URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [fs/] [jffs2/] [v2_0/] [src/] [fs-ecos.c] - Rev 857
Go to most recent revision | Compare with Previous | Blame | View Log
/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001, 2002 Red Hat, Inc. * * Created by Dominic Ostrowski <dominic.ostrowski@3glab.com> * Contributors: David Woodhouse, Nick Garnett, Richard Panton. * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: fs-ecos.c,v 1.1.1.1 2004-02-14 13:29:20 phoenix Exp $ * */ #include <linux/types.h> #include <linux/stat.h> #include <linux/kernel.h> #include "jffs2port.h" #include <linux/jffs2.h> #include <linux/jffs2_fs_sb.h> #include <linux/jffs2_fs_i.h> #include <linux/pagemap.h> #include "nodelist.h" #include <errno.h> #include <string.h> #include <cyg/io/io.h> #include <cyg/io/config_keys.h> #include <cyg/io/flash.h> //========================================================================== // Forward definitions // Filesystem operations static int jffs2_mount(cyg_fstab_entry * fste, cyg_mtab_entry * mte); static int jffs2_umount(cyg_mtab_entry * mte); static int jffs2_open(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int mode, cyg_file * fte); static int jffs2_ops_unlink(cyg_mtab_entry * mte, cyg_dir dir, const char *name); static int jffs2_ops_mkdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name); static int jffs2_ops_rmdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name); static int jffs2_ops_rename(cyg_mtab_entry * mte, cyg_dir dir1, const char *name1, cyg_dir dir2, const char *name2); static int jffs2_ops_link(cyg_mtab_entry * mte, cyg_dir dir1, const char *name1, cyg_dir dir2, const char *name2, int type); static int jffs2_opendir(cyg_mtab_entry * mte, cyg_dir dir, const char *name, cyg_file * fte); static int jffs2_chdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name, cyg_dir * dir_out); static int jffs2_stat(cyg_mtab_entry * mte, cyg_dir dir, const char *name, struct stat *buf); static int jffs2_getinfo(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int key, void *buf, int len); static int jffs2_setinfo(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int key, void *buf, int len); // File operations static int jffs2_fo_read(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio); static int jffs2_fo_write(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio); static int jffs2_fo_lseek(struct CYG_FILE_TAG *fp, off_t * pos, int whence); static int jffs2_fo_ioctl(struct CYG_FILE_TAG *fp, CYG_ADDRWORD com, CYG_ADDRWORD data); static int jffs2_fo_fsync(struct CYG_FILE_TAG *fp, int mode); static int jffs2_fo_close(struct CYG_FILE_TAG *fp); static int jffs2_fo_fstat(struct CYG_FILE_TAG *fp, struct stat *buf); static int jffs2_fo_getinfo(struct CYG_FILE_TAG *fp, int key, void *buf, int len); static int jffs2_fo_setinfo(struct CYG_FILE_TAG *fp, int key, void *buf, int len); // Directory operations static int jffs2_fo_dirread(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio); static int jffs2_fo_dirlseek(struct CYG_FILE_TAG *fp, off_t * pos, int whence); //========================================================================== // Filesystem table entries // ------------------------------------------------------------------------- // Fstab entry. // This defines the entry in the filesystem table. // For simplicity we use _FILESYSTEM synchronization for all accesses since // we should never block in any filesystem operations. FSTAB_ENTRY(jffs2_fste, "jffs2", 0, CYG_SYNCMODE_FILE_FILESYSTEM | CYG_SYNCMODE_IO_FILESYSTEM, jffs2_mount, jffs2_umount, jffs2_open, jffs2_ops_unlink, jffs2_ops_mkdir, jffs2_ops_rmdir, jffs2_ops_rename, jffs2_ops_link, jffs2_opendir, jffs2_chdir, jffs2_stat, jffs2_getinfo, jffs2_setinfo); // ------------------------------------------------------------------------- // File operations. // This set of file operations are used for normal open files. static cyg_fileops jffs2_fileops = { jffs2_fo_read, jffs2_fo_write, jffs2_fo_lseek, jffs2_fo_ioctl, cyg_fileio_seltrue, jffs2_fo_fsync, jffs2_fo_close, jffs2_fo_fstat, jffs2_fo_getinfo, jffs2_fo_setinfo }; // ------------------------------------------------------------------------- // Directory file operations. // This set of operations are used for open directories. Most entries // point to error-returning stub functions. Only the read, lseek and // close entries are functional. static cyg_fileops jffs2_dirops = { jffs2_fo_dirread, (cyg_fileop_write *) cyg_fileio_enosys, jffs2_fo_dirlseek, (cyg_fileop_ioctl *) cyg_fileio_enosys, cyg_fileio_seltrue, (cyg_fileop_fsync *) cyg_fileio_enosys, jffs2_fo_close, (cyg_fileop_fstat *) cyg_fileio_enosys, (cyg_fileop_getinfo *) cyg_fileio_enosys, (cyg_fileop_setinfo *) cyg_fileio_enosys }; //========================================================================== // STATIC VARIABLES !!! static char read_write_buffer[PAGE_CACHE_SIZE]; //avoids malloc when user may be under memory pressure static char gc_buffer[PAGE_CACHE_SIZE]; //avoids malloc when user may be under memory pressure //========================================================================== // Directory operations struct jffs2_dirsearch { struct inode *dir; // directory to search const char *path; // path to follow struct inode *node; // Node found const char *name; // last name fragment used int namelen; // name fragment length cyg_bool last; // last name in path? }; typedef struct jffs2_dirsearch jffs2_dirsearch; //========================================================================== // Ref count and nlink management // ------------------------------------------------------------------------- // dec_refcnt() // Decrment the reference count on an inode. If this makes the ref count // zero, then this inode can be freed. static int dec_refcnt(struct inode *node) { int err = ENOERR; node->i_count--; // In JFFS2 inode's are temporary in ram structures that are free'd when the usage i_count drops to 0 // The i_nlink however is managed by JFFS2 and is unrelated to usage if (node->i_count == 0) { // This inode is not in use, so delete it. iput(node); } return err; } // FIXME: This seems like real cruft. Wouldn't it be better just to do the // right thing? static void icache_evict(struct inode *root_i, struct inode *i) { struct inode *cached_inode; struct inode *next_inode; D2(printf("icache_evict\n")); // If this is an absolute search path from the root, // remove all cached inodes with i_count of zero (these are only // held where needed for dotdot filepaths) if (i == root_i) { for (cached_inode = root_i; cached_inode != NULL; cached_inode = next_inode) { next_inode = cached_inode->i_cache_next; if (cached_inode->i_count == 0) { cached_inode->i_cache_prev->i_cache_next = cached_inode->i_cache_next; // Prveious entry points ahead of us if (cached_inode->i_cache_next != NULL) cached_inode->i_cache_next->i_cache_prev = cached_inode->i_cache_prev; // Next entry points behind us jffs2_clear_inode(cached_inode); D2(printf ("free icache_evict inode %x $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n", cached_inode)); free(cached_inode); } } } } //========================================================================== // Directory search // ------------------------------------------------------------------------- // init_dirsearch() // Initialize a dirsearch object to start a search static void init_dirsearch(jffs2_dirsearch * ds, struct inode *dir, const char *name) { D2(printf("init_dirsearch name = %s\n", name)); D2(printf("init_dirsearch dir = %x\n", dir)); ds->dir = dir; ds->path = name; ds->node = dir; ds->name = name; ds->namelen = 0; ds->last = false; } // ------------------------------------------------------------------------- // find_entry() // Search a single directory for the next name in a path and update the // dirsearch object appropriately. static int find_entry(jffs2_dirsearch * ds) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; struct inode *dir = ds->dir; const char *name = ds->path; const char *n = name; char namelen = 0; struct inode *d; D2(printf("find_entry\n")); // check that we really have a directory if (!S_ISDIR(dir->i_mode)) return ENOTDIR; // Isolate the next element of the path name. while (*n != '\0' && *n != '/') n++, namelen++; // If we terminated on a NUL, set last flag. if (*n == '\0') ds->last = true; // update name in dirsearch object ds->name = name; ds->namelen = namelen; if (name[0] == '.') switch (namelen) { default: break; case 2: // Dot followed by not Dot, treat as any other name if (name[1] != '.') break; // Dot Dot // Move back up the search path D2(printf("find_entry found ..\n")); ds->node = ds->dir->i_parent; if (ds->dir->i_count == 0) { iput(ds->dir); // This inode may be evicted ds->dir = NULL; } return ENOERR; case 1: // Dot is consumed D2(printf("find_entry found .\n")); ds->node = ds->dir; return ENOERR; } // Here we have the name and its length set up. // Search the directory for a matching entry hashname = name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); D2(printf("find_entry for name = %s\n", ds->path)); d = jffs2_lookup(dir, &this); D2(printf("find_entry got dir = %x\n", d)); if (d == NULL) return ENOENT; // The back path for dotdot to follow d->i_parent = dir; // pass back the node we have found ds->node = d; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_find() // Main interface to directory search code. This is used in all file // level operations to locate the object named by the pathname. static int jffs2_find(jffs2_dirsearch * d) { int err; D2(printf("jffs2_find for path =%s\n", d->path)); // Short circuit empty paths if (*(d->path) == '\0') return ENOERR; // iterate down directory tree until we find the object // we want. for (;;) { err = find_entry(d); if (err != ENOERR) return err; if (d->last) return ENOERR; // every inode traversed in the find is temporary and should be free'd //iput(d->dir); // Update dirsearch object to search next directory. d->dir = d->node; d->path += d->namelen; if (*(d->path) == '/') d->path++; // skip dirname separators } } //========================================================================== // Pathconf support // This function provides support for pathconf() and fpathconf(). static int jffs2_pathconf(struct inode *node, struct cyg_pathconf_info *info) { int err = ENOERR; D2(printf("jffs2_pathconf\n")); switch (info->name) { case _PC_LINK_MAX: info->value = LINK_MAX; break; case _PC_MAX_CANON: info->value = -1; // not supported err = EINVAL; break; case _PC_MAX_INPUT: info->value = -1; // not supported err = EINVAL; break; case _PC_NAME_MAX: info->value = NAME_MAX; break; case _PC_PATH_MAX: info->value = PATH_MAX; break; case _PC_PIPE_BUF: info->value = -1; // not supported err = EINVAL; break; case _PC_ASYNC_IO: info->value = -1; // not supported err = EINVAL; break; case _PC_CHOWN_RESTRICTED: info->value = -1; // not supported err = EINVAL; break; case _PC_NO_TRUNC: info->value = 0; break; case _PC_PRIO_IO: info->value = 0; break; case _PC_SYNC_IO: info->value = 0; break; case _PC_VDISABLE: info->value = -1; // not supported err = EINVAL; break; default: err = EINVAL; break; } return err; } //========================================================================== // Filesystem operations // ------------------------------------------------------------------------- // jffs2_mount() // Process a mount request. This mainly creates a root for the // filesystem. static int jffs2_read_super(struct super_block *sb) { struct jffs2_sb_info *c; struct inode *root_i; Cyg_ErrNo err; cyg_uint32 len; cyg_io_flash_getconfig_devsize_t ds; cyg_io_flash_getconfig_blocksize_t bs; D1(printk(KERN_DEBUG "jffs2: read_super\n")); c = JFFS2_SB_INFO(sb); len = sizeof (ds); err = cyg_io_get_config(sb->s_dev, CYG_IO_GET_CONFIG_FLASH_DEVSIZE, &ds, &len); if (err != ENOERR) { D1(printf ("jffs2: cyg_io_get_config failed to get dev size: %d\n", err)); return err; } len = sizeof (bs); bs.offset = 0; err = cyg_io_get_config(sb->s_dev, CYG_IO_GET_CONFIG_FLASH_BLOCKSIZE, &bs, &len); if (err != ENOERR) { D1(printf ("jffs2: cyg_io_get_config failed to get block size: %d\n", err)); return err; } c->sector_size = bs.block_size; c->flash_size = ds.dev_size; c->cleanmarker_size = sizeof(struct jffs2_unknown_node); err = jffs2_do_mount_fs(c); if (err) return -err; D1(printk(KERN_DEBUG "jffs2_read_super(): Getting root inode\n")); root_i = iget(sb, 1); if (is_bad_inode(root_i)) { D1(printk(KERN_WARNING "get root inode failed\n")); err = EIO; goto out_nodes; } D1(printk(KERN_DEBUG "jffs2_read_super(): d_alloc_root()\n")); sb->s_root = d_alloc_root(root_i); if (!sb->s_root) { err = ENOMEM; goto out_root_i; } sb->s_blocksize = PAGE_CACHE_SIZE; sb->s_blocksize_bits = PAGE_CACHE_SHIFT; sb->s_magic = JFFS2_SUPER_MAGIC; return 0; out_root_i: iput(root_i); out_nodes: jffs2_free_ino_caches(c); jffs2_free_raw_node_refs(c); free(c->blocks); return err; } static int jffs2_mount(cyg_fstab_entry * fste, cyg_mtab_entry * mte) { extern cyg_mtab_entry mtab[], mtab_end; struct super_block *jffs2_sb = NULL; struct jffs2_sb_info *c; cyg_mtab_entry *m; cyg_io_handle_t t; Cyg_ErrNo err; D2(printf("jffs2_mount\n")); err = cyg_io_lookup(mte->devname, &t); if (err != ENOERR) return -err; // Iterate through the mount table to see if we're mounted // FIXME: this should be done better - perhaps if the superblock // can be stored as an inode in the icache. for (m = &mtab[0]; m != &mtab_end; m++) { // stop if there are more than the configured maximum if (m - &mtab[0] >= CYGNUM_FILEIO_MTAB_MAX) { m = &mtab_end; break; } if (m->valid && strcmp(m->fsname, "jffs2") == 0 && strcmp(m->devname, mte->devname) == 0) { jffs2_sb = (struct super_block *) m->data; } } if (jffs2_sb == NULL) { jffs2_sb = malloc(sizeof (struct super_block)); if (jffs2_sb == NULL) return ENOMEM; c = JFFS2_SB_INFO(jffs2_sb); memset(jffs2_sb, 0, sizeof (struct super_block)); jffs2_sb->s_dev = t; c->inocache_list = malloc(sizeof(struct jffs2_inode_cache *) * INOCACHE_HASHSIZE); if (!c->inocache_list) { free(jffs2_sb); return ENOMEM; } memset(c->inocache_list, 0, sizeof(struct jffs2_inode_cache *) * INOCACHE_HASHSIZE); err = jffs2_read_super(jffs2_sb); if (err) { free(jffs2_sb); free(c->inocache_list); return err; } jffs2_sb->s_root->i_parent = jffs2_sb->s_root; // points to itself, no dotdot paths above mountpoint jffs2_sb->s_root->i_cache_prev = NULL; // root inode, so always null jffs2_sb->s_root->i_cache_next = NULL; jffs2_sb->s_root->i_count = 1; // Ensures the root inode is always in ram until umount D2(printf("jffs2_mount erasing pending blocks\n")); jffs2_erase_pending_blocks(c); } mte->data = (CYG_ADDRWORD) jffs2_sb; jffs2_sb->s_mount_count++; mte->root = (cyg_dir) jffs2_sb->s_root; D2(printf("jffs2_mounted superblock at %x\n", mte->root)); return ENOERR; } // ------------------------------------------------------------------------- // jffs2_umount() // Unmount the filesystem. static int jffs2_umount(cyg_mtab_entry * mte) { struct inode *root = (struct inode *) mte->root; struct super_block *jffs2_sb = root->i_sb; struct jffs2_sb_info *c = JFFS2_SB_INFO(jffs2_sb); D2(printf("jffs2_umount\n")); // Decrement the mount count jffs2_sb->s_mount_count--; // Only really umount if this is the only mount if (jffs2_sb->s_mount_count == 0) { // Check for open/inuse root or any cached inodes //if( root->i_count != 1 || root->i_cache_next != NULL) // root icount was set to 1 on mount if (root->i_cache_next != NULL) // root icount was set to 1 on mount return EBUSY; dec_refcnt(root); // Time to free the root inode //Clear root inode //root_i = NULL; // Clean up the super block and root inode jffs2_free_ino_caches(c); jffs2_free_raw_node_refs(c); free(c->blocks); free(c->inocache_list); free(jffs2_sb); // Clear root pointer mte->root = CYG_DIR_NULL; mte->fs->data = 0; // fstab entry, visible to all mounts. No current mount // That's all folks. D2(printf("jffs2_umount No current mounts\n")); } return ENOERR; } // ------------------------------------------------------------------------- // jffs2_open() // Open a file for reading or writing. static int jffs2_open(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int mode, cyg_file * file) { jffs2_dirsearch ds; struct inode *node = NULL; int err; D2(printf("jffs2_open\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err == ENOENT) { if (ds.last && (mode & O_CREAT)) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; // No node there, if the O_CREAT bit is set then we must // create a new one. The dir and name fields of the dirsearch // object will have been updated so we know where to put it. hashname = ds.name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); err = jffs2_create(ds.dir, &this, S_IRUGO|S_IXUGO|S_IWUSR|S_IFREG, &node); if (err != 0) { //Possible orphaned inode on the flash - but will be gc'd return err; } err = ENOERR; } } else if (err == ENOERR) { // The node exists. If the O_CREAT and O_EXCL bits are set, we // must fail the open. if ((mode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) err = EEXIST; else node = ds.node; } if (err == ENOERR && (mode & O_TRUNC)) { struct jffs2_inode_info *f = JFFS2_INODE_INFO(node); struct jffs2_sb_info *c = JFFS2_SB_INFO(node->i_sb); // If the O_TRUNC bit is set we must clean out the file data. node->i_size = 0; jffs2_truncate_fraglist(c, &f->fragtree, 0); // Update file times node->i_ctime = node->i_mtime = cyg_timestamp(); } if (err != ENOERR) return err; // Check that we actually have a file here if (S_ISDIR(node->i_mode)) return EISDIR; node->i_count++; // Count successful open // Initialize the file object file->f_flag |= mode & CYG_FILE_MODE_MASK; file->f_type = CYG_FILE_TYPE_FILE; file->f_ops = &jffs2_fileops; file->f_offset = (mode & O_APPEND) ? node->i_size : 0; file->f_data = (CYG_ADDRWORD) node; file->f_xops = 0; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_ops_unlink() // Remove a file link from its directory. static int jffs2_ops_unlink(cyg_mtab_entry * mte, cyg_dir dir, const char *name) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; jffs2_dirsearch ds; int err; D2(printf("jffs2_ops_unlink\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; // Cannot unlink directories, use rmdir() instead if (S_ISDIR(ds.node->i_mode)) return EPERM; // Delete it from its directory hashname = ds.name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); err = jffs2_unlink(ds.dir, ds.node, &this); return err; } // ------------------------------------------------------------------------- // jffs2_ops_mkdir() // Create a new directory. static int jffs2_ops_mkdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name) { jffs2_dirsearch ds; struct inode *node = NULL; int err; D2(printf("jffs2_ops_mkdir\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err == ENOENT) { if (ds.last) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; // The entry does not exist, and it is the last element in // the pathname, so we can create it here. hashname = ds.name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); err = jffs2_mkdir(ds.dir, &this, 0, &node); if (err != 0) return ENOSPC; } // If this was not the last element, then and intermediate // directory does not exist. } else { // If there we no error, something already exists with that // name, so we cannot create another one. if (err == ENOERR) err = EEXIST; } return err; } // ------------------------------------------------------------------------- // jffs2_ops_rmdir() // Remove a directory. static int jffs2_ops_rmdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; jffs2_dirsearch ds; int err; D2(printf("jffs2_ops_rmdir\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; // Check that this is actually a directory. if (!S_ISDIR(ds.node->i_mode)) return EPERM; // Delete the entry. hashname = ds.name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); err = jffs2_rmdir(ds.dir, ds.node, &this); return err; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_ops_rename() // Rename a file/dir. static int jffs2_ops_rename(cyg_mtab_entry * mte, cyg_dir dir1, const char *name1, cyg_dir dir2, const char *name2) { unsigned long hash; struct qstr this1, this2; unsigned int c; const char *hashname; jffs2_dirsearch ds1, ds2; int err; D2(printf("jffs2_ops_rename\n")); init_dirsearch(&ds1, (struct inode *) dir1, name1); err = jffs2_find(&ds1); if (err != ENOERR) return err; init_dirsearch(&ds2, (struct inode *) dir2, name2); err = jffs2_find(&ds2); // Allow through renames to non-existent objects. if (ds2.last && err == ENOENT) ds2.node = NULL, err = ENOERR; if (err != ENOERR) return err; // Null rename, just return if (ds1.node == ds2.node) return ENOERR; hashname = ds1.name; this1.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this1.len = hashname - (const char *) this1.name; this1.hash = end_name_hash(hash); hashname = ds2.name; this2.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this2.len = hashname - (const char *) this2.name; this2.hash = end_name_hash(hash); // First deal with any entry that is at the destination if (ds2.node) { // Check that we are renaming like-for-like if (!S_ISDIR(ds1.node->i_mode) && S_ISDIR(ds2.node->i_mode)) return EISDIR; if (S_ISDIR(ds1.node->i_mode) && !S_ISDIR(ds2.node->i_mode)) return ENOTDIR; // Now delete the destination directory entry err = jffs2_unlink(ds2.dir, ds2.node, &this2); if (err != 0) return err; } // Now we know that there is no clashing node at the destination, // make a new direntry at the destination and delete the old entry // at the source. err = jffs2_rename(ds1.dir, ds1.node, &this1, ds2.dir, &this2); // Update directory times if (err == 0) ds1.dir->i_ctime = ds1.dir->i_mtime = ds2.dir->i_ctime = ds2.dir->i_mtime = cyg_timestamp(); return err; } // ------------------------------------------------------------------------- // jffs2_ops_link() // Make a new directory entry for a file. static int jffs2_ops_link(cyg_mtab_entry * mte, cyg_dir dir1, const char *name1, cyg_dir dir2, const char *name2, int type) { unsigned long hash; struct qstr this; unsigned int c; const char *hashname; jffs2_dirsearch ds1, ds2; int err; D2(printf("jffs2_ops_link\n")); // Only do hard links for now in this filesystem if (type != CYG_FSLINK_HARD) return EINVAL; init_dirsearch(&ds1, (struct inode *) dir1, name1); err = jffs2_find(&ds1); if (err != ENOERR) return err; init_dirsearch(&ds2, (struct inode *) dir2, name2); err = jffs2_find(&ds2); // Don't allow links to existing objects if (err == ENOERR) return EEXIST; // Allow through links to non-existing terminal objects if (ds2.last && err == ENOENT) ds2.node = NULL, err = ENOERR; if (err != ENOERR) return err; // Now we know that there is no existing node at the destination, // make a new direntry at the destination. hashname = ds2.name; this.name = hashname; c = *(const unsigned char *) hashname; hash = init_name_hash(); do { hashname++; hash = partial_name_hash(c, hash); c = *(const unsigned char *) hashname; } while (c && (c != '/')); this.len = hashname - (const char *) this.name; this.hash = end_name_hash(hash); err = jffs2_link(ds2.dir, ds1.node, &this); if (err == 0) ds1.node->i_ctime = ds2.dir->i_ctime = ds2.dir->i_mtime = cyg_timestamp(); return err; } // ------------------------------------------------------------------------- // jffs2_opendir() // Open a directory for reading. static int jffs2_opendir(cyg_mtab_entry * mte, cyg_dir dir, const char *name, cyg_file * file) { jffs2_dirsearch ds; int err; D2(printf("jffs2_opendir\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; // check it is really a directory. if (!S_ISDIR(ds.node->i_mode)) return ENOTDIR; ds.node->i_count++; // Count successful open // Initialize the file object, setting the f_ops field to a // special set of file ops. file->f_type = CYG_FILE_TYPE_FILE; file->f_ops = &jffs2_dirops; file->f_offset = 0; file->f_data = (CYG_ADDRWORD) ds.node; file->f_xops = 0; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_chdir() // Change directory support. static int jffs2_chdir(cyg_mtab_entry * mte, cyg_dir dir, const char *name, cyg_dir * dir_out) { D2(printf("jffs2_chdir\n")); if (dir_out != NULL) { // This is a request to get a new directory pointer in // *dir_out. jffs2_dirsearch ds; int err; icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; // check it is a directory if (!S_ISDIR(ds.node->i_mode)) return ENOTDIR; // Increment ref count to keep this directory in existance // while it is the current cdir. ds.node->i_count++; // Pass it out *dir_out = (cyg_dir) ds.node; } else { // If no output dir is required, this means that the mte and // dir arguments are the current cdir setting and we should // forget this fact. struct inode *node = (struct inode *) dir; // Just decrement directory reference count. dec_refcnt(node); } return ENOERR; } // ------------------------------------------------------------------------- // jffs2_stat() // Get struct stat info for named object. static int jffs2_stat(cyg_mtab_entry * mte, cyg_dir dir, const char *name, struct stat *buf) { jffs2_dirsearch ds; int err; D2(printf("jffs2_stat\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; // Fill in the status buf->st_mode = ds.node->i_mode; buf->st_ino = (ino_t) ds.node; buf->st_dev = 0; buf->st_nlink = ds.node->i_nlink; buf->st_uid = 0; buf->st_gid = 0; buf->st_size = ds.node->i_size; buf->st_atime = ds.node->i_atime; buf->st_mtime = ds.node->i_mtime; buf->st_ctime = ds.node->i_ctime; return err; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_getinfo() // Getinfo. Currently only support pathconf(). static int jffs2_getinfo(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int key, void *buf, int len) { jffs2_dirsearch ds; int err; D2(printf("jffs2_getinfo\n")); icache_evict((struct inode *) mte->root, (struct inode *) dir); init_dirsearch(&ds, (struct inode *) dir, name); err = jffs2_find(&ds); if (err != ENOERR) return err; switch (key) { case FS_INFO_CONF: err = jffs2_pathconf(ds.node, (struct cyg_pathconf_info *) buf); break; default: err = EINVAL; } return err; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_setinfo() // Setinfo. Nothing to support here at present. static int jffs2_setinfo(cyg_mtab_entry * mte, cyg_dir dir, const char *name, int key, void *buf, int len) { // No setinfo keys supported at present D2(printf("jffs2_setinfo\n")); return EINVAL; } //========================================================================== // File operations // ------------------------------------------------------------------------- // jffs2_fo_read() // Read data from the file. static int jffs2_fo_read(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio) { struct inode *inode = (struct inode *) fp->f_data; struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb); int i; ssize_t resid = uio->uio_resid; off_t pos = fp->f_offset; down(&f->sem); // Loop over the io vectors until there are none left for (i = 0; i < uio->uio_iovcnt && pos < inode->i_size; i++) { int ret; cyg_iovec *iov = &uio->uio_iov[i]; off_t len = min(iov->iov_len, inode->i_size - pos); D2(printf("jffs2_fo_read inode size %d\n", inode->i_size)); ret = jffs2_read_inode_range(c, f, (unsigned char *) iov->iov_base, pos, len); if (ret) { D1(printf ("jffs2_fo_read(): read_inode_range failed %d\n", ret)); uio->uio_resid = resid; up(&f->sem); return -ret; } resid -= len; pos += len; } // We successfully read some data, update the node's access time // and update the file offset and transfer residue. inode->i_atime = cyg_timestamp(); uio->uio_resid = resid; fp->f_offset = pos; up(&f->sem); return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_write() // Write data to file. static int jffs2_fo_write(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio) { struct page write_page; off_t page_start_pos; struct inode *node = (struct inode *) fp->f_data; off_t pos = fp->f_offset; ssize_t resid = uio->uio_resid; int i; memset(&read_write_buffer, 0, PAGE_CACHE_SIZE); write_page.virtual = &read_write_buffer; // If the APPEND mode bit was supplied, force all writes to // the end of the file. if (fp->f_flag & CYG_FAPPEND) pos = fp->f_offset = node->i_size; // Check that pos is within current file size, or at the very end. if (pos < 0 || pos > node->i_size) return EINVAL; // Now loop over the iovecs until they are all done, or // we get an error. for (i = 0; i < uio->uio_iovcnt; i++) { cyg_iovec *iov = &uio->uio_iov[i]; char *buf = (char *) iov->iov_base; off_t len = iov->iov_len; // loop over the vector writing it to the file until it has // all been done. while (len > 0) { //cyg_uint8 *fbuf; //size_t bsize; size_t writtenlen; off_t l = len; int err; write_page.index = 0; page_start_pos = pos; while (page_start_pos >= (PAGE_CACHE_SIZE)) { write_page.index++; page_start_pos -= PAGE_CACHE_SIZE; } if (l > PAGE_CACHE_SIZE - page_start_pos) l = PAGE_CACHE_SIZE - page_start_pos; D2(printf ("jffs2_fo_write write_page.index %d\n", write_page.index)); D2(printf ("jffs2_fo_write page_start_pos %d\n", page_start_pos)); D2(printf("jffs2_fo_write transfer size %d\n", l)); err = jffs2_prepare_write(node, &write_page, page_start_pos, page_start_pos + l); if (err != 0) return err; // copy data in memcpy(&read_write_buffer[page_start_pos], buf, l); writtenlen = jffs2_commit_write(node, &write_page, page_start_pos, page_start_pos + l); if (writtenlen != l) return ENOSPC; // Update working vars len -= l; buf += l; pos += l; resid -= l; } } // We wrote some data successfully, update the modified and access // times of the node, increase its size appropriately, and update // the file offset and transfer residue. node->i_mtime = node->i_ctime = cyg_timestamp(); if (pos > node->i_size) node->i_size = pos; uio->uio_resid = resid; fp->f_offset = pos; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_lseek() // Seek to a new file position. static int jffs2_fo_lseek(struct CYG_FILE_TAG *fp, off_t * apos, int whence) { struct inode *node = (struct inode *) fp->f_data; off_t pos = *apos; D2(printf("jffs2_fo_lseek\n")); switch (whence) { case SEEK_SET: // Pos is already where we want to be. break; case SEEK_CUR: // Add pos to current offset. pos += fp->f_offset; break; case SEEK_END: // Add pos to file size. pos += node->i_size; break; default: return EINVAL; } // Check that pos is still within current file size, or at the // very end. if (pos < 0 || pos > node->i_size) return EINVAL; // All OK, set fp offset and return new position. *apos = fp->f_offset = pos; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_ioctl() // Handle ioctls. Currently none are defined. static int jffs2_fo_ioctl(struct CYG_FILE_TAG *fp, CYG_ADDRWORD com, CYG_ADDRWORD data) { // No Ioctls currenly defined. D2(printf("jffs2_fo_ioctl\n")); return EINVAL; } // ------------------------------------------------------------------------- // jffs2_fo_fsync(). // Force the file out to data storage. static int jffs2_fo_fsync(struct CYG_FILE_TAG *fp, int mode) { // Data is always permanently where it belongs, nothing to do // here. D2(printf("jffs2_fo_fsync\n")); return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_close() // Close a file. We just decrement the refcnt and let it go away if // that is all that is keeping it here. static int jffs2_fo_close(struct CYG_FILE_TAG *fp) { struct inode *node = (struct inode *) fp->f_data; D2(printf("jffs2_fo_close\n")); dec_refcnt(node); fp->f_data = 0; // zero data pointer return ENOERR; } // ------------------------------------------------------------------------- //jffs2_fo_fstat() // Get file status. static int jffs2_fo_fstat(struct CYG_FILE_TAG *fp, struct stat *buf) { struct inode *node = (struct inode *) fp->f_data; D2(printf("jffs2_fo_fstat\n")); // Fill in the status buf->st_mode = node->i_mode; buf->st_ino = (ino_t) node; buf->st_dev = 0; buf->st_nlink = node->i_nlink; buf->st_uid = 0; buf->st_gid = 0; buf->st_size = node->i_size; buf->st_atime = node->i_atime; buf->st_mtime = node->i_mtime; buf->st_ctime = node->i_ctime; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_getinfo() // Get info. Currently only supports fpathconf(). static int jffs2_fo_getinfo(struct CYG_FILE_TAG *fp, int key, void *buf, int len) { struct inode *node = (struct inode *) fp->f_data; int err; D2(printf("jffs2_fo_getinfo\n")); switch (key) { case FS_INFO_CONF: err = jffs2_pathconf(node, (struct cyg_pathconf_info *) buf); break; default: err = EINVAL; } return err; return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_setinfo() // Set info. Nothing supported here. static int jffs2_fo_setinfo(struct CYG_FILE_TAG *fp, int key, void *buf, int len) { // No setinfo key supported at present D2(printf("jffs2_fo_setinfo\n")); return ENOERR; } //========================================================================== // Directory operations // ------------------------------------------------------------------------- // jffs2_fo_dirread() // Read a single directory entry from a file. static __inline void filldir(char *nbuf, int nlen, const char *name, int namlen) { int len = nlen < namlen ? nlen : namlen; memcpy(nbuf, name, len); nbuf[len] = '\0'; } static int jffs2_fo_dirread(struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio) { struct inode *d_inode = (struct inode *) fp->f_data; struct dirent *ent = (struct dirent *) uio->uio_iov[0].iov_base; char *nbuf = ent->d_name; int nlen = sizeof (ent->d_name) - 1; off_t len = uio->uio_iov[0].iov_len; struct jffs2_inode_info *f; struct jffs2_sb_info *c; struct inode *inode = d_inode; struct jffs2_full_dirent *fd; unsigned long offset, curofs; int found = 1; if (len < sizeof (struct dirent)) return EINVAL; D1(printk (KERN_DEBUG "jffs2_readdir() for dir_i #%lu\n", d_inode->i_ino)); f = JFFS2_INODE_INFO(inode); c = JFFS2_SB_INFO(inode->i_sb); offset = fp->f_offset; if (offset == 0) { D1(printk (KERN_DEBUG "Dirent 0: \".\", ino #%lu\n", inode->i_ino)); filldir(nbuf, nlen, ".", 1); goto out; } if (offset == 1) { filldir(nbuf, nlen, "..", 2); goto out; } curofs = 1; down(&f->sem); for (fd = f->dents; fd; fd = fd->next) { curofs++; /* First loop: curofs = 2; offset = 2 */ if (curofs < offset) { D2(printk (KERN_DEBUG "Skipping dirent: \"%s\", ino #%u, type %d, because curofs %ld < offset %ld\n", fd->name, fd->ino, fd->type, curofs, offset)); continue; } if (!fd->ino) { D2(printk (KERN_DEBUG "Skipping deletion dirent \"%s\"\n", fd->name)); offset++; continue; } D2(printk (KERN_DEBUG "Dirent %ld: \"%s\", ino #%u, type %d\n", offset, fd->name, fd->ino, fd->type)); filldir(nbuf, nlen, fd->name, strlen(fd->name)); goto out_sem; } /* Reached the end of the directory */ found = 0; out_sem: up(&f->sem); out: fp->f_offset = ++offset; if (found) { uio->uio_resid -= sizeof (struct dirent); } return ENOERR; } // ------------------------------------------------------------------------- // jffs2_fo_dirlseek() // Seek directory to start. static int jffs2_fo_dirlseek(struct CYG_FILE_TAG *fp, off_t * pos, int whence) { // Only allow SEEK_SET to zero D2(printf("jffs2_fo_dirlseek\n")); if (whence != SEEK_SET || *pos != 0) return EINVAL; *pos = fp->f_offset = 0; return ENOERR; } //========================================================================== // // Called by JFFS2 // =============== // // //========================================================================== struct page *read_cache_page(unsigned long index, int (*filler) (void *, struct page *), void *data) { // Only called in gc.c jffs2_garbage_collect_dnode // but gets a real page for the specified inode int err; struct page *gc_page = malloc(sizeof (struct page)); printf("read_cache_page\n"); memset(&gc_buffer, 0, PAGE_CACHE_SIZE); if (gc_page != NULL) { gc_page->virtual = &gc_buffer; gc_page->index = index; err = filler(data, gc_page); if (err < 0) { free(gc_page); gc_page = NULL; } } return gc_page; } void page_cache_release(struct page *pg) { // Only called in gc.c jffs2_garbage_collect_dnode // but should free the page malloc'd by read_cache_page printf("page_cache_release\n"); free(pg); } struct inode *new_inode(struct super_block *sb) { // Only called in write.c jffs2_new_inode // Always adds itself to inode cache struct inode *inode; struct inode *cached_inode; inode = malloc(sizeof (struct inode)); if (inode == NULL) return 0; D2(printf ("malloc new_inode %x ####################################\n", inode)); memset(inode, 0, sizeof (struct inode)); inode->i_sb = sb; inode->i_ino = 1; inode->i_count = 0; //1; // Let ecos manage the open count inode->i_nlink = 1; // Let JFFS2 manage the link count inode->i_size = 0; inode->i_cache_next = NULL; // Newest inode, about to be cached // Add to the icache for (cached_inode = sb->s_root; cached_inode != NULL; cached_inode = cached_inode->i_cache_next) { if (cached_inode->i_cache_next == NULL) { cached_inode->i_cache_next = inode; // Current last in cache points to newcomer inode->i_cache_prev = cached_inode; // Newcomer points back to last break; } } return inode; } struct inode *iget(struct super_block *sb, cyg_uint32 ino) { // Substitute for iget drops straight through to reading the // inode from disk if it is not in the inode cache // Called in super.c jffs2_read_super, dir.c jffs2_lookup, // and gc.c jffs2_garbage_collect_pass // Must first check for cached inode // If this fails let new_inode create one struct inode *inode; D2(printf("iget\n")); // Check for this inode in the cache for (inode = sb->s_root; inode != NULL; inode = inode->i_cache_next) { if (inode->i_ino == ino) return inode; } inode = NULL; // Not cached, so malloc it inode = new_inode(sb); if (inode == NULL) return 0; inode->i_ino = ino; jffs2_read_inode(inode); return inode; } void iput(struct inode *i) { // Called in dec_refcnt, jffs2_find // (and jffs2_open and jffs2_ops_mkdir?) // super.c jffs2_read_super, // and gc.c jffs2_garbage_collect_pass struct inode *cached_inode; D2(printf ("free iput inode %x $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n", i)); if (i && i->i_count) { /* Added by dwmw2. iget/iput in Linux track the use count, don't just unconditionally free it */ printf("iput called for used inode\n"); return; } if (i != NULL) { // Remove from the icache for (cached_inode = i->i_sb->s_root; cached_inode != NULL; cached_inode = cached_inode->i_cache_next) { if (cached_inode == i) { cached_inode->i_cache_prev->i_cache_next = cached_inode->i_cache_next; // Prveious entry points ahead of us if (cached_inode->i_cache_next != NULL) cached_inode->i_cache_next->i_cache_prev = cached_inode->i_cache_prev; // Next entry points behind us break; } } // inode has been seperated from the cache jffs2_clear_inode(i); free(i); } } static int return_EIO(void) { return -EIO; } #define EIO_ERROR ((void *) (return_EIO)) void make_bad_inode(struct inode *inode) { // In readinode.c JFFS2 checks whether the inode has appropriate // content for its marked type D2(printf("make_bad_inode\n")); inode->i_mode = S_IFREG; inode->i_atime = inode->i_mtime = inode->i_ctime = cyg_timestamp(); inode->i_op = EIO_ERROR; inode->i_fop = EIO_ERROR; } int is_bad_inode(struct inode *inode) { // Called in super.c jffs2_read_super, // and gc.c jffs2_garbage_collect_pass D2(printf("is_bad_inode\n")); return (inode->i_op == EIO_ERROR); /*if(i == NULL) return 1; return 0; */ } cyg_bool jffs2_flash_read(struct jffs2_sb_info * c, cyg_uint32 read_buffer_offset, const size_t size, size_t * return_size, char *write_buffer) { Cyg_ErrNo err; cyg_uint32 len = size; struct super_block *sb = OFNI_BS_2SFFJ(c); //D2(printf("FLASH READ\n")); //D2(printf("read address = %x\n", CYGNUM_FS_JFFS2_BASE_ADDRESS + read_buffer_offset)); //D2(printf("write address = %x\n", write_buffer)); //D2(printf("size = %x\n", size)); err = cyg_io_bread(sb->s_dev, write_buffer, &len, read_buffer_offset); *return_size = (size_t) len; return (err != ENOERR); } cyg_bool jffs2_flash_write(struct jffs2_sb_info * c, cyg_uint32 write_buffer_offset, const size_t size, size_t * return_size, char *read_buffer) { Cyg_ErrNo err; cyg_uint32 len = size; struct super_block *sb = OFNI_BS_2SFFJ(c); // D2(printf("FLASH WRITE ENABLED!!!\n")); // D2(printf("write address = %x\n", CYGNUM_FS_JFFS2_BASE_ADDRESS + write_buffer_offset)); // D2(printf("read address = %x\n", read_buffer)); // D2(printf("size = %x\n", size)); err = cyg_io_bwrite(sb->s_dev, read_buffer, &len, write_buffer_offset); *return_size = (size_t) len; return (err != ENOERR); } int jffs2_flash_writev(struct jffs2_sb_info *c, const struct iovec *vecs, unsigned long count, loff_t to, size_t * retlen) { unsigned long i; size_t totlen = 0, thislen; int ret = 0; for (i = 0; i < count; i++) { // writes need to be aligned but the data we're passed may not be // Observation suggests most unaligned writes are small, so we // optimize for that case. if (((vecs[i].iov_len & (sizeof (int) - 1))) || (((unsigned long) vecs[i]. iov_base & (sizeof (unsigned long) - 1)))) { // are there iov's after this one? Or is it so much we'd need // to do multiple writes anyway? if ((i + 1) < count || vecs[i].iov_len > 256) { // cop out and malloc unsigned long j; ssize_t sizetomalloc = 0, totvecsize = 0; char *cbuf, *cbufptr; for (j = i; j < count; j++) totvecsize += vecs[j].iov_len; // pad up in case unaligned sizetomalloc = totvecsize + sizeof (int) - 1; sizetomalloc &= ~(sizeof (int) - 1); cbuf = (char *) malloc(sizetomalloc); // malloc returns aligned memory if (!cbuf) { ret = -ENOMEM; goto writev_out; } cbufptr = cbuf; for (j = i; j < count; j++) { memcpy(cbufptr, vecs[j].iov_base, vecs[j].iov_len); cbufptr += vecs[j].iov_len; } ret = jffs2_flash_write(c, to, sizetomalloc, &thislen, cbuf); if (thislen > totvecsize) // in case it was aligned up thislen = totvecsize; totlen += thislen; free(cbuf); goto writev_out; } else { // otherwise optimize for the common case int buf[256 / sizeof (int)]; // int, so int aligned size_t lentowrite; lentowrite = vecs[i].iov_len; // pad up in case its unaligned lentowrite += sizeof (int) - 1; lentowrite &= ~(sizeof (int) - 1); memcpy(buf, vecs[i].iov_base, lentowrite); ret = jffs2_flash_write(c, to, lentowrite, &thislen, (char *) &buf); if (thislen > vecs[i].iov_len) thislen = vecs[i].iov_len; } // else } else ret = jffs2_flash_write(c, to, vecs[i].iov_len, &thislen, vecs[i].iov_base); totlen += thislen; if (ret || thislen != vecs[i].iov_len) break; to += vecs[i].iov_len; } writev_out: if (retlen) *retlen = totlen; return ret; } cyg_bool jffs2_flash_erase(struct jffs2_sb_info * c, struct jffs2_eraseblock * jeb) { cyg_io_flash_getconfig_erase_t e; void *err_addr; Cyg_ErrNo err; cyg_uint32 len = sizeof (e); struct super_block *sb = OFNI_BS_2SFFJ(c); e.offset = jeb->offset; e.len = c->sector_size; e.err_address = &err_addr; // D2(printf("FLASH ERASE ENABLED!!!\n")); // D2(printf("erase address = %x\n", CYGNUM_FS_JFFS2_BASE_ADDRESS + jeb->offset)); // D2(printf("size = %x\n", c->sector_size)); err = cyg_io_get_config(sb->s_dev, CYG_IO_GET_CONFIG_FLASH_ERASE, &e, &len); return (err != ENOERR || e.flasherr != 0); } // ------------------------------------------------------------------------- // EOF jffs2.c void jffs2_clear_inode (struct inode *inode) { /* We can forget about this inode for now - drop all * the nodelists associated with it, etc. */ struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb); struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode); D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode)); jffs2_do_clear_inode(c, f); } /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash, fill in the raw_inode while you're at it. */ struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri) { struct inode *inode; struct super_block *sb = dir_i->i_sb; struct jffs2_sb_info *c; struct jffs2_inode_info *f; int ret; D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode)); c = JFFS2_SB_INFO(sb); inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); f = JFFS2_INODE_INFO(inode); jffs2_init_inode_info(f); memset(ri, 0, sizeof(*ri)); /* Set OS-specific defaults for new inodes */ ri->uid = ri->gid = cpu_to_je16(0); ri->mode = cpu_to_jemode(mode); ret = jffs2_do_new_inode (c, f, mode, ri); if (ret) { make_bad_inode(inode); iput(inode); return ERR_PTR(ret); } inode->i_nlink = 1; inode->i_ino = je32_to_cpu(ri->ino); inode->i_mode = jemode_to_cpu(ri->mode); inode->i_gid = je16_to_cpu(ri->gid); inode->i_uid = je16_to_cpu(ri->uid); inode->i_atime = inode->i_ctime = inode->i_mtime = cyg_timestamp(); ri->atime = ri->mtime = ri->ctime = cpu_to_je32(inode->i_mtime); inode->i_size = 0; insert_inode_hash(inode); return inode; } void jffs2_read_inode (struct inode *inode) { struct jffs2_inode_info *f; struct jffs2_sb_info *c; struct jffs2_raw_inode latest_node; int ret; D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino)); f = JFFS2_INODE_INFO(inode); c = JFFS2_SB_INFO(inode->i_sb); jffs2_init_inode_info(f); ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node); if (ret) { make_bad_inode(inode); up(&f->sem); return; } inode->i_mode = jemode_to_cpu(latest_node.mode); inode->i_uid = je16_to_cpu(latest_node.uid); inode->i_gid = je16_to_cpu(latest_node.gid); inode->i_size = je32_to_cpu(latest_node.isize); inode->i_atime = je32_to_cpu(latest_node.atime); inode->i_mtime = je32_to_cpu(latest_node.mtime); inode->i_ctime = je32_to_cpu(latest_node.ctime); inode->i_nlink = f->inocache->nlink; up(&f->sem); D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n")); }
Go to most recent revision | Compare with Previous | Blame | View Log