URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [compat/] [uitron/] [v2_0/] [include/] [uit_func.inl] - Rev 600
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef CYGONCE_COMPAT_UITRON_UIT_FUNC_INL
#define CYGONCE_COMPAT_UITRON_UIT_FUNC_INL
//===========================================================================
//
// uit_func.inl
//
// uITRON compatibility functions
//
//===========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//===========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): hmt
// Contributors: hmt
// Date: 1998-03-13
// Purpose: uITRON compatibility functions
// Description:
//
//####DESCRIPTIONEND####
//
//===========================================================================
#ifdef CYGPKG_UITRON
#ifdef CYGPRI_UITRON_FUNCS_HERE_AND_NOW
#include <cyg/compat/uitron/uit_objs.hxx> // uITRON setup CYGNUM_UITRON_SEMAS
// kernel facilities only needed here
#include <cyg/kernel/intr.hxx>
#include <cyg/kernel/sched.hxx>
// and the implementations of other kernel facilities
#include <cyg/kernel/thread.inl>
#include <cyg/kernel/sched.inl>
#include <cyg/kernel/clock.inl>
// ------------------------------------------------------------------------
// The variable where dis_dsp/ena_dsp state is held:
extern cyg_uint32 cyg_uitron_dis_dsp_old_priority;
// ------------------------------------------------------------------------
// Parameter checking; either check the expression and return an error code
// if not true, or assert the truth with a made-up message.
#ifdef CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS
// default: uitron error codes are returned
#define CYG_UIT_PARAMCHECK( _true_, _error_ ) CYG_MACRO_START \
if ( ! (_true_) ) return (_error_); \
CYG_MACRO_END
#else
// ...but they are asserted if asserts are on
#define CYG_UIT_PARAMCHECK( _true_, _error_ ) CYG_MACRO_START \
CYG_ASSERT( (_true_), "CYG_UIT_PARAMCHECK fail: " #_true_ ); \
CYG_MACRO_END
#endif // else !CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS
// ------------------------------------------------------------------------
// CYG_UITRON_CHECK_AND_GETP
//
// Macro to rangecheck and do the addressing of a static uitron system
// object; _which_ sort of object is given, and token pasting is used
// horribly to get the static array, limits and the like.
//
// Usage:
// INT snd_msg( ID mbxid, ... ) {
// Cyg_Mbox *p;
// CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
// p->...(...);
// internal: plain assignment to the object pointer, from static array
#define CYG_UIT_SPTR( _which_, _idx_, _ptr_ ) CYG_MACRO_START \
(_ptr_) = CYG_UITRON_OBJS( _which_ ) + ((_idx_) - 1); \
CYG_MACRO_END
// internal: plain assignment to the object pointer, from pointer array
// with error checking.
#define CYG_UIT_SPTR_PTR( _which_, _idx_, _ptr_ ) CYG_MACRO_START \
(_ptr_) = CYG_UITRON_PTRS( _which_ )[ ((_idx_) - 1) ]; \
if ( NULL == (_ptr_) ) return E_NOEXS; \
CYG_MACRO_END
#define CYG_UITRON_CHECK_AND_GETP_DIRECT( _which_, _idx_, _ptr_ ) \
CYG_MACRO_START \
CYG_UIT_PARAMCHECK( 0 < (_idx_), E_ID ); \
CYG_UIT_PARAMCHECK( CYG_UITRON_NUM( _which_ ) >= (_idx_), E_ID ); \
CYG_UIT_SPTR( _which_, _idx_, _ptr_ ); \
CYG_MACRO_END
#define CYG_UITRON_CHECK_AND_GETP_INDIRECT( _which_, _idx_, _ptr_ ) \
CYG_MACRO_START \
CYG_UIT_PARAMCHECK( 0 < (_idx_), E_ID ); \
CYG_UIT_PARAMCHECK( CYG_UITRON_NUM( _which_ ) >= (_idx_), E_ID ); \
CYG_UIT_SPTR_PTR( _which_, _idx_, _ptr_ ); \
CYG_MACRO_END
// As above but for handler numbers which return E_PAR when out of range
#define CYG_UITRON_CHECK_AND_GETHDLR( _which_, _num_, _ptr_ ) \
CYG_MACRO_START \
CYG_UIT_PARAMCHECK( 0 < (_num_), E_PAR ); \
CYG_UIT_PARAMCHECK( CYG_UITRON_NUM( _which_ ) >= (_num_), E_PAR ); \
CYG_UIT_SPTR( _which_, _num_, _ptr_ ); \
CYG_MACRO_END
// And a macro to check that creation of an object is OK
#define CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( _which_, _idx_ ) \
CYG_MACRO_START \
CYG_UIT_PARAMCHECK( 0 < (_idx_), E_ID ); \
CYG_UIT_PARAMCHECK( CYG_UITRON_NUM( _which_ ) >= (_idx_), E_ID ); \
Cyg_Scheduler::lock(); \
if ( NULL != CYG_UITRON_PTRS( _which_ )[ ((_idx_) - 1) ] ) { \
Cyg_Scheduler::unlock(); \
return E_OBJ; \
} \
CYG_MACRO_END
// define a magic new operator in order to call constructors
#define CYG_UITRON_NEWFUNCTION( _class_ ) \
inline void *operator new(size_t size, _class_ *ptr) \
{ \
CYG_CHECK_DATA_PTR( ptr, "Bad pointer" ); \
return ptr; \
}
// now configury to support selectable create/delete support ie. an
// array of pointers to the objects themselves.
#ifdef CYGPKG_UITRON_TASKS_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_TASKS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( TASKS, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_TASKS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( TASKS, _idx_, _ptr_ )
#endif
#ifdef CYGPKG_UITRON_SEMAS_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_SEMAS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( SEMAS, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_SEMAS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( SEMAS, _idx_, _ptr_ )
#endif
#ifdef CYGPKG_UITRON_MBOXES_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_MBOXES( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( MBOXES, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_MBOXES( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( MBOXES, _idx_, _ptr_ )
#endif
#ifdef CYGPKG_UITRON_FLAGS_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_FLAGS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( FLAGS, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_FLAGS( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( FLAGS, _idx_, _ptr_ )
#endif
#ifdef CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( MEMPOOLFIXED, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( MEMPOOLFIXED, _idx_, _ptr_ )
#endif
#ifdef CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETE
#define CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_INDIRECT( MEMPOOLVAR, _idx_, _ptr_ )
#else
#define CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( _idx_, _ptr_ ) \
CYG_UITRON_CHECK_AND_GETP_DIRECT( MEMPOOLVAR, _idx_, _ptr_ )
#endif
// ------------------------------------------------------------------------
// Common error checking macros
#if !defined( CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS ) && \
!defined( CYGDBG_USE_ASSERTS )
// if not checking and not asserted, these are removed to avoid usused
// variable warnings.
#define CYG_UITRON_CHECK_TASK_CONTEXT_SELF( _self_ ) CYG_EMPTY_STATEMENT
#define CYG_UITRON_CHECK_TASK_CONTEXT() CYG_EMPTY_STATEMENT
#define CYG_UITRON_CHECK_DISPATCH_ENABLED() CYG_EMPTY_STATEMENT
#define CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( _tmout_ ) CYG_EMPTY_STATEMENT
#else
// the default:
// Check a task is actually a uITRON task
#define CYG_UITRON_CHECK_TASK_CONTEXT_SELF( _self_ ) CYG_MACRO_START \
CYG_UIT_PARAMCHECK( \
(&cyg_uitron_TASKS[0] <= (_self_)) && \
((_self_) < &cyg_uitron_TASKS[CYGNUM_UITRON_TASKS]), \
E_CTX ); \
CYG_MACRO_END
#define CYG_UITRON_CHECK_TASK_CONTEXT() CYG_MACRO_START \
Cyg_Thread *self = Cyg_Thread::self(); \
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( self ); \
CYG_MACRO_END
// Check dispatching is enabled for calls which might wait
#define CYG_UITRON_CHECK_DISPATCH_ENABLED() CYG_MACRO_START \
CYG_UIT_PARAMCHECK( 0 == cyg_uitron_dis_dsp_old_priority, E_CTX ); \
CYG_MACRO_END
#define CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO(_tmout_) CYG_MACRO_START \
CYG_UIT_PARAMCHECK( -1 <= (_tmout_), E_PAR ); \
if ( TMO_POL != (_tmout_) ) \
CYG_UITRON_CHECK_DISPATCH_ENABLED(); \
CYG_MACRO_END
#endif
#ifdef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
#define CYG_UIT_PARAMCHECK_PTR( _p_ ) CYG_MACRO_START \
CYG_UIT_PARAMCHECK( NADR != (_p_), E_PAR ); \
CYG_MACRO_END
#else // do check for NULL
#define CYG_UIT_PARAMCHECK_PTR( _p_ ) CYG_MACRO_START \
CYG_UIT_PARAMCHECK( NADR != (_p_), E_PAR ); \
CYG_UIT_PARAMCHECK( NULL != (_p_), E_PAR ); \
CYG_MACRO_END
#endif // !CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
// ------------------------------------------------------------------------
// CYG_UITRON_FAIL_RETURN
//
// After a call which waits, it might return with success, or due to a
// timeout or a release wait (a forced escape from the waiting condition).
// This macro examines context and finds out which, then executes a return
// with the correct uITRON condition code.
#define CYG_UITRON_FAIL_RETURN_SELF( _self_ ) CYG_MACRO_START \
Cyg_Thread::cyg_reason reason = (_self_)->get_wake_reason(); \
if ( Cyg_Thread::TIMEOUT == reason ) \
return E_TMOUT; \
if ( Cyg_Thread::BREAK == reason ) \
return E_RLWAI; \
if ( Cyg_Thread::DESTRUCT == reason ) \
return E_DLT; \
return E_SYS; /* if no plausible reason was found */ \
CYG_MACRO_END
#define CYG_UITRON_FAIL_RETURN() CYG_MACRO_START \
Cyg_Thread *self = Cyg_Thread::self(); \
CYG_UITRON_FAIL_RETURN_SELF( self ); \
CYG_MACRO_END
// ------------------------------------------------------------------------
// Interrupts disabled?
#define CYG_UITRON_CHECK_CPU_UNLOC() \
CYG_UIT_PARAMCHECK( (Cyg_Interrupt::interrupts_enabled()), E_CTX )
// ------------------------------------------------------------------------
// Timing: is it in eCos clock ticks or milliSeconds (or something else?)
#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK
#ifdef CYGSEM_UITRON_TIME_IS_MILLISECONDS
extern Cyg_Clock::converter uit_clock_to_system;
extern Cyg_Clock::converter uit_clock_from_system;
#define CYG_UITRON_TIME_UIT_TO_SYS32( t ) \
Cyg_Clock::convert( (cyg_uint64)(t), &uit_clock_to_system )
#define CYG_UITRON_TIME_SYS_TO_UIT32( t ) \
Cyg_Clock::convert( (cyg_uint64)(t), &uit_clock_from_system )
// long (cyg_uint64) versions:
#define CYG_UITRON_TIME_UIT_TO_SYS64( t ) \
Cyg_Clock::convert( (t), &uit_clock_to_system )
#define CYG_UITRON_TIME_SYS_TO_UIT64( t ) \
Cyg_Clock::convert( (t), &uit_clock_from_system )
#else // Time is whatever the system clock is doing:
// Straight through - int (cyg_int32) argument versions:
#define CYG_UITRON_TIME_UIT_TO_SYS32( t ) ( t )
#define CYG_UITRON_TIME_SYS_TO_UIT32( t ) ( t )
// long (cyg_uint64) versions:
#define CYG_UITRON_TIME_UIT_TO_SYS64( t ) ( t )
#define CYG_UITRON_TIME_SYS_TO_UIT64( t ) ( t )
#endif
#endif // CYGVAR_KERNEL_COUNTERS_CLOCK - otherwise these should not be used.
// ------------------------------------------------------------------------
// the function definitions themselves:
// ******************************************************
// *** 6.5 C Language Interfaces ***
// ******************************************************
// - Task Management Functions
#ifdef CYGPKG_UITRON_TASKS_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Thread )
CYG_UIT_FUNC_INLINE
ER
cre_tsk ( ID tskid, T_CTSK *pk_ctsk )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_ctsk );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( TASKS, tskid );
Cyg_Thread *p = &(CYG_UITRON_OBJS( TASKS )[ tskid - 1 ]);
cyg_uint32 state = p->get_state();
if ( 0 == (state & Cyg_Thread::EXITED) )
ret = E_OBJ; // how did it get to be running?
else if ( ((INT)p->get_stack_size()) < pk_ctsk->stksz )
ret = E_NOMEM; // more stack requested than available
else {
CYG_UITRON_PTRS( TASKS )[ tskid - 1 ] =
new( p ) Cyg_Thread(
(CYG_ADDRWORD) pk_ctsk->itskpri,
(cyg_thread_entry *)pk_ctsk->task,
(CYG_ADDRWORD) 0,
// preserve the original name and stack:
#ifdef CYGVAR_KERNEL_THREADS_NAME
p->get_name(),
#else
NULL,
#endif
p->get_stack_base(),
p->get_stack_size() );
// but ensure the task state is dormant:
// (it is not constructed dormant, but suspended)
p->kill();
#ifdef CYGIMP_THREAD_PRIORITY
// and record the initial priority outside the task too.
CYG_UITRON_TASK_INITIAL_PRIORITY( tskid ) = pk_ctsk->itskpri;
#endif
}
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( TASKS )[ tskid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
cyg_uint32 state = p->get_state();
if ( state & Cyg_Thread::EXITED )
// just disconnect the pointer from its object
CYG_UITRON_PTRS( TASKS )[ tskid - 1 ] = NULL;
else
ret = E_OBJ;
Cyg_Scheduler::unlock();
return ret;
}
#endif // CYGPKG_UITRON_TASKS_CREATE_DELETE
CYG_UIT_FUNC_INLINE
ER
sta_tsk ( ID tskid, INT stacd )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
Cyg_Scheduler::lock();
cyg_uint32 state = p->get_state();
#ifdef CYGPKG_UITRON_TASKS_CREATE_DELETE
// there is a race condition with deleting the task
// so test it now that we have the scheduler locked
if ( p != CYG_UITRON_PTRS( TASKS )[ tskid - 1 ] )
ret = E_NOEXS;
else // NOTE dangling else to the next line:
#endif
if ( state & Cyg_Thread::EXITED ) {
p->reinitialize();
#ifdef CYGIMP_THREAD_PRIORITY
p->set_priority( CYG_UITRON_TASK_INITIAL_PRIORITY( tskid ) );
#endif
p->set_entry_data( (CYG_ADDRWORD)stacd );
p->force_resume();
}
else
ret = E_OBJ;
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
void
ext_tsk ( void )
{
Cyg_Thread::exit();
}
CYG_UIT_FUNC_INLINE
void
exd_tsk ( void )
{
#ifdef CYGPKG_UITRON_TASKS_CREATE_DELETE
Cyg_Thread *p;
Cyg_Scheduler::lock();
p = Cyg_Thread::self();
ID tskid = (p - (&cyg_uitron_TASKS[0])) + 1;
// just disconnect the pointer from its object
CYG_UITRON_PTRS( TASKS )[ tskid - 1 ] = NULL;
// Any associated storage management, and possibly calling the task
// destructor, is for future versions.
#else
// do nothing - deletion not supported so just exit...
#endif
Cyg_Thread::exit();
// does not return, does unlock the scheduler for us
}
CYG_UIT_FUNC_INLINE
ER
ter_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock();
if ( (0 != (Cyg_Thread::EXITED & p->get_state())) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
// already dormant
ret = E_OBJ;
else {
p->force_resume(); // let it run
p->kill(); // and set prio high so it runs RIGHT NOW!!
#ifdef CYGIMP_THREAD_PRIORITY
#if CYGINT_KERNEL_SCHEDULER_UNIQUE_PRIORITIES != 0
// see if we are already at prio 0:
if ( 0 == cyg_uitron_dis_dsp_old_priority )
// then dispatch is enabled, we are not at prio 0
#endif
p->set_priority( (cyg_priority) 0 );
// if we do not do this, then we are not running a strictly
// uITRON compatible scheduler - so just hope for the best.
#endif
}
Cyg_Scheduler::unlock();
#ifdef CYGIMP_THREAD_PRIORITY
#if CYGINT_KERNEL_SCHEDULER_UNIQUE_PRIORITIES == 0
if ( (E_OK == ret) && (0 != cyg_uitron_dis_dsp_old_priority) ) {
// then dispatching is disabled, so our prio is 0 too
Cyg_Thread::yield(); // so let the dying thread run;
Cyg_Thread::yield(); // no cost here of making sure.
}
#endif
#endif
return ret;
}
CYG_UIT_FUNC_INLINE
ER
dis_dsp ( void )
{
CYG_UITRON_CHECK_TASK_CONTEXT();
CYG_UITRON_CHECK_CPU_UNLOC();
Cyg_Scheduler::lock();
// Prevent preemption by going up to prio 0
if ( 0 == cyg_uitron_dis_dsp_old_priority ) {
#ifdef CYGIMP_THREAD_PRIORITY
Cyg_Thread *p = Cyg_Thread::self();
cyg_uitron_dis_dsp_old_priority = p->get_priority();
p->set_priority( 0 );
#else
cyg_uitron_dis_dsp_old_priority = 1;
#endif
}
Cyg_Scheduler::unlock();
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ena_dsp ( void )
{
CYG_UITRON_CHECK_TASK_CONTEXT();
CYG_UITRON_CHECK_CPU_UNLOC();
Cyg_Scheduler::lock();
// Enable dispatching (if disabled) and maybe switch threads
if ( 0 != cyg_uitron_dis_dsp_old_priority ) {
// We had prevented preemption by going up to prio 0
#ifdef CYGIMP_THREAD_PRIORITY
Cyg_Thread *p = Cyg_Thread::self();
p->set_priority( cyg_uitron_dis_dsp_old_priority );
p->to_queue_head(); // to ensure we continue to run
// if nobody higher pri
#endif
cyg_uitron_dis_dsp_old_priority = 0;
}
Cyg_Scheduler::unlock();
CYG_UITRON_CHECK_DISPATCH_ENABLED(); // NB: afterwards!
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
chg_pri ( ID tskid, PRI tskpri )
{
Cyg_Thread *p;
ER ret = E_OK;
if ( 0 == tskid ) {
p = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( p );
}
else
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
#ifdef CYGIMP_THREAD_PRIORITY
if ( 0 == tskpri )
// then use the initial priority [Level X]
tskpri = CYG_UITRON_TASK_INITIAL_PRIORITY( tskid );
#endif
CYG_UIT_PARAMCHECK( 0 < tskpri, E_PAR );
#ifdef CYGIMP_THREAD_PRIORITY
#if CYG_THREAD_MAX_PRIORITY < CYG_THREAD_MIN_PRIORITY
CYG_UIT_PARAMCHECK( CYG_THREAD_MAX_PRIORITY <= tskpri &&
tskpri <= CYG_THREAD_MIN_PRIORITY, E_PAR );
#else
CYG_UIT_PARAMCHECK( CYG_THREAD_MAX_PRIORITY >= tskpri &&
tskpri >= CYG_THREAD_MIN_PRIORITY, E_PAR );
#endif
// Handle changing our own prio specially, if dispatch disabled:
if ( 0 != cyg_uitron_dis_dsp_old_priority ) {
// our actual prio is 0 now and must remain so:
if ( Cyg_Thread::self() == p ) { // by whichever route p was set
// set the priority we will return to when dispatch is enabled:
cyg_uitron_dis_dsp_old_priority = (cyg_uint32)tskpri;
return E_OK;
}
}
Cyg_Scheduler::lock();
if ( (p->get_state() & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
ret = E_OBJ; // task is dormant
else
p->set_priority( (cyg_priority)tskpri );
Cyg_Scheduler::unlock();
#endif // CYGIMP_THREAD_PRIORITY got priorities at all?
return ret;
}
CYG_UIT_FUNC_INLINE
ER
rot_rdq ( PRI tskpri )
{
// zero means our level; easiet way is to yield() the CPU.
if ( 0 == tskpri ) {
Cyg_Thread::yield();
return E_OK;
}
#ifdef CYGIMP_THREAD_PRIORITY
#if CYG_THREAD_MAX_PRIORITY < CYG_THREAD_MIN_PRIORITY
CYG_UIT_PARAMCHECK( CYG_THREAD_MAX_PRIORITY <= tskpri &&
tskpri <= CYG_THREAD_MIN_PRIORITY, E_PAR );
#else
CYG_UIT_PARAMCHECK( CYG_THREAD_MAX_PRIORITY >= tskpri &&
tskpri >= CYG_THREAD_MIN_PRIORITY, E_PAR );
#endif
Cyg_Thread::rotate_queue( tskpri );
#endif // CYGIMP_THREAD_PRIORITY got priorities at all?
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
rel_wai ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock(); // get an atomic view of the task
if ( (p->get_state() & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
ret = E_OBJ; // task is dormant
else {
p->release();
// return E_OBJ if the thread was not sleeping
if ( Cyg_Thread::BREAK != p->get_wake_reason() )
ret = E_OBJ;
}
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
get_tid ( ID *p_tskid )
{
Cyg_Thread *self = Cyg_Thread::self();
CYG_UIT_PARAMCHECK_PTR( p_tskid );
if ( (&cyg_uitron_TASKS[0] <= (self)) &&
((self) < &cyg_uitron_TASKS[CYGNUM_UITRON_TASKS]) &&
(0 == Cyg_Scheduler::get_sched_lock()) )
// then I am a uITRON task and not in an interrupt or DSR
*p_tskid = (self - (&cyg_uitron_TASKS[0])) + 1;
else
*p_tskid = 0; // Otherwise, non-task portion
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_tsk ( T_RTSK *pk_rtsk, ID tskid )
{
Cyg_Thread *p;
if ( 0 == tskid ) {
p = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( p );
tskid = (p - (&cyg_uitron_TASKS[0])) + 1; // it gets used below
}
else
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rtsk );
pk_rtsk->exinf = NADR;
Cyg_Scheduler::lock(); // get an atomic view of the task
cyg_uint32 state = p->get_state();
if ( (state & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
pk_rtsk->tskstat = TTS_DMT;
else if ( state == Cyg_Thread::RUNNING )
// If it's us, it's running, else it's ready
pk_rtsk->tskstat = (Cyg_Thread::self() == p)
? TTS_RUN // RUN state (we are it)
: TTS_RDY; // READY state
else if ( state & Cyg_Thread::SUSPENDED )
pk_rtsk->tskstat =
(state & (Cyg_Thread::COUNTSLEEP | Cyg_Thread::SLEEPING))
? TTS_WAS // WAIT-SUSPEND state
: TTS_SUS; // SUSPEND state
else
pk_rtsk->tskstat =
(state & (Cyg_Thread::COUNTSLEEP | Cyg_Thread::SLEEPING))
? TTS_WAI // WAIT state
: 0; // Not sure what's happening here!
#ifdef CYGIMP_THREAD_PRIORITY
if ( TTS_DMT == pk_rtsk->tskstat )
pk_rtsk->tskpri = CYG_UITRON_TASK_INITIAL_PRIORITY( tskid );
else if ( (TTS_RUN == pk_rtsk->tskstat) &&
(0 != cyg_uitron_dis_dsp_old_priority) )
// then we are it and dispatching is disabled, so
// report our "real" priority - it is 0 in the kernel at the moment
pk_rtsk->tskpri = cyg_uitron_dis_dsp_old_priority;
else
pk_rtsk->tskpri = p->get_priority();
#else
pk_rtsk->tskpri = -1; // Not applicable
#endif
Cyg_Scheduler::unlock();
return E_OK;
}
// - Task-Dependent Synchronization Functions
CYG_UIT_FUNC_INLINE
ER
sus_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock(); // get an atomic view of the task
if ( (p->get_state() & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
ret = E_OBJ; // task is dormant
else
p->suspend();
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
rsm_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock(); // get an atomic view of the task
cyg_uint32 state = p->get_state();
if ( 0 == (Cyg_Thread::SUSPENDED & state) )
ret = E_OBJ; // thread is not suspended
else
p->resume();
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
frsm_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock(); // get an atomic view of the task
cyg_uint32 state = p->get_state();
if ( 0 == (Cyg_Thread::SUSPENDED & state) )
ret = E_OBJ; // thread is not suspended
else
p->force_resume();
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
slp_tsk ( void )
{
Cyg_Thread *self = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( self );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
// do this now for the case when no sleeping actually occurs
self->set_wake_reason( Cyg_Thread::DONE );
Cyg_Thread::counted_sleep();
if ( Cyg_Thread::DONE != self->get_wake_reason() )
CYG_UITRON_FAIL_RETURN_SELF( self );
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
tslp_tsk ( TMO tmout )
{
Cyg_Thread *self = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( self );
CYG_UIT_PARAMCHECK( -1 <= tmout, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
// do this now for the case when no sleeping actually occurs
self->set_wake_reason( Cyg_Thread::DONE );
// note that TMO_POL is not treated specially, though it
// happens to work almost as a poll (some sleeping may occur)
if ( TMO_FEVR == tmout )
Cyg_Thread::counted_sleep();
else
Cyg_Thread::counted_sleep(
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( Cyg_Thread::DONE != self->get_wake_reason() )
CYG_UITRON_FAIL_RETURN_SELF( self );
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
wup_tsk ( ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK( Cyg_Thread::self() != p, E_OBJ );
Cyg_Scheduler::lock(); // get an atomic view of the task
if ( (p->get_state() & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
ret = E_OBJ; // task is dormant
else
p->counted_wake();
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
can_wup ( INT *p_wupcnt, ID tskid )
{
Cyg_Thread *p;
ER ret = E_OK;
if ( 0 == tskid ) {
p = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( p );
}
else
CYG_UITRON_CHECK_AND_GETP_TASKS( tskid, p );
CYG_UIT_PARAMCHECK_PTR( p_wupcnt );
Cyg_Scheduler::lock(); // get an atomic view of the task
if ( (p->get_state() & (Cyg_Thread::EXITED | Cyg_Thread::CREATING)) ||
(Cyg_Thread::EXIT == p->get_wake_reason()) )
ret = E_OBJ; // task is dormant
else {
cyg_uint32 result = p->cancel_counted_wake();
*p_wupcnt = result;
}
Cyg_Scheduler::unlock();
return ret;
}
// - Synchronization and Communication Functions
#ifdef CYGPKG_UITRON_SEMAS
#if 0 < CYG_UITRON_NUM( SEMAS )
#ifdef CYGPKG_UITRON_SEMAS_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Counting_Semaphore2 )
CYG_UIT_FUNC_INLINE
ER
cre_sem ( ID semid, T_CSEM *pk_csem )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_csem );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( SEMAS, semid );
if ( TA_TFIFO != pk_csem->sematr )
ret = E_RSATR;
else
CYG_UITRON_PTRS( SEMAS )[ semid - 1 ] =
new( &(CYG_UITRON_OBJS( SEMAS )[ semid - 1 ]) )
Cyg_Counting_Semaphore2( (cyg_count32)pk_csem->isemcnt );
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_sem ( ID semid )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( SEMAS )[ semid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
CYG_UITRON_PTRS( SEMAS )[ semid - 1 ] = NULL;
p->~Cyg_Counting_Semaphore2();
Cyg_Scheduler::unlock();
return E_OK;
}
#endif // CYGPKG_UITRON_SEMAS_CREATE_DELETE
CYG_UIT_FUNC_INLINE
ER
sig_sem( ID semid )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
p->post();
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
wai_sem( ID semid )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
cyg_bool result = p->wait();
if ( !result )
CYG_UITRON_FAIL_RETURN();
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
preq_sem ( ID semid )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
cyg_bool result = p->trywait();
if ( !result )
return E_TMOUT;
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
twai_sem ( ID semid, TMO tmout )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( tmout );
// do this now for the case when no sleeping actually occurs
Cyg_Thread *self = Cyg_Thread::self();
self->set_wake_reason( Cyg_Thread::TIMEOUT );
cyg_bool result;
if ( TMO_FEVR == tmout )
result = p->wait();
else if ( TMO_POL == tmout )
result = p->trywait();
else
result = p->wait(
Cyg_Clock::real_time_clock->current_value() +
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( ! result )
CYG_UITRON_FAIL_RETURN_SELF( self );
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
ref_sem ( T_RSEM *pk_rsem, ID semid )
{
Cyg_Counting_Semaphore2 *p;
CYG_UITRON_CHECK_AND_GETP_SEMAS( semid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rsem );
pk_rsem->exinf = NADR;
pk_rsem->wtsk = p->waiting();
pk_rsem->semcnt = p->peek();
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( SEMAS )
#endif // CYGPKG_UITRON_SEMAS
#ifdef CYGPKG_UITRON_FLAGS
#if 0 < CYG_UITRON_NUM( FLAGS )
#ifdef CYGPKG_UITRON_FLAGS_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Flag )
CYG_UIT_FUNC_INLINE
ER
cre_flg ( ID flgid, T_CFLG *pk_cflg )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_cflg );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( FLAGS, flgid );
if ( 0 != ((~(TA_WMUL | TA_WSGL)) & pk_cflg->flgatr) )
ret = E_RSATR;
else
CYG_UITRON_PTRS( FLAGS )[ flgid - 1 ] =
new( &(CYG_UITRON_OBJS( FLAGS )[ flgid - 1 ]) )
Cyg_Flag( (Cyg_FlagValue) pk_cflg->iflgptn );
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_flg ( ID flgid )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( FLAGS )[ flgid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
CYG_UITRON_PTRS( FLAGS )[ flgid - 1 ] = NULL;
p->~Cyg_Flag();
Cyg_Scheduler::unlock();
return E_OK;
}
#endif // CYGPKG_UITRON_FLAGS_CREATE_DELETE
CYG_UIT_FUNC_INLINE
ER
set_flg ( ID flgid, UINT setptn )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
p->setbits( setptn );
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
clr_flg ( ID flgid, UINT clrptn )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
p->maskbits( clrptn );
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
wai_flg ( UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
CYG_UIT_PARAMCHECK_PTR( p_flgptn );
CYG_UIT_PARAMCHECK( 0 == (wfmode & ~Cyg_Flag::MASK), E_PAR );
CYG_UIT_PARAMCHECK( 0 != waiptn, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
// check we can use the wfmode value unchanged
CYG_ASSERT( Cyg_Flag::AND == TWF_ANDW, "Flag AND value bad" );
CYG_ASSERT( Cyg_Flag::OR == TWF_ORW, "Flag OR value bad" );
CYG_ASSERT( Cyg_Flag::CLR == TWF_CLR, "Flag CLR value bad" );
UINT result = p->wait( waiptn, wfmode );
if ( ! result )
CYG_UITRON_FAIL_RETURN();
*p_flgptn = result;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
pol_flg ( UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
CYG_UIT_PARAMCHECK_PTR( p_flgptn );
CYG_UIT_PARAMCHECK( 0 == (wfmode & ~Cyg_Flag::MASK), E_PAR );
CYG_UIT_PARAMCHECK( 0 != waiptn, E_PAR );
// check we can use the wfmode value unchanged
CYG_ASSERT( Cyg_Flag::AND == TWF_ANDW, "Flag AND value bad" );
CYG_ASSERT( Cyg_Flag::OR == TWF_ORW, "Flag OR value bad" );
CYG_ASSERT( Cyg_Flag::CLR == TWF_CLR, "Flag CLR value bad" );
UINT result = p->poll( waiptn, wfmode );
if ( ! result )
return E_TMOUT;
*p_flgptn = result;
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
twai_flg ( UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode,
TMO tmout )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
CYG_UIT_PARAMCHECK_PTR( p_flgptn );
CYG_UIT_PARAMCHECK( 0 == (wfmode & ~Cyg_Flag::MASK), E_PAR );
CYG_UIT_PARAMCHECK( 0 != waiptn, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( tmout );
// check we can use the wfmode value unchanged
CYG_ASSERT( Cyg_Flag::AND == TWF_ANDW, "Flag AND value bad" );
CYG_ASSERT( Cyg_Flag::OR == TWF_ORW, "Flag OR value bad" );
CYG_ASSERT( Cyg_Flag::CLR == TWF_CLR, "Flag CLR value bad" );
// do this now for the case when no sleeping actually occurs
Cyg_Thread *self = Cyg_Thread::self();
self->set_wake_reason( Cyg_Thread::TIMEOUT );
UINT result;
if ( TMO_FEVR == tmout )
result = p->wait( waiptn, wfmode );
else if ( TMO_POL == tmout )
result = p->poll( waiptn, wfmode );
else
result = p->wait( waiptn, wfmode,
Cyg_Clock::real_time_clock->current_value() +
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( ! result )
CYG_UITRON_FAIL_RETURN_SELF( self );
*p_flgptn = result;
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
ref_flg ( T_RFLG *pk_rflg, ID flgid )
{
Cyg_Flag *p;
CYG_UITRON_CHECK_AND_GETP_FLAGS( flgid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rflg );
pk_rflg->exinf = NADR;
pk_rflg->wtsk = p->waiting();
pk_rflg->flgptn = p->peek();
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( FLAGS )
#endif // CYGPKG_UITRON_FLAGS
#ifdef CYGPKG_UITRON_MBOXES
#if 0 < CYG_UITRON_NUM( MBOXES )
#ifdef CYGPKG_UITRON_MBOXES_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Mbox )
CYG_UIT_FUNC_INLINE
ER
cre_mbx ( ID mbxid, T_CMBX* pk_cmbx )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_cmbx );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( MBOXES, mbxid );
if ( ((ATR)(TA_TFIFO + TA_MFIFO)) != pk_cmbx->mbxatr )
ret = E_RSATR;
else
CYG_UITRON_PTRS( MBOXES )[ mbxid - 1 ] =
new( &(CYG_UITRON_OBJS( MBOXES )[ mbxid - 1 ]) )
Cyg_Mbox();
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_mbx ( ID mbxid )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( MBOXES )[ mbxid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
CYG_UITRON_PTRS( MBOXES )[ mbxid - 1 ] = NULL;
p->~Cyg_Mbox();
Cyg_Scheduler::unlock();
return E_OK;
}
#endif // CYGPKG_UITRON_MBOXES_CREATE_DELETE
// This bit of unpleasantness is to allow uITRON programs to send a NULL
// message - if permitted by the parameter checking.
//
// NULL is used internally to mean no message; but -1 is fine. So we send
// a NULL as a NADR and if we see a NULL coming back, change it to a NADR.
//
// One hopes that often this will be optimized out, since the one or both
// of these being true has been detected and errored out just above.
#ifdef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
// represent a NULL as NADR internally
#define CYG_UIT_TMSG_FIXUP_IN( _p_ ) CYG_MACRO_START \
if ( NULL == (_p_) ) \
(_p_) = (T_MSG *)NADR; \
CYG_MACRO_END
// we get a NADR back sometimes, meaning NULL
#define CYG_UIT_TMSG_FIXUP_OUT( _p_ ) CYG_MACRO_START \
if ( NADR == (_p_) ) \
(_p_) = (T_MSG *)NULL; \
CYG_MACRO_END
#else
// NULL is checked for and makes an error
#define CYG_UIT_TMSG_FIXUP_IN( _p_ ) CYG_EMPTY_STATEMENT
#define CYG_UIT_TMSG_FIXUP_OUT( _p_ ) CYG_EMPTY_STATEMENT
#endif
// and sometimes either in status enquiries
#define CYG_UIT_TMSG_FIXUP_ALL( _p_ ) CYG_MACRO_START \
if ( NULL == (_p_) ) \
(_p_) = (T_MSG *)NADR; \
else if ( NADR == (_p_) ) \
(_p_) = (T_MSG *)NULL; \
CYG_MACRO_END
CYG_UIT_FUNC_INLINE
ER
snd_msg ( ID mbxid, T_MSG *pk_msg )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
CYG_UIT_PARAMCHECK_PTR( pk_msg );
CYG_UIT_TMSG_FIXUP_IN( pk_msg );
cyg_bool result = p->tryput( (void *)pk_msg );
if ( ! result )
return E_QOVR;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
rcv_msg ( T_MSG **ppk_msg, ID mbxid )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
CYG_UIT_PARAMCHECK_PTR( ppk_msg );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
T_MSG *result = (T_MSG *)p->get();
if ( ! result )
CYG_UITRON_FAIL_RETURN();
CYG_UIT_TMSG_FIXUP_OUT( result );
*ppk_msg = result;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
prcv_msg ( T_MSG **ppk_msg, ID mbxid )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
CYG_UIT_PARAMCHECK_PTR( ppk_msg );
T_MSG *result = (T_MSG *)p->tryget();
if ( ! result )
return E_TMOUT;
CYG_UIT_TMSG_FIXUP_OUT( result );
*ppk_msg = result;
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
trcv_msg ( T_MSG **ppk_msg, ID mbxid, TMO tmout )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
CYG_UIT_PARAMCHECK_PTR( ppk_msg );
CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( tmout );
// do this now for the case when no sleeping actually occurs
Cyg_Thread *self = Cyg_Thread::self();
self->set_wake_reason( Cyg_Thread::TIMEOUT );
T_MSG *result;
if ( TMO_FEVR == tmout )
result = (T_MSG *)p->get();
else if ( TMO_POL == tmout )
result = (T_MSG *)p->tryget();
else
result = (T_MSG *)p->get(
Cyg_Clock::real_time_clock->current_value() +
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( ! result )
CYG_UITRON_FAIL_RETURN_SELF( self );
CYG_UIT_TMSG_FIXUP_OUT( result );
*ppk_msg = result;
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
ref_mbx ( T_RMBX *pk_rmbx, ID mbxid )
{
Cyg_Mbox *p;
CYG_UITRON_CHECK_AND_GETP_MBOXES( mbxid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rmbx );
pk_rmbx->exinf = NADR;
pk_rmbx->wtsk = p->waiting_to_get();
pk_rmbx->pk_msg = (T_MSG *)p->peek_item();
CYG_UIT_TMSG_FIXUP_ALL( pk_rmbx->pk_msg );
return E_OK;
}
#undef CYG_UIT_TMSG_FIXUP_IN
#undef CYG_UIT_TMSG_FIXUP_OUT
#undef CYG_UIT_TMSG_FIXUP_ALL
#endif // 0 < CYG_UITRON_NUM( MBOXES )
#endif // CYGPKG_UITRON_MBOXES
// - Extended Synchronization and Communication Functions
#if 0 // NOT SUPPORTED
ER cre_mbf ( ID mbfid, T_CMBF *pk_cmbf );
ER del_mbf ( ID mbfid );
ER snd_mbf ( ID mbfid, VP msg, INT msgsz );
ER psnd_mbf ( ID mbfid, VP msg, INT msgsz );
ER tsnd_mbf ( ID mbfid, VP msg, INT msgsz, TMO tmout );
ER rcv_mbf ( VP msg, INT *p_msgsz, ID mbfid );
ER prcv_mbf ( VP msg, INT *p_msgsz, ID mbfid );
ER trcv_mbf ( VP msg, INT *p_msgsz, ID mbfid, TMO tmout );
ER ref_mbf ( T_RMBF *pk_rmbf, ID mbfid );
ER cre_por ( ID porid, T_CPOR *pk_cpor );
ER del_por ( ID porid );
ER cal_por ( VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT
cmsgsz );
ER pcal_por ( VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT
cmsgsz );
ER tcal_por ( VP msg, INT *p_rmsgsz, ID porid, UINT calptn, INT
cmsgsz, TMO tmout );
ER acp_por ( RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT
acpptn );
ER pacp_por ( RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT
acpptn );
ER tacp_por ( RNO *p_rdvno, VP msg, INT *p_cmsgsz, ID porid, UINT
acpptn, TMO tmout );
ER fwd_por ( ID porid, UINT calptn, RNO rdvno, VP msg, INT cmsgsz
);
ER rpl_rdv ( RNO rdvno, VP msg, INT rmsgsz );
ER ref_por ( T_RPOR *pk_rpor, ID porid );
#endif
// - Interrupt Management Functions
#if 0 // NOT SUPPORTED
ER def_int ( UINT dintno, T_DINT *pk_dint );
void ret_wup ( ID tskid );
#endif
CYG_UIT_FUNC_INLINE
ER
loc_cpu ( void )
{
CYG_UITRON_CHECK_TASK_CONTEXT();
Cyg_Scheduler::lock();
// Prevent preemption by going up to prio 0
if ( 0 == cyg_uitron_dis_dsp_old_priority ) {
#ifdef CYGIMP_THREAD_PRIORITY
Cyg_Thread *p = Cyg_Thread::self();
cyg_uitron_dis_dsp_old_priority = p->get_priority();
p->set_priority( 0 );
#else
cyg_uitron_dis_dsp_old_priority = 1;
#endif
}
Cyg_Interrupt::disable_interrupts();
Cyg_Scheduler::unlock();
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
unl_cpu ( void )
{
CYG_UITRON_CHECK_TASK_CONTEXT();
Cyg_Scheduler::lock();
// Enable dispatching (if disabled) and maybe switch threads
if ( 0 != cyg_uitron_dis_dsp_old_priority ) {
// We had prevented preemption by going up to prio 0
#ifdef CYGIMP_THREAD_PRIORITY
Cyg_Thread *p = Cyg_Thread::self();
p->set_priority( cyg_uitron_dis_dsp_old_priority );
#endif
cyg_uitron_dis_dsp_old_priority = 0;
}
Cyg_Interrupt::enable_interrupts();
Cyg_Scheduler::unlock();
CYG_UITRON_CHECK_DISPATCH_ENABLED(); // NB: afterwards!
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
dis_int ( UINT eintno )
{
CYG_INTERRUPT_STATE old_ints;
#if 0 < CYGNUM_HAL_ISR_MIN
CYG_UIT_PARAMCHECK( CYGNUM_HAL_ISR_MIN <= eintno, E_PAR );
#endif
CYG_UIT_PARAMCHECK( CYGNUM_HAL_ISR_MAX >= eintno, E_PAR );
HAL_DISABLE_INTERRUPTS(old_ints);
HAL_INTERRUPT_MASK( eintno );
HAL_RESTORE_INTERRUPTS(old_ints);
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ena_int ( UINT eintno )
{
CYG_INTERRUPT_STATE old_ints;
#if 0 < CYGNUM_HAL_ISR_MIN
CYG_UIT_PARAMCHECK( CYGNUM_HAL_ISR_MIN <= eintno, E_PAR );
#endif
CYG_UIT_PARAMCHECK( CYGNUM_HAL_ISR_MAX >= eintno, E_PAR );
HAL_DISABLE_INTERRUPTS(old_ints);
HAL_INTERRUPT_UNMASK( eintno );
HAL_RESTORE_INTERRUPTS(old_ints);
return E_OK;
}
#if 0 // NOT SUPPORTED
ER chg_iXX ( UINT iXXXX );
ER ref_iXX ( UINT *p_iXXXX );
#endif
// - Memorypool Management Functions
#ifdef CYGPKG_UITRON_MEMPOOLVAR
#if 0 < CYG_UITRON_NUM( MEMPOOLVAR )
#ifdef CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Mempool_Variable )
CYG_UIT_FUNC_INLINE
ER
cre_mpl ( ID mplid, T_CMPL *pk_cmpl )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_cmpl );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( MEMPOOLVAR, mplid );
Cyg_Mempool_Variable *p = &(CYG_UITRON_OBJS( MEMPOOLVAR )[ mplid - 1 ]);
Cyg_Mempool_Status stat;
// preserve the original memory area to use
p->get_status( CYG_MEMPOOL_STAT_ORIGBASE|CYG_MEMPOOL_STAT_ORIGSIZE, stat );
if ( stat.origsize < pk_cmpl->mplsz )
ret = E_NOMEM;
else if ( TA_TFIFO != pk_cmpl->mplatr )
ret = E_RSATR;
else
CYG_UITRON_PTRS( MEMPOOLVAR )[ mplid - 1 ] =
new( p ) Cyg_Mempool_Variable(
const_cast<cyg_uint8 *>(stat.origbase), stat.origsize );
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_mpl ( ID mplid )
{
Cyg_Mempool_Variable *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( MEMPOOLVAR )[ mplid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
CYG_UITRON_PTRS( MEMPOOLVAR )[ mplid - 1 ] = NULL;
p->~Cyg_Mempool_Variable();
Cyg_Scheduler::unlock();
return E_OK;
}
#endif // CYGPKG_UITRON_MEMPOOLVAR_CREATE_DELETE
CYG_UIT_FUNC_INLINE
ER
get_blk ( VP *p_blk, ID mplid, INT blksz )
{
Cyg_Mempool_Variable *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
CYG_UIT_PARAMCHECK_PTR( p_blk );
CYG_UIT_PARAMCHECK( blksz > 0, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
VP result = (VP)p->alloc(blksz);
if ( ! result )
CYG_UITRON_FAIL_RETURN();
*p_blk = result;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
pget_blk ( VP *p_blk, ID mplid, INT blksz )
{
Cyg_Mempool_Variable *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
CYG_UIT_PARAMCHECK_PTR( p_blk );
CYG_UIT_PARAMCHECK( blksz > 0, E_PAR );
VP result = (VP)p->try_alloc(blksz);
if ( ! result )
return E_TMOUT;
*p_blk = result;
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
tget_blk ( VP *p_blk, ID mplid, INT blksz, TMO tmout )
{
Cyg_Mempool_Variable *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
CYG_UIT_PARAMCHECK_PTR( p_blk );
CYG_UIT_PARAMCHECK( blksz > 0, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( tmout );
// do this now for the case when no sleeping actually occurs
Cyg_Thread *self = Cyg_Thread::self();
self->set_wake_reason( Cyg_Thread::TIMEOUT );
VP result;
if ( TMO_FEVR == tmout )
result = p->alloc(blksz);
else if ( TMO_POL == tmout )
result = p->try_alloc(blksz);
else
result = p->alloc( blksz,
Cyg_Clock::real_time_clock->current_value() +
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( ! result )
CYG_UITRON_FAIL_RETURN_SELF( self );
*p_blk = result;
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
rel_blk ( ID mplid, VP blk )
{
Cyg_Mempool_Variable *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
CYG_UIT_PARAMCHECK_PTR( blk );
cyg_bool result = p->free( (cyg_uint8 *)blk );
if ( ! result )
return E_PAR;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_mpl ( T_RMPL *pk_rmpl, ID mplid )
{
Cyg_Mempool_Variable *p;
Cyg_Mempool_Status stat;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLVAR( mplid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rmpl );
p->get_status( CYG_MEMPOOL_STAT_WAITING|
CYG_MEMPOOL_STAT_TOTALFREE|
CYG_MEMPOOL_STAT_MAXFREE, stat );
pk_rmpl->exinf = NADR;
pk_rmpl->wtsk = stat.waiting;
pk_rmpl->frsz = stat.totalfree;
pk_rmpl->maxsz = stat.maxfree;
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( MEMPOOLVAR )
#endif // CYGPKG_UITRON_MEMPOOLVAR
#ifdef CYGPKG_UITRON_MEMPOOLFIXED
#if 0 < CYG_UITRON_NUM( MEMPOOLFIXED )
#ifdef CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE
CYG_UITRON_NEWFUNCTION( Cyg_Mempool_Fixed )
CYG_UIT_FUNC_INLINE
ER
cre_mpf ( ID mpfid, T_CMPF *pk_cmpf )
{
ER ret = E_OK;
CYG_UIT_PARAMCHECK_PTR( pk_cmpf );
CYG_UITRON_CHECK_NO_OBJ_LOCK_SCHED( MEMPOOLFIXED, mpfid );
Cyg_Mempool_Fixed *p = &(CYG_UITRON_OBJS( MEMPOOLFIXED )[ mpfid - 1 ]);
Cyg_Mempool_Status stat;
// preserve the original memory area to use
p->get_status( CYG_MEMPOOL_STAT_ORIGBASE|CYG_MEMPOOL_STAT_ORIGSIZE, stat );
if ( stat.origsize < (pk_cmpf->blfsz * (pk_cmpf->mpfcnt + 1)) )
ret = E_NOMEM;
else if ( TA_TFIFO != pk_cmpf->mpfatr )
ret = E_RSATR;
else
CYG_UITRON_PTRS( MEMPOOLFIXED )[ mpfid - 1 ] =
new( p )
Cyg_Mempool_Fixed( const_cast<cyg_uint8 *>(stat.origbase),
stat.origsize, (CYG_ADDRWORD)pk_cmpf->blfsz );
Cyg_Scheduler::unlock();
return ret;
}
CYG_UIT_FUNC_INLINE
ER
del_mpf ( ID mpfid )
{
Cyg_Mempool_Fixed *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
Cyg_Scheduler::lock();
// deal with the race condition here
if ( p != CYG_UITRON_PTRS( MEMPOOLFIXED )[ mpfid - 1 ] ) {
Cyg_Scheduler::unlock();
return E_NOEXS;
}
CYG_UITRON_PTRS( MEMPOOLFIXED )[ mpfid - 1 ] = NULL;
p->~Cyg_Mempool_Fixed();
Cyg_Scheduler::unlock();
return E_OK;
}
#endif // CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE
CYG_UIT_FUNC_INLINE
ER
get_blf ( VP *p_blf, ID mpfid )
{
Cyg_Mempool_Fixed *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
CYG_UIT_PARAMCHECK_PTR( p_blf );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
VP result = (VP)p->alloc();
if ( ! result )
CYG_UITRON_FAIL_RETURN();
*p_blf = result;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
pget_blf ( VP *p_blf, ID mpfid )
{
Cyg_Mempool_Fixed *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
CYG_UIT_PARAMCHECK_PTR( p_blf );
VP result = (VP)p->try_alloc();
if ( ! result )
return E_TMOUT;
*p_blf = result;
return E_OK;
}
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
tget_blf ( VP *p_blf, ID mpfid, TMO tmout )
{
Cyg_Mempool_Fixed *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
CYG_UIT_PARAMCHECK_PTR( p_blf );
CYG_UITRON_CHECK_DISPATCH_ENABLED_TMO( tmout );
// do this now for the case when no sleeping actually occurs
Cyg_Thread *self = Cyg_Thread::self();
self->set_wake_reason( Cyg_Thread::TIMEOUT );
VP result;
if ( TMO_FEVR == tmout )
result = p->alloc();
else if ( TMO_POL == tmout )
result = p->try_alloc();
else
result = p->alloc(
Cyg_Clock::real_time_clock->current_value() +
(cyg_tick_count)CYG_UITRON_TIME_UIT_TO_SYS32( tmout ) );
if ( ! result )
CYG_UITRON_FAIL_RETURN_SELF( self );
*p_blf = result;
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
rel_blf ( ID mpfid, VP blf )
{
Cyg_Mempool_Fixed *p;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
CYG_UIT_PARAMCHECK_PTR( blf );
cyg_bool result = p->free( (cyg_uint8 *)blf );
if ( ! result )
return E_PAR;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_mpf ( T_RMPF *pk_rmpf, ID mpfid )
{
Cyg_Mempool_Fixed *p;
Cyg_Mempool_Status stat;
CYG_UITRON_CHECK_AND_GETP_MEMPOOLFIXED( mpfid, p );
CYG_UIT_PARAMCHECK_PTR( pk_rmpf );
p->get_status( CYG_MEMPOOL_STAT_WAITING|
CYG_MEMPOOL_STAT_TOTALFREE|
CYG_MEMPOOL_STAT_TOTALALLOCATED|
CYG_MEMPOOL_STAT_BLOCKSIZE, stat );
pk_rmpf->exinf = NADR;
pk_rmpf->wtsk = stat.waiting;
pk_rmpf->frbcnt = stat.totalfree / stat.blocksize;
// these two are "implementation dependent" ie. eCos only
pk_rmpf->numbcnt = stat.totalallocated / stat.blocksize;
pk_rmpf->bsize = stat.blocksize;
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( MEMPOOLFIXED )
#endif // CYGPKG_UITRON_MEMPOOLFIXED
// - Time Management Functions
#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK
CYG_UIT_FUNC_INLINE
ER
set_tim ( SYSTIME *pk_tim )
{
CYG_UIT_PARAMCHECK_PTR( pk_tim );
Cyg_Clock::real_time_clock->set_value(
CYG_UITRON_TIME_UIT_TO_SYS64( *pk_tim ) );
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
get_tim ( SYSTIME *pk_tim )
{
CYG_UIT_PARAMCHECK_PTR( pk_tim );
*pk_tim = CYG_UITRON_TIME_SYS_TO_UIT64(
Cyg_Clock::real_time_clock->current_value() );
return E_OK;
}
#endif // CYGVAR_KERNEL_COUNTERS_CLOCK
#ifdef CYGFUN_KERNEL_THREADS_TIMER
CYG_UIT_FUNC_INLINE
ER
dly_tsk ( DLYTIME dlytim )
{
CYG_UIT_PARAMCHECK( 0 <= dlytim, E_PAR );
CYG_UITRON_CHECK_DISPATCH_ENABLED();
if ( 0 >= dlytim )
return E_OK;
Cyg_Thread *self = Cyg_Thread::self();
CYG_UITRON_CHECK_TASK_CONTEXT_SELF( self );
self->delay( CYG_UITRON_TIME_UIT_TO_SYS64( dlytim ) );
if ( Cyg_Thread::DONE != self->get_wake_reason() )
CYG_UITRON_FAIL_RETURN_SELF( self );
return E_OK;
}
#endif // CYGFUN_KERNEL_THREADS_TIMER
#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK
#ifdef CYGPKG_UITRON_CYCLICS
#if 0 < CYG_UITRON_NUM( CYCLICS )
CYG_UIT_FUNC_INLINE
ER
def_cyc ( HNO cycno, T_DCYC *pk_dcyc )
{
// pk_dcyc->cycatr is ignored
// The only relevant attribute is TA_HLNG/TA_ASM.
// This can be ignored as assembler routines are defined to be
// more conservative with registers than the procedure call standard.
cyg_tick_count t;
Cyg_Timer *p;
CYG_UITRON_CHECK_AND_GETHDLR( CYCLICS, cycno, p );
#ifndef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
CYG_UIT_PARAMCHECK( NULL != pk_dcyc, E_PAR );
#endif
if( NADR == pk_dcyc ) {
p->~Cyg_Timer();
return E_OK;
}
CYG_UIT_PARAMCHECK( 0 == (pk_dcyc->cycact & ~TCY_ON), E_PAR );
CYG_UIT_PARAMCHECK( 0 < pk_dcyc->cyctim, E_PAR );
t = CYG_UITRON_TIME_UIT_TO_SYS64( pk_dcyc->cyctim );
p->initialize(
Cyg_Clock::real_time_clock,
(cyg_alarm_fn *)pk_dcyc->cychdr,
(CYG_ADDRWORD)pk_dcyc->exinf,
Cyg_Clock::real_time_clock->current_value() + t,
t,
pk_dcyc->cycact);
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
act_cyc ( HNO cycno, UINT cycact )
{
Cyg_Timer *p;
CYG_UITRON_CHECK_AND_GETHDLR( CYCLICS, cycno, p );
CYG_UIT_PARAMCHECK( p->is_initialized(), E_NOEXS);
CYG_UIT_PARAMCHECK( 0 == (cycact & ~(TCY_ON | TCY_INI)), E_PAR );
p->activate(cycact);
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_cyc ( T_RCYC *pk_rcyc, HNO cycno )
{
Cyg_Timer *p;
cyg_tick_count t;
CYG_UITRON_CHECK_AND_GETHDLR( CYCLICS, cycno, p );
CYG_UIT_PARAMCHECK( p->is_initialized(), E_NOEXS);
CYG_UIT_PARAMCHECK_PTR( pk_rcyc );
pk_rcyc->exinf = (VP)p->get_data();
Cyg_Scheduler::lock();
t = p->get_trigger() - Cyg_Clock::real_time_clock->current_value();
Cyg_Scheduler::unlock();
pk_rcyc->lfttim = CYG_UITRON_TIME_SYS_TO_UIT64( t );
pk_rcyc->cycact = (UINT)p->is_enabled();
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( CYCLICS )
#endif // CYGPKG_UITRON_CYCLICS
#ifdef CYGPKG_UITRON_ALARMS
#if 0 < CYG_UITRON_NUM( ALARMS )
CYG_UIT_FUNC_INLINE
ER
def_alm ( HNO almno, T_DALM *pk_dalm )
{
Cyg_Timer *p;
cyg_tick_count t, now;
CYG_UITRON_CHECK_AND_GETHDLR( ALARMS, almno, p );
#ifndef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
CYG_UIT_PARAMCHECK( NULL != pk_dalm, E_PAR );
#endif
if( NADR == pk_dalm ) {
p->~Cyg_Timer();
return E_OK;
}
CYG_UIT_PARAMCHECK( 0 == (pk_dalm->tmmode & ~TTM_REL), E_PAR );
CYG_UIT_PARAMCHECK( 0 < pk_dalm->almtim, E_PAR );
// make the time arithmetic safe without locking
now = Cyg_Clock::real_time_clock->current_value();
t = CYG_UITRON_TIME_UIT_TO_SYS64( pk_dalm->almtim );
if( TTM_REL & pk_dalm->tmmode )
t += now;
CYG_UIT_PARAMCHECK( now < t, E_PAR );
p->initialize(Cyg_Clock::real_time_clock,
(cyg_alarm_fn *)pk_dalm->almhdr,
(CYG_ADDRWORD)pk_dalm->exinf,
t, 0, Cyg_Timer::ENABLE);
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_alm ( T_RALM *pk_ralm, HNO almno )
{
Cyg_Timer *p;
cyg_tick_count t;
CYG_UITRON_CHECK_AND_GETHDLR( ALARMS, almno, p );
CYG_UIT_PARAMCHECK_PTR( pk_ralm );
CYG_UIT_PARAMCHECK( p->is_initialized(), E_NOEXS);
Cyg_Scheduler::lock();
t = p->get_trigger() - Cyg_Clock::real_time_clock->current_value();
Cyg_Scheduler::unlock();
pk_ralm->exinf = (VP)p->get_data();
pk_ralm->lfttim = CYG_UITRON_TIME_SYS_TO_UIT64( t );
return E_OK;
}
#endif // 0 < CYG_UITRON_NUM( ALARMS )
#endif // CYGPKG_UITRON_ALARMS
#endif // CYGVAR_KERNEL_COUNTERS_CLOCK
// - System Management Functions
CYG_UIT_FUNC_INLINE
ER
get_ver ( T_VER *pk_ver )
{
CYG_UIT_PARAMCHECK_PTR( pk_ver );
pk_ver->maker = CYGNUM_UITRON_VER_MAKER;
pk_ver->id = CYGNUM_UITRON_VER_ID;
pk_ver->spver = CYGNUM_UITRON_VER_SPVER;
pk_ver->prver = CYGNUM_UITRON_VER_PRVER;
pk_ver->prno[0] = CYGNUM_UITRON_VER_PRNO_0;
pk_ver->prno[1] = CYGNUM_UITRON_VER_PRNO_1;
pk_ver->prno[2] = CYGNUM_UITRON_VER_PRNO_2;
pk_ver->prno[3] = CYGNUM_UITRON_VER_PRNO_3;
pk_ver->cpu = CYGNUM_UITRON_VER_CPU;
pk_ver->var = CYGNUM_UITRON_VER_VAR;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_sys ( T_RSYS *pk_rsys )
{
CYG_UIT_PARAMCHECK_PTR( pk_rsys );
if ( ! Cyg_Interrupt::interrupts_enabled() )
// CPU is locked
pk_rsys->sysstat = TSS_LOC;
else
pk_rsys->sysstat =
(0 == cyg_uitron_dis_dsp_old_priority) ? TSS_TSK : TSS_DDSP;
return E_OK;
}
CYG_UIT_FUNC_INLINE
ER
ref_cfg ( T_RCFG *pk_rcfg )
{
CYG_UIT_PARAMCHECK_PTR( pk_rcfg );
// no details here yet
return E_OK;
}
#if 0 // NOT SUPPORTED
ER def_svc ( FN s_fncd, T_DSVC *pk_dsvc );
ER def_exc ( UINT exckind, T_DEXC *pk_dexc );
#endif
// - Network Support Functions
#if 0 // NOT SUPPORTED
ER nrea_dat ( INT *p_reasz, VP dstadr, NODE srcnode, VP srcadr,
INT datsz );
ER nwri_dat ( INT *p_wrisz, NODE dstnode, VP dstadr, VP srcadr,
INT datsz );
ER nget_nod ( NODE *p_node );
ER nget_ver ( T_VER *pk_ver, NODE node );
#endif
// ========================================================================
#endif // CYGPKG_UITRON
#endif // CYGPRI_UITRON_FUNCS_HERE_AND_NOW
#endif // CYGONCE_COMPAT_UITRON_UIT_FUNC_INL
//EOF uit_func.inl
Go to most recent revision | Compare with Previous | Blame | View Log