: prepare-rtlprepare-rtl: $(RTL_VERILOG_DIR)/components/wb_sdram_ctrl/wb_sdram_ctrl_fsm.v$(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE): $(SIM_BIN_DIR)/$(SIM_COMMANDFILE)$(Q)sed < $(SIM_BIN_DIR)/$(SIM_COMMANDFILE) > $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE) \-e s!\$$BENCH_DIR!$(BENCH_VERILOG_DIR)! \-e s!\$$RTL_DIR!$(RTL_VERILOG_DIR)! \-e s!\$$BACKEND_DIR!$(BACKEND_DIR)! \-e \\!^//.*\$$!d -e \\!^\$$!d ; \echo "+define+TEST_DEFINE_FILE=\"test_define.v\"" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \if [ ! -z $$VCD ]; \then echo "+define+VCD" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \if [ $(SIMULATOR) = $(NCVERILOG) ]; \then echo "+access+r" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \fi; \fi; \if [ ! -z $$UART_PRINTF ]; \then echo "+define+UART_PRINTF" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \fi; \if [ $(SIMULATOR) = $(NCVERILOG) ]; \then echo "+nocopyright" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \echo "+nowarn+MACRDF" >> $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE); \fiifdef UART_PRINTFTEST_SW_MAKE_OPTS="UART_PRINTF=1"endif.PHONY: prepare-swprepare-sw:$(Q)$(MAKE) -C $(SW_DIR)/support all $(TEST_SW_MAKE_OPTS)$(Q)$(MAKE) -C $(SW_DIR)/utils all# A rule with UART_PRINTF hard defined ... used by verilator make swprepare-sw-uart-printf:$(Q)$(MAKE) -C $(SW_DIR)/support all UART_PRINTF=1 $(TEST_SW_MAKE_OPTS)$(Q)$(MAKE) -C $(SW_DIR)/utils allprepare-dirs:$(Q)if [ ! -d $(SIM_RESULTS_DIR) ]; then mkdir -p $(SIM_RESULTS_DIR); fi## Rough guide to how event driven simulation test loop works:## 1. Compile software support programs.# 2. Generate RTL compilation script file# 3. For each test listed in $(TESTS), loop and# a) Compile software# b) Create appropriate image to be loaded into sim# c) Create a verilog file to be included by top level# d) Compile the RTL design# e) Run the RTL design in the chosen simulator# f) Check the output (files in ../results)## Default setup is:# * Event-driven simulation with Icarus Verilog# * Internal SRAM memory, preloaded with application# * Ethernet disabled# * VCD generation disabled# * printf() via UART disabled# * Logging enabled## Options:# SIMULATOR=vsim# Use Mentor Graphics Modelsim simulator# SIMULATOR=ncverilog# Use Cadence's NC-Verilog# USE_SDRAM=1# Enable use of SDRAM - changes boot sequence and takes# a lot longer due to application being loaded out of# external FLASH memory and into SDRAM before execution# from the SDRAM.# VCD=1# Enable VCD generation. These files are output to# ../results# USE_ETHERNET=1# Turns on ethernet core inclusion. There are currently# some tests, but not included by default. Check the sw# directory# UART_PRINTF=1# Make the software use the UART core to print out# printf() calls.# NO_SIM_LOGGING=1# Turn off generation of logging files in the ../results# directory.#rtl-tests: $(SIM_RUN_DIR)/$(GENERATED_COMMANDFILE) prepare-sw prepare-rtl prepare-dirs@echo@echo "Beginning loop that will complete the following tests: $(TESTS)"@echo$(Q)for TEST in $(TESTS); do \echo "################################################################################"; \echo; \echo "\t#### Current test: $$TEST ####"; echo; \echo "\t#### Compiling software ####"; echo; \CURRENT_TEST_SW_DIR=$(SW_DIR)/`echo $$TEST | cut -d "-" -f 1`; \$(MAKE) -C $$CURRENT_TEST_SW_DIR $$TEST $(TEST_SW_MAKE_OPTS); \rm -f $(SIM_RUN_DIR)/$(SIM_FLASH_MEM_FILE); \rm -f $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$$TEST$(FLASH_MEM_FILE_SUFFIX) $(SIM_RUN_DIR)/$(SIM_FLASH_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$$TEST.vmem $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \echo "\`define TEST_NAME_STRING \"$$TEST\"" > $(SIM_RUN_DIR)/test_define.v; \echo "\`define TEST_RESULTS_DIR \"$(SIM_RESULTS_DIR)/\" " >> $(SIM_RUN_DIR)/test_define.v; \if [ ! -z $$VCD ]; \then echo "\`define VCD" >> $(SIM_RUN_DIR)/test_define.v; \fi; \if [ ! -z $$UART_PRINTF ]; \then echo "\`define UART_PRINTF" >> $(SIM_RUN_DIR)/test_define.v; \fi; \if echo $$TEST | grep -q -i ^eth; then \echo "\`define ENABLE_ETH_STIM" >> $(SIM_RUN_DIR)/test_define.v; \echo "\`define ETH_PHY_VERBOSE" >> $(SIM_RUN_DIR)/test_define.v; \fi; \if [ -z $$NO_SIM_LOGGING ]; then \echo "\`define OR1200_DISPLAY_ARCH_STATE" >> $(SIM_RUN_DIR)/test_define.v; \fi; \echo ; \echo "\t#### Compiling RTL ####"; \$(SIM_COMMANDCOMPILE); \echo; \echo "\t#### Beginning simulation ####"; \time -p $(SIM_COMMANDRUN) ; \if [ $$? -gt 0 ]; then exit $$?; fi; \TEST_RESULT=`cat $(SIM_RESULTS_DIR)/$$TEST-general.log | grep report | grep $(SIM_SUCCESS_MESSAGE) -c`; \echo; echo "\t####"; \if [ $$TEST_RESULT -gt 0 ]; then \echo "\t#### Test $$TEST PASSED ####";TESTS_PASSED=`expr $$TESTS_PASSED + 1`;\else echo "\t#### Test $$TEST FAILED ####";\fi; \echo "\t####"; echo; \TESTS_PERFORMED=`expr $$TESTS_PERFORMED + 1`;\done; \echo "Test results: "$$TESTS_PASSED" out of "$$TESTS_PERFORMED" tests passed"; echo################################################################################# RTL simulation in Icarus with GDB stub via VPI for debugging################################################################################# This compiles a version of the system which starts up the dhrystone nocache# test, and launches the simulator with a VPI module that provides a GDB stub# allowing the OpenRISC compatible GDB to connect and debug the system.# The launched test can be changed by defining VPI_TEST_SW on the make lineVPI_DIR=$(BENCH_VERILOG_DIR)/vpiVPI_C_DIR=$(VPI_DIR)/cVPI_VERILOG_DIR=$(VPI_DIR)/verilogVPI_LIB_NAME=jp_vpiICARUS_VPI_OPTS=-M$(VPI_C_DIR) -m$(VPI_LIB_NAME)VPI_TEST_SW ?= dhry-nocache-O2prepare-vpi:## Build the VPI library$(MAKE) -C $(VPI_C_DIR) $(VPI_LIB_NAME)clean-vpi:$(MAKE) -C $(VPI_C_DIR) cleanrtl-debug: prepare-sw-uart-printf prepare-rtl prepare-vpi prepare-dirs## Prepare the software for the test@echo "\t#### Compiling software ####"; echo; \CURRENT_TEST_SW_DIR=$(SW_DIR)/`echo $(VPI_TEST_SW) | cut -d "-" -f 1`; \$(MAKE) -C $$CURRENT_TEST_SW_DIR $(VPI_TEST_SW) $(TEST_SW_MAKE_OPTS); \rm -f $(SIM_RUN_DIR)/$(SIM_FLASH_MEM_FILE); \rm -f $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$(VPI_TEST_SW)$(FLASH_MEM_FILE_SUFFIX) $(SIM_RUN_DIR)/$(SIM_FLASH_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$(VPI_TEST_SW).vmem $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE)## Generate the icarus script we'll compile with$(Q)sed < $(SIM_BIN_DIR)/$(ICARUS_COMMAND_FILE) > $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated \-e s!\$$BENCH_DIR!$(BENCH_VERILOG_DIR)! \-e s!\$$RTL_DIR!$(RTL_VERILOG_DIR)! \-e s!\$$BACKEND_DIR!$(BACKEND_DIR)! \-e \\!^//.*\$$!d -e \\!^\$$!d## Add a couple of extra defines to the icarus compile script$(Q)echo "+define+TEST_DEFINE_FILE=\"test_define.v\"" >> $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated## The define that enables the VPI debug module$(Q)echo "+define+VPI_DEBUG_ENABLE" >> $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated$(Q)if [ ! -z $$VCD ];then echo "+define+VCD" >> $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated;fi## Unless NO_UART_PRINTF=1 we use printf via the UART$(Q)if [ -z $$NO_UART_PRINTF ];then echo "+define+UART_PRINTF" >> $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated; fi$(Q)echo "\`define TEST_NAME_STRING \"$(VPI_TEST_SW)-vpi\"" > $(SIM_RUN_DIR)/test_define.v$(Q)echo "\`define TEST_RESULTS_DIR \"$(SIM_RESULTS_DIR)/\" " >> $(SIM_RUN_DIR)/test_define.v$(Q)if [ -z $$NO_SIM_LOGGING ]; then echo "\`define OR1200_DISPLAY_ARCH_STATE" >> $(SIM_RUN_DIR)/test_define.v; fi@echo@echo "\t#### Compiling RTL ####"$(Q)rm -f $(SIM_RUN_DIR)/a.out$(Q)$(ICARUS) -sorpsoc_testbench -c $(SIM_RUN_DIR)/$(ICARUS_COMMAND_FILE).generated $(EVENT_SIM_FLAGS)@echo@echo "\t#### Beginning simulation with VPI debug module enabled ####"; echo$(Q)$(ICARUS_VVP) $(ICARUS_VPI_OPTS) -l $(SIM_RESULTS_DIR)/$(VPI_TEST_SW)-vvp-out.log a.out################################################################################# Verilator model build rules################################################################################SYSC_LIB_ARCH_DIR=$(shell ls $$SYSTEMC | grep "lib-")# List of System C models - use this list to link the sources into the Verilator# build directorySYSC_MODELS=OrpsocAccess MemoryLoadifdef VLT_DEBUGVLT_DEBUG_COMPILE_FLAGS = -g# Enabling the following generates a TON of debugging# when running verilator. Not so helpful.#VLT_DEBUG_OPTIONS = --debug --dump-treeVLT_SYSC_DEBUG_DEFINE = VLT_DEBUG=1endif# If set on the command line we build the cycle accurate model which will generate verilator-specific profiling information. This is useful for checking the efficiency of the model - not really useful for checking code or the function of the model.ifdef VLT_ORPSOC_PROFILINGVLT_CPPFLAGS +=-pgVLT_DEBUG_OPTIONS +=-profile-cfuncselseVLT_CPPFLAGS +=-fprofile-use -Wcoverage-mismatch#VLT_CPPFLAGS=-Wallendif# Set VLT_IN_GDB=1 when making if going to run the cycle accurate model executable in GDB to check suspect behavior. This also removes optimisation.ifdef VLT_IN_GDBVLT_CPPFLAGS +=-g -O0else# The default optimisation flag applied to all of the cycle accurate model filesVLT_CPPFLAGS +=-O3endififdef VLT_DO_PROFILINGVLT_CPPFLAGS +=-ftest-coverage -fprofile-arcs -fprofile-generateendif# VCD Enabled by default when building, enable it at runtime#ifdef VCDVLT_FLAGS +=-traceTRACE_FLAGS=-DVM_TRACE=1 -I${SYSTEMPERL}/src#endif# Only need the trace target if we are tracing#ifneq (,$(findstring -trace, $(VLT_FLAGS)))VLT_TRACEOBJ = SpTraceVcdC#endif# This is the list of extra models we'll issue make commands for# Included is the SystemPerl trace modelSYSC_MODELS_BUILD=$(SYSC_MODELS) $(VLT_TRACEOBJ)prepare-vlt: prepare-rtl vlt-model-links $(SIM_VLT_DIR)/Vorpsoc_top@echo;echo "\tCycle-accurate model compiled successfully"@echo;echo "\tRun the executable with the -h option for usage instructions:";echo$(SIM_VLT_DIR)/Vorpsoc_top -h@echo;echo$(SIM_VLT_DIR)/Vorpsoc_top: $(SIM_VLT_DIR)/libVorpsoc_top.a $(SIM_VLT_DIR)/OrpsocMain.o# Final linking of the simulation executable. Order of libraries here is important!@echo; echo "\tGenerating simulation executable"; echocd $(SIM_VLT_DIR) && g++ $(VLT_DEBUG_COMPILE_FLAGS) $(VLT_CPPFLAGS) -I$(BENCH_SYSC_INCLUDE_DIR) -I$(SIM_VLT_DIR) -I$(VERILATOR_ROOT)/include -I$(SYSTEMC)/include -o Vorpsoc_top -L. -L$(BENCH_SYSC_SRC_DIR) -L$(SYSTEMC)/$(SYSC_LIB_ARCH_DIR) OrpsocMain.o -lVorpsoc_top -lmodules -lsystemc# Now compile the top level systemC "testbench" module from the systemC source path$(SIM_VLT_DIR)/OrpsocMain.o: $(BENCH_SYSC_SRC_DIR)/OrpsocMain.cpp@echo; echo "\tCompiling top level SystemC testbench"; echocd $(SIM_VLT_DIR) && g++ $(VLT_DEBUG_COMPILE_FLAGS) $(VLT_CPPFLAGS) $(TRACE_FLAGS) -I$(BENCH_SYSC_INCLUDE_DIR) -I$(SIM_VLT_DIR) -I$(VERILATOR_ROOT)/include -I$(SYSTEMC)/include -c $(BENCH_SYSC_SRC_DIR)/OrpsocMain.cpp$(SIM_VLT_DIR)/libVorpsoc_top.a: $(SIM_VLT_DIR)/Vorpsoc_top__ALL.a vlt-modules-compile $(SIM_VLT_DIR)/verilated.o# Now archive all of the libraries from verilator witht he other modules we might have@echo; echo "\tArchiving libraries into libVorpsoc_top.a"; echo$(Q)cd $(SIM_VLT_DIR) && \cp Vorpsoc_top__ALL.a libVorpsoc_top.a && \ar rcs libVorpsoc_top.a verilated.o; \for SYSCMODEL in $(SYSC_MODELS_BUILD); do \ar rcs libVorpsoc_top.a $$SYSCMODEL.o; \done$(SIM_VLT_DIR)/verilated.o:@echo; echo "\tCompiling verilated.o"; echo$(Q)cd $(SIM_VLT_DIR) && \export CXXFLAGS=$(VLT_DEBUG_COMPILE_FLAGS); \export USER_CPPFLAGS="$(VLT_CPPFLAGS)"; \export USER_LDDFLAGS="$(VLT_CPPFLAGS)"; \$(MAKE) -f Vorpsoc_top.mk verilated.o.PHONY: vlt-modules-compilevlt-modules-compile:# Compile the module files@echo; echo "\tCompiling SystemC models"$(Q)cd $(SIM_VLT_DIR) && \for SYSCMODEL in $(SYSC_MODELS_BUILD); do \echo;echo "\t$$SYSCMODEL"; echo; \export CXXFLAGS=$(VLT_DEBUG_COMPILE_FLAGS); \export USER_CPPFLAGS="$(VLT_CPPFLAGS) -I$(BENCH_SYSC_INCLUDE_DIR)"; \export USER_LDDFLAGS="$(VLT_CPPFLAGS)"; \$(MAKE) -f Vorpsoc_top.mk $$SYSCMODEL.o; \done$(SIM_VLT_DIR)/Vorpsoc_top__ALL.a: $(SIM_VLT_DIR)/Vorpsoc_top.mk@echo; echo "\tCompiling main design"; echo$(Q)cd $(SIM_VLT_DIR) && \export USER_CPPFLAGS="$(VLT_CPPFLAGS)"; \export USER_LDDFLAGS="$(VLT_CPPFLAGS)"; \$(MAKE) -f Vorpsoc_top.mk Vorpsoc_top__ALL.a$(SIM_VLT_DIR)/Vorpsoc_top.mk: $(SIM_VLT_DIR)/$(VLT_COMMAND_FILE).generated $(SIM_VLT_DIR)/libmodules.a# Now call verilator to generate the .mk files@echo; echo "\tGenerating makefiles with Verilator"; echocd $(SIM_VLT_DIR) && \verilator -language 1364-2001 -Wno-lint --top-module orpsoc_top $(VLT_DEBUG_OPTIONS) -Mdir . -sc $(VLT_FLAGS) -I$(BENCH_SYSC_INCLUDE_DIR) -I$(BENCH_SYSC_SRC_DIR) -f $(VLT_COMMAND_FILE).generated# SystemC modules library$(SIM_VLT_DIR)/libmodules.a:@echo; echo "\tCompiling SystemC modules"; echo$(Q)export VLT_CPPFLAGS="$(VLT_CPPFLAGS)"; \$(MAKE) -C $(BENCH_SYSC_SRC_DIR) -f $(BENCH_SYSC_SRC_DIR)/Modules.make $(VLT_SYSC_DEBUG_DEFINE)ALL_VLOG=$(shell find $(RTL_VERILOG_DIR) -name "*.v")# Verilator command script# Generate the compile script to give Verilator - make it sensitive to the RTL$(SIM_VLT_DIR)/$(VLT_COMMAND_FILE).generated: $(ALL_VLOG)@echo; echo "\tGenerating verilator compile script"; echo$(Q)sed < $(SIM_BIN_DIR)/$(VLT_COMMAND_FILE) > $(SIM_VLT_DIR)/$(VLT_COMMAND_FILE).generated \-e s!\$$BENCH_DIR!$(BENCH_VERILOG_DIR)! \-e s!\$$RTL_DIR!$(RTL_VERILOG_DIR)! \-e s!\$$BACKEND_DIR!$(BACKEND_DIR)! \-e \\!^//.*\$$!d -e \\!^\$$!d;.PHONY: vlt-model-linksvlt-model-links:# Link all the required system C model files into the verilator work dir@echo; echo "\tLinking SystemC model source to verilator build path"; echo@if [ ! -d $(SIM_VLT_DIR) ]; then mkdir $(SIM_VLT_DIR); fi$(Q)cd $(SIM_VLT_DIR) && \for SYSCMODEL in $(SYSC_MODELS); do \if [ ! -e $$SYSCMODEL.cpp ]; then \ln -s $(BENCH_SYSC_SRC_DIR)/$$SYSCMODEL.cpp .; \ln -s $(BENCH_SYSC_INCLUDE_DIR)/$$SYSCMODEL.h .; \fi; \done################################################################################# Verilator test loop################################################################################# Verilator defaults to internal memoriesvlt-tests: prepare-sw prepare-rtl prepare-dirs prepare-vlt@echo@echo "Beginning loop that will complete the following tests: $(TESTS)"@echo$(Q)for TEST in $(TESTS); do \echo "################################################################################"; \echo; \echo "\t#### Current test: $$TEST ####"; echo; \echo "\t#### Compiling software ####"; echo; \CURRENT_TEST_SW_DIR=$(SW_DIR)/`echo $$TEST | cut -d "-" -f 1`; \$(MAKE) -C $$CURRENT_TEST_SW_DIR $$TEST $(TEST_SW_MAKE_OPTS) UART_PRINTF=1; \rm -f $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$$TEST.vmem $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \echo "\t#### Beginning simulation ####"; \time -p $(SIM_VLT_DIR)/Vorpsoc_top $$TEST; \if [ $$? -gt 0 ]; then exit $$?; fi; \TEST_RESULT=1; \echo; echo "\t####"; \if [ $$TEST_RESULT -gt 0 ]; then \echo "\t#### Test $$TEST PASSED ####";TESTS_PASSED=`expr $$TESTS_PASSED + 1`;\else echo "\t#### Test $$TEST FAILED ####";\fi; \echo "\t####"; echo; \TESTS_PERFORMED=`expr $$TESTS_PERFORMED + 1`;\done; \echo "Test results: "$$TESTS_PASSED" out of "$$TESTS_PERFORMED" tests passed"; echo################################################################################ Verilator profiled module make################################################################################ To run this, first run a "make prepare-vlt VLT_DO_PROFILING=1" then do a# "make clean" and then a "make prepare-vlt_profiled"# This new make target copies athe results of the profiling back to the right# paths before we create everything again###############################################################################.PHONY: prepare-vlt-profiledprepare-vlt-profiled: $(SIM_VLT_DIR)/OrpsocMain.gcda clean vlt-restore-profileoutput prepare-rtl vlt-model-links $(SIM_VLT_DIR)/Vorpsoc_top$(SIM_VLT_DIR)/OrpsocMain.gcda: $(SIM_VLT_DIR)/Vorpsoc_top-for-profiling prepare-sw-uart-printf$(MAKE) -C $(SW_DIR)/dhry dhry-nocache-O2 NUM_RUNS=200$(SIM_VLT_DIR)/Vorpsoc_top -f $(SW_DIR)/dhry/dhry-nocache-O2.or32 -v -l sim.log --crash-monitor.PHONY: $(SIM_VLT_DIR)/Vorpsoc_top-for-profiling$(SIM_VLT_DIR)/Vorpsoc_top-for-profiling:$(MAKE) prepare-vlt VLT_DO_PROFILING=1.PHONY: vlt-restore-profileoutputvlt-restore-profileoutput:@echo;echo "\tRestoring profiling outputs"; echo$(Q)mkdir -p ../vlt$(Q)cp /tmp/*.gc* $(SIM_VLT_DIR)$(Q)cp /tmp/*.gc* $(BENCH_SYSC_SRC_DIR)################################################################################# Architectural simulator test loop################################################################################# Verilator defaults to internal memoriessim-tests: prepare-sw@if [ ! -d $(SIM_RESULTS_DIR) ]; then mkdir -p $(SIM_RESULTS_DIR); fi@echo@echo "Beginning loop that will complete the following tests: $(TESTS)"@echo$(Q)for TEST in $(TESTS); do \echo "################################################################################"; \echo; \echo "\t#### Current test: $$TEST ####"; echo; \echo "\t#### Compiling software ####"; echo; \CURRENT_TEST_SW_DIR=$(SW_DIR)/`echo $$TEST | cut -d "-" -f 1`; \$(MAKE) -C $$CURRENT_TEST_SW_DIR $$TEST $(TEST_SW_MAKE_OPTS) UART_PRINTF=1; \rm -f $(SIM_RUN_DIR)/$(SIM_SRAM_MEM_FILE); \ln -s $$CURRENT_TEST_SW_DIR/$$TEST.or32 $(SIM_RUN_DIR)/.; \echo;echo "\t#### Launching architectural simulator ####"; \time -p $(ARCH_SIM_EXE) --nosrv -f $(SIM_BIN_DIR)/$(ARCH_SIM_CFG_FILE) $$TEST.or32 > $(SIM_RESULTS_DIR)/$$TEST-or1ksim.log 2>&1; \if [ $$? -gt 0 ]; then exit $$?; fi; \if [ `tail -n 10 $(SIM_RESULTS_DIR)/$$TEST-or1ksim.log | grep -c $(SIM_SUCCESS_MESSAGE)` -gt 0 ]; then \TEST_RESULT=1; \fi; \echo; echo "\t####"; \if [ $$TEST_RESULT -gt 0 ]; then \echo "\t#### Test $$TEST PASSED ####";TESTS_PASSED=`expr $$TESTS_PASSED + 1`;\else echo "\t#### Test $$TEST FAILED ####";\fi; \echo "\t####"; echo; \TESTS_PERFORMED=`expr $$TESTS_PERFORMED + 1`;\unlink $(SIM_RUN_DIR)/$$TEST.or32; \done; \echo "Test results: "$$TESTS_PASSED" out of "$$TESTS_PERFORMED" tests passed"; echo################################################################################# Cleaning rules################################################################################clean: clean-sw clean-sim clean-sysc clean-rtl clean-vpiclean-sw:@for SWDIR in `ls $(SW_DIR)`; do \echo $$SWDIR; \$(MAKE) -C $(SW_DIR)/$$SWDIR clean; \doneclean-sim:#backup any profiling output files@if [ -f $(SIM_VLT_DIR)/OrpsocMain.gcda ]; then echo;echo "\tBacking up verilator profiling output to /tmp"; echo; \cp $(SIM_VLT_DIR)/*.gc* /tmp; \cp $(BENCH_SYSC_SRC_DIR)/*.gc* /tmp; firm -rf $(SIM_RESULTS_DIR) $(SIM_RUN_DIR)/*.* $(SIM_VLT_DIR) $(MGC_ORPSOC_LIB_DIR) $(SIM_RUN_DIR)/work $(SIM_RUN_DIR)/transcriptclean-sysc:# Clean away dependency files generated by verilator$(MAKE) -C $(BENCH_SYSC_SRC_DIR) -f $(BENCH_SYSC_SRC_DIR)/Modules.make cleanclean-rtl:# Clean away temporary verilog source filesrm -f $(RTL_VERILOG_DIR)/components/wb_sdram_ctrl/wb_sdram_ctrl_fsm.v
Go to most recent revision | Compare with Previous | Blame | View Log
