URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [doc/] [html/] [ref/] [installation-and-testing.html] - Rev 201
Go to most recent revision | Compare with Previous | Blame | View Log
<!-- Copyright (C) 2003 Red Hat, Inc. --> <!-- This material may be distributed only subject to the terms --> <!-- and conditions set forth in the Open Publication License, v1.0 --> <!-- or later (the latest version is presently available at --> <!-- http://www.opencontent.org/openpub/). --> <!-- Distribution of the work or derivative of the work in any --> <!-- standard (paper) book form is prohibited unless prior --> <!-- permission is obtained from the copyright holder. --> <HTML ><HEAD ><TITLE >Installation and Testing</TITLE ><meta name="MSSmartTagsPreventParsing" content="TRUE"> <META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.76b+ "><LINK REL="HOME" TITLE="eCos Reference Manual" HREF="ecos-ref.html"><LINK REL="UP" TITLE="RedBoot™ User's Guide" HREF="redboot.html"><LINK REL="PREVIOUS" TITLE="Updating RedBoot" HREF="updating-redboot.html"><LINK REL="NEXT" TITLE="ARM/ARM7 ARM Evaluator7T" HREF="e7t.html"></HEAD ><BODY CLASS="CHAPTER" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#840084" ALINK="#0000FF" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="3" ALIGN="center" >eCos Reference Manual</TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="bottom" ><A HREF="updating-redboot.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="80%" ALIGN="center" VALIGN="bottom" ></TD ><TD WIDTH="10%" ALIGN="right" VALIGN="bottom" ><A HREF="e7t.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="CHAPTER" ><H1 ><A NAME="INSTALLATION-AND-TESTING">Chapter 5. Installation and Testing</H1 ><DIV CLASS="TOC" ><DL ><DT ><B >Table of Contents</B ></DT ><DT ><A HREF="installation-and-testing.html#ASB2305" >AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board</A ></DT ><DT ><A HREF="e7t.html" >ARM/ARM7 ARM Evaluator7T</A ></DT ><DT ><A HREF="integrator.html" >ARM/ARM7+ARM9 ARM Integrator</A ></DT ><DT ><A HREF="pid.html" >ARM/ARM7+ARM9 ARM PID Board and EPI Dev7+Dev9</A ></DT ><DT ><A HREF="at91.html" >ARM/ARM7 Atmel AT91 Evaluation Board (EB40)</A ></DT ><DT ><A HREF="edb7xxx.html" >ARM/ARM7 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)</A ></DT ><DT ><A HREF="aaed2000.html" >ARM/ARM9 Agilent AAED2000</A ></DT ><DT ><A HREF="excaliburarm9.html" >ARM/ARM9 Altera Excalibur</A ></DT ><DT ><A HREF="ebsa285.html" >ARM/StrongARM(SA110) Intel EBSA 285</A ></DT ><DT ><A HREF="brutus.html" >ARM/StrongARM(SA1100) Intel Brutus</A ></DT ><DT ><A HREF="sa1100mm.html" >ARM/StrongARM(SA1100) Intel SA1100 Multimedia Board</A ></DT ><DT ><A HREF="assabet.html" >ARM/StrongARM(SA1110) Intel SA1110 (Assabet)</A ></DT ><DT ><A HREF="nano.html" >ARM/StrongARM(SA11X0) Bright Star Engineering commEngine and nanoEngine</A ></DT ><DT ><A HREF="ipaq.html" >ARM/StrongARM(SA11X0) Compaq iPAQ PocketPC</A ></DT ><DT ><A HREF="cerfcube.html" >ARM/StrongARM(SA11X0) Intrinsyc CerfCube</A ></DT ><DT ><A HREF="iq80310.html" >ARM/Xscale Cyclone IQ80310</A ></DT ><DT ><A HREF="iq80321.html" >ARM/Xscale Intel IQ80321</A ></DT ><DT ><A HREF="calmrisc16.html" >CalmRISC/CalmRISC16 Samsung CalmRISC16 Core Evaluation Board</A ></DT ><DT ><A HREF="calmrisc32.html" >CalmRISC/CalmRISC32 Samsung CalmRISC32 Core Evaluation Board</A ></DT ><DT ><A HREF="frv400.html" >FRV/FRV400 Fujitsu FR-V 400 (MB-93091)</A ></DT ><DT ><A HREF="x86pc.html" >IA32/x86 x86-Based PC</A ></DT ><DT ><A HREF="atlas.html" >MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Atlas Board</A ></DT ><DT ><A HREF="malta.html" >MIPS/MIPS32(CoreLV 4Kc)+MIPS64(CoreLV 5Kc) Malta Board</A ></DT ><DT ><A HREF="ocelot.html" >MIPS/RM7000 PMC-Sierra Ocelot</A ></DT ><DT ><A HREF="vrc4375.html" >MIPS/VR4375 NEC DDB-VRC4375</A ></DT ><DT ><A HREF="viper.html" >PowerPC/MPC860T Analogue & Micro PowerPC 860T</A ></DT ><DT ><A HREF="mbx.html" >PowerPC/MPC8XX Motorola MBX</A ></DT ><DT ><A HREF="edk7708.html" >SuperH/SH3(SH7708) Hitachi EDK7708</A ></DT ><DT ><A HREF="se7709.html" >SuperH/SH3(SH7709) Hitachi Solution Engine 7709</A ></DT ><DT ><A HREF="hs7729pci.html" >SuperH/SH3(SH7729) Hitachi HS7729PCI</A ></DT ><DT ><A HREF="se77x9.html" >SuperH/SH3(SH77X9) Hitachi Solution Engine 77X9</A ></DT ><DT ><A HREF="se7751.html" >SuperH/SH4(SH7751) Hitachi Solution Engine 7751</A ></DT ></DL ></DIV ><DIV CLASS="SECT1" ><H1 CLASS="SECT1" ><A NAME="ASB2305">AM3x/MN103E010 Matsushita MN103E010 (AM33/2.0) ASB2305 Board</H1 ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN4839">Overview</H2 ><P > RedBoot supports the debug serial port and the built in ethernet port for communication and downloads. The default serial port settings are 115200,8,N,1 with RTS/CTS flow control. RedBoot can run from either flash, and can support flash management for either the boot PROM or the system flash regions.</P ><P >The following RedBoot configurations are supported: <DIV CLASS="INFORMALTABLE" ><A NAME="AEN4849"><P ></P ><TABLE BORDER="1" CLASS="CALSTABLE" ><THEAD ><TR ><TH ALIGN="LEFT" VALIGN="TOP" >Configuration</TH ><TH ALIGN="LEFT" VALIGN="TOP" >Mode</TH ><TH ALIGN="LEFT" VALIGN="TOP" >Description</TH ><TH ALIGN="LEFT" VALIGN="TOP" >File</TH ></TR ></THEAD ><TBODY ><TR ><TD ALIGN="LEFT" VALIGN="TOP" >PROM</TD ><TD ALIGN="LEFT" VALIGN="TOP" >[ROM]</TD ><TD ALIGN="LEFT" VALIGN="TOP" >RedBoot running from the boot PROM and able to access the system flash.</TD ><TD ALIGN="LEFT" VALIGN="TOP" >redboot_ROM.ecm</TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" >FLASH</TD ><TD ALIGN="LEFT" VALIGN="TOP" >[ROM]</TD ><TD ALIGN="LEFT" VALIGN="TOP" >RedBoot running from the system flash and able to access the boot PROM.</TD ><TD ALIGN="LEFT" VALIGN="TOP" >redboot_FLASH.ecm</TD ></TR ><TR ><TD ALIGN="LEFT" VALIGN="TOP" >RAM</TD ><TD ALIGN="LEFT" VALIGN="TOP" >[RAM]</TD ><TD ALIGN="LEFT" VALIGN="TOP" >RedBoot running from RAM and able to access the boot PROM.</TD ><TD ALIGN="LEFT" VALIGN="TOP" >redboot_RAM.ecm</TD ></TR ></TBODY ></TABLE ><P ></P ></DIV ></P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN4873">Initial Installation</H2 ><P >Unless a pre-programmed system flash module is available to be plugged into a new board, RedBoot must be installed with the aid of a JTAG interface unit. To achieve this, the RAM mode RedBoot must be loaded directly into RAM by JTAG and started, and then <SPAN CLASS="emphasis" ><I CLASS="EMPHASIS" >that</I ></SPAN > must be used to store the ROM mode RedBoot into the boot PROM.</P ><P >These instructions assume that you have binary images of the RAM-based and boot PROM-based RedBoot images available.</P ><DIV CLASS="SECT3" ><H3 CLASS="SECT3" ><A NAME="AEN4878">Preparing to program the board</H3 ><P >If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to be changed:</P ><P ></P ><UL ><LI ><P >Jumper across ST18 on the board to allow write access to the boot PROM.</P ></LI ><LI ><P >Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.</P ></LI ><LI ><P >Set the switch S5 (on the front of the board) to boot from whichever flash is <SPAN CLASS="emphasis" ><I CLASS="EMPHASIS" >not</I ></SPAN > being programmed. Note that the RedBoot image cannot access the flash from which it is currently executing (it can only access the other flash).</P ></LI ></UL ><P >The RedBoot binary image files should also be copied to the TFTP pickup area on the host providing TFTP services if that is how RedBoot should pick up the images it is going to program into the flash. Alternatively, the images can be passed by YMODEM over the serial link.</P ></DIV ><DIV CLASS="SECT3" ><H3 CLASS="SECT3" ><A NAME="AEN4890">Preparing to use the JTAG debugger</H3 ><P >The JTAG debugger will also need setting up:</P ><P ></P ><OL TYPE="1" ><LI ><P >Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is probably the best choice for this) in “C:/PanaX”.</P ></LI ><LI ><P >Install the Matsushita provided “project” into the “C:/Panax/wice103e/prj” directory.</P ></LI ><LI ><P >Install the RedBoot image files into the “C:/Panax/wice103e/prj” directory under the names redboot.ram and redboot.prom.</P ></LI ><LI ><P >Make sure the PC's BIOS has the parallel port set to full bidirectional mode.</P ></LI ><LI ><P >Connect the JTAG debugger to the PC's parallel port.</P ></LI ><LI ><P >Connect the JTAG debugger to the board.</P ></LI ><LI ><P >Set the switch on the front of the board to boot from “boot PROM”.</P ></LI ><LI ><P >Power up the JTAG debugger and then power up the board.</P ></LI ><LI ><P >Connect the board's Debug Serial port to a computer by a null modem cable.</P ></LI ><LI ><P >Start minicom or some other serial communication software and set for 115200 baud, 1-N-8 with hardware (RTS/CTS) flow control.</P ></LI ></OL ></DIV ><DIV CLASS="SECT3" ><H3 CLASS="SECT3" ><A NAME="AEN4914">Loading the RAM-based RedBoot via JTAG</H3 ><P >To perform the first half of the operation, the following steps should be followed:</P ><P ></P ><OL TYPE="1" ><LI ><P >Start the JTAG debugger software.</P ></LI ><LI ><P >Run the following commands at the JTAG debugger's prompt to set up the MMU registers on the CPU.</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" ><TT CLASS="USERINPUT" ><B >ed 0xc0002000, 0x12000580</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00100, 0x8000fe01</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00200, 0x21111000</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00204, 0x00100200</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00208, 0x00000004</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00110, 0x8400fe01</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00210, 0x21111000</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00214, 0x00100200</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00218, 0x00000004</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00120, 0x8600ff81</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00220, 0x21111000</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00224, 0x00100200</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00228, 0x00000004</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00130, 0x8680ff81</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00230, 0x21111000</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00234, 0x00100200</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00238, 0x00000004</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00140, 0x9800f801</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00240, 0x00140000</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00244, 0x11011100</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xd8c00248, 0x01000001</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xda000000, 0x55561645</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xda000004, 0x000003c0</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xda000008, 0x9000fe01</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xda00000c, 0x9200fe01</B ></TT > <TT CLASS="USERINPUT" ><B >ed 0xda000000, 0xa89b0654</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Run the following commands at the JTAG debugger's prompt to tell it what regions of the CPU's address space it can access:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" ><TT CLASS="USERINPUT" ><B >ex 0x80000000,0x81ffffff,/mexram</B ></TT > <TT CLASS="USERINPUT" ><B >ex 0x84000000,0x85ffffff,/mexram</B ></TT > <TT CLASS="USERINPUT" ><B >ex 0x86000000,0x867fffff,/mexram</B ></TT > <TT CLASS="USERINPUT" ><B >ex 0x86800000,0x87ffffff,/mexram</B ></TT > <TT CLASS="USERINPUT" ><B >ex 0x8c000000,0x8cffffff,/mexram</B ></TT > <TT CLASS="USERINPUT" ><B >ex 0x90000000,0x93ffffff,/mexram</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Instruct the debugger to load the RAM RedBoot image into RAM:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" ><TT CLASS="USERINPUT" ><B >_pc=90000000</B ></TT > <TT CLASS="USERINPUT" ><B >u_pc</B ></TT > <TT CLASS="USERINPUT" ><B >rd redboot.ram,90000000</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Load the boot PROM RedBoot into RAM:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" ><TT CLASS="USERINPUT" ><B >rd redboot.prom,91020000</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Start RedBoot in RAM:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" ><TT CLASS="USERINPUT" ><B >g</B ></TT ></PRE ></TD ></TR ></TABLE ><P >Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or DHCP server to try and automatically get an IP address for the board. Note, however, that it should send a plus over the serial port immediately, and the 7-segment LEDs should display “rh 8”.</P ></LI ></OL ></DIV ><DIV CLASS="SECT3" ><H3 CLASS="SECT3" ><A NAME="AEN4973">Loading the boot PROM-based RedBoot via the RAM mode RedBoot</H3 ><P >Once the RAM mode RedBoot is up and running, it can be communicated with by way of the serial port. Commands can now be entered directly to RedBoot for flashing the boot PROM.</P ><P ></P ><OL TYPE="1" ><LI ><P >Instruct RedBoot to initialise the boot PROM:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >fi init</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Write the previously loaded redboot.prom image into the boot PROM:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >fi write -f 0x80000000 -b 0x91020000 -l 0x00020000</B ></TT ></PRE ></TD ></TR ></TABLE ></LI ><LI ><P >Check that RedBoot has written the image:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >dump -b 0x91020000</B ></TT > RedBoot> <TT CLASS="USERINPUT" ><B >dump -b 0x80000000</B ></TT ></PRE ></TD ></TR ></TABLE ><P >Barring the difference in address, the two dumps should be the same.</P ></LI ><LI ><P >Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed again over the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot will now be running.</P ></LI ><LI ><P >Power off the board and unjumper ST18 to write-protect the contents of the boot PROM. Then power the board back up.</P ></LI ><LI ><P >Run the following command to initialise the system flash:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >fi init</B ></TT ></PRE ></TD ></TR ></TABLE ><P >Then program the system flash based RedBoot into the system flash:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >load -r -b %{FREEMEMLO} redboot_FLASH.bin</B ></TT > RedBoot> <TT CLASS="USERINPUT" ><B >fi write -f 0x84000000 -b %{FREEMEMLO} -l 0x00020000</B ></TT ></PRE ></TD ></TR ></TABLE ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >NOTE: </B >RedBoot arranges the flashes on booting such that they always appear at the same addresses, no matter which one was booted from.</P ></BLOCKQUOTE ></DIV ></LI ><LI ><P >A similar sequence of commands can be used to program the boot PROM when RedBoot has been booted from an image stored in the system flash.</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="SCREEN" >RedBoot> <TT CLASS="USERINPUT" ><B >load -r -b %{FREEMEMLO} /tftpboot/redboot_ROM.bin</B ></TT > RedBoot> <TT CLASS="USERINPUT" ><B >fi write -f 0x80000000 -b %{FREEMEMLO} -l 0x00020000</B ></TT ></PRE ></TD ></TR ></TABLE ><P >See <A HREF="persistent-state-flash.html" >the Section called <I >Persistent State Flash-based Configuration and Control</I > in Chapter 2</A > for details on configuring the RedBoot in general, and also <A HREF="flash-image-system.html" >the Section called <I >Flash Image System (FIS)</I > in Chapter 2</A > for more details on programming the system flash.</P ></LI ></OL ></DIV ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN5014">Additional Commands</H2 ><P >The <B CLASS="COMMAND" >exec</B > command which allows the loading and execution of Linux kernels, is supported for this architecture (see <A HREF="executing-programs.html" >the Section called <I >Executing Programs from RedBoot</I > in Chapter 2</A >). The <B CLASS="COMMAND" >exec</B > parameters used for ASB2305 board are:</P ><P ></P ><DIV CLASS="VARIABLELIST" ><DL ><DT >-w <TT CLASS="REPLACEABLE" ><I ><time></I ></TT ></DT ><DD ><P >Wait time in seconds before starting kernel</P ></DD ><DT >-c <TT CLASS="REPLACEABLE" ><I >"params"</I ></TT ></DT ><DD ><P >Parameters passed to kernel</P ></DD ><DT ><TT CLASS="REPLACEABLE" ><I ><addr></I ></TT ></DT ><DD ><P >Kernel entry point, defaulting to the entry point of the last image loaded</P ></DD ></DL ></DIV ><P >The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by “cmdline:” if it was supplied.</P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN5037">Memory Maps</H2 ><P >RedBoot sets up the following memory map on the ASB2305 board.</P ><DIV CLASS="NOTE" ><BLOCKQUOTE CLASS="NOTE" ><P ><B >NOTE: </B >The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However, all those regions can be accessed uncached by adding 0x20000000 to the address.</P ></BLOCKQUOTE ></DIV ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="PROGRAMLISTING" >Physical Address Range Description ----------------------- ----------- 0x80000000 - 0x9FFFFFFF Cached Region 0x80000000 - 0x81FFFFFF Boot PROM 0x84000000 - 0x85FFFFFF System Flash 0x86000000 - 0x86007FFF 64Kbit Sys Config EEPROM 0x86F90000 - 0x86F90003 4x 7-segment LEDs 0x86FA0000 - 0x86FA0003 Software DIP Switches 0x86FB0000 - 0x86FB001F PC16550 Debug Serial Port 0x8C000000 - 0x8FFFFFFF On-Chip Memory (repeated 16Kb SRAM) 0x90000000 - 0x93FFFFFF SDRAM 0x98000000 - 0x9BFFFFFF Paged PCI Memory Space (64Mb) 0x9C000000 - 0x9DFFFFFF PCI Local SRAM (32Mb) 0x9E000000 - 0x9E03FFFF PCI I/O Space 0x9E040000 - 0x9E0400FF AM33-PCI Bridge Registers 0x9FFFFFF4 - 0x9FFFFFF7 PCI Memory Page Register 0x9FFFFFF8 - 0x9FFFFFFF PCI Config Registers 0xA0000000 - 0xBFFFFFFF Uncached Mirror Region 0xC0000000 - 0xDFFFFFFF CPU Control Registers</PRE ></TD ></TR ></TABLE ><P >The ASB2305 HAL makes use of the on-chip memory in the following way:</P ><TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="PROGRAMLISTING" >0x8C000000 - 0x8C0000FF hal_vsr_table 0x8C000100 - 0x8C0001FF hal_virtual_vector_table 0x8C001000 - Linux command line (RedBoot exec command) - 0x8C003FFF Emergency DoubleFault Exception Stack</PRE ></TD ></TR ></TABLE ><P >Currently the CPU's interrupt table lies at the beginning of the RedBoot image, which must therefore be aligned to a 0xFF000000 mask.</P ></DIV ><DIV CLASS="SECT2" ><H2 CLASS="SECT2" ><A NAME="AEN5047">Rebuilding RedBoot</H2 ><P >These shell variables provide the platform-specific information needed for building RedBoot according to the procedure described in <A HREF="rebuilding-redboot.html" >Chapter 3</A >: <TABLE BORDER="5" BGCOLOR="#E0E0F0" WIDTH="70%" ><TR ><TD ><PRE CLASS="PROGRAMLISTING" >export TARGET=asb2305 export ARCH_DIR=mn10300 export PLATFORM_DIR=asb2305</PRE ></TD ></TR ></TABLE ></P ><P >The names of configuration files are listed above with the description of the associated modes.</P ></DIV ></DIV ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="updating-redboot.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="ecos-ref.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="e7t.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >Updating RedBoot</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="redboot.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >ARM/ARM7 ARM Evaluator7T</TD ></TR ></TABLE ></DIV ></BODY ></HTML >
Go to most recent revision | Compare with Previous | Blame | View Log