URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [fs/] [jffs2/] [v2_0/] [src/] [readinode.c] - Rev 857
Go to most recent revision | Compare with Previous | Blame | View Log
/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001, 2002 Red Hat, Inc. * * Created by David Woodhouse <dwmw2@cambridge.redhat.com> * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: readinode.c,v 1.1.1.1 2004-02-14 13:29:20 phoenix Exp $ * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/crc32.h> #include <linux/pagemap.h> #include <linux/mtd/mtd.h> #include <linux/compiler.h> #include "nodelist.h" static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *list, struct jffs2_node_frag *newfrag); #if CONFIG_JFFS2_FS_DEBUG >= 1 static void jffs2_print_fragtree(struct rb_root *list, int permitbug) { struct jffs2_node_frag *this = frag_first(list); uint32_t lastofs = 0; int buggy = 0; while(this) { if (this->node) printk(KERN_DEBUG "frag %04x-%04x: 0x%08x(%d) on flash (*%p). left (%p), right (%p), parent (%p)\n", this->ofs, this->ofs+this->size, ref_offset(this->node->raw), ref_flags(this->node->raw), this, frag_left(this), frag_right(this), frag_parent(this)); else printk(KERN_DEBUG "frag %04x-%04x: hole (*%p). left (%p} right (%p), parent (%p)\n", this->ofs, this->ofs+this->size, this, frag_left(this), frag_right(this), frag_parent(this)); if (this->ofs != lastofs) buggy = 1; lastofs = this->ofs+this->size; this = frag_next(this); } if (buggy && !permitbug) { printk(KERN_CRIT "Frag tree got a hole in it\n"); BUG(); } } void jffs2_print_frag_list(struct jffs2_inode_info *f) { jffs2_print_fragtree(&f->fragtree, 0); if (f->metadata) { printk(KERN_DEBUG "metadata at 0x%08x\n", ref_offset(f->metadata->raw)); } } #endif /* D1 */ static void jffs2_obsolete_node_frag(struct jffs2_sb_info *c, struct jffs2_node_frag *this) { if (this->node) { this->node->frags--; if (!this->node->frags) { /* The node has no valid frags left. It's totally obsoleted */ D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) obsolete\n", ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size)); jffs2_mark_node_obsolete(c, this->node->raw); jffs2_free_full_dnode(this->node); } else { D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) REF_NORMAL. frags is %d\n", ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size, this->node->frags)); mark_ref_normal(this->node->raw); } } jffs2_free_node_frag(this); } /* Given an inode, probably with existing list of fragments, add the new node * to the fragment list. */ int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) { int ret; struct jffs2_node_frag *newfrag; D1(printk(KERN_DEBUG "jffs2_add_full_dnode_to_inode(ino #%u, f %p, fn %p)\n", f->inocache->ino, f, fn)); newfrag = jffs2_alloc_node_frag(); if (unlikely(!newfrag)) return -ENOMEM; D2(printk(KERN_DEBUG "adding node %04x-%04x @0x%08x on flash, newfrag *%p\n", fn->ofs, fn->ofs+fn->size, ref_offset(fn->raw), newfrag)); if (unlikely(!fn->size)) { jffs2_free_node_frag(newfrag); return 0; } newfrag->ofs = fn->ofs; newfrag->size = fn->size; newfrag->node = fn; newfrag->node->frags = 1; ret = jffs2_add_frag_to_fragtree(c, &f->fragtree, newfrag); if (ret) return ret; /* If we now share a page with other nodes, mark either previous or next node REF_NORMAL, as appropriate. */ if (newfrag->ofs & (PAGE_CACHE_SIZE-1)) { struct jffs2_node_frag *prev = frag_prev(newfrag); mark_ref_normal(fn->raw); /* If we don't start at zero there's _always_ a previous */ if (prev->node) mark_ref_normal(prev->node->raw); } if ((newfrag->ofs+newfrag->size) & (PAGE_CACHE_SIZE-1)) { struct jffs2_node_frag *next = frag_next(newfrag); if (next) { mark_ref_normal(fn->raw); if (next->node) mark_ref_normal(next->node->raw); } } D2(jffs2_print_frag_list(f)); return 0; } /* Doesn't set inode->i_size */ static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *list, struct jffs2_node_frag *newfrag) { struct jffs2_node_frag *this; uint32_t lastend; /* Skip all the nodes which are completed before this one starts */ this = jffs2_lookup_node_frag(list, newfrag->node->ofs); if (this) { D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n", this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this)); lastend = this->ofs + this->size; } else { D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave no frag\n")); lastend = 0; } /* See if we ran off the end of the list */ if (lastend <= newfrag->ofs) { /* We did */ /* Check if 'this' node was on the same page as the new node. If so, both 'this' and the new node get marked REF_NORMAL so the GC can take a look. */ if ((lastend-1) >> PAGE_CACHE_SHIFT == newfrag->ofs >> PAGE_CACHE_SHIFT) { if (this->node) mark_ref_normal(this->node->raw); mark_ref_normal(newfrag->node->raw); } if (lastend < newfrag->node->ofs) { /* ... and we need to put a hole in before the new node */ struct jffs2_node_frag *holefrag = jffs2_alloc_node_frag(); if (!holefrag) return -ENOMEM; holefrag->ofs = lastend; holefrag->size = newfrag->node->ofs - lastend; holefrag->node = NULL; if (this) { /* By definition, the 'this' node has no right-hand child, because there are no frags with offset greater than it. So that's where we want to put the hole */ D2(printk(KERN_DEBUG "Adding hole frag (%p) on right of node at (%p)\n", holefrag, this)); rb_link_node(&holefrag->rb, &this->rb, &this->rb.rb_right); } else { D2(printk(KERN_DEBUG "Adding hole frag (%p) at root of tree\n", holefrag)); rb_link_node(&holefrag->rb, NULL, &list->rb_node); } rb_insert_color(&holefrag->rb, list); this = holefrag; } if (this) { /* By definition, the 'this' node has no right-hand child, because there are no frags with offset greater than it. So that's where we want to put the hole */ D2(printk(KERN_DEBUG "Adding new frag (%p) on right of node at (%p)\n", newfrag, this)); rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right); } else { D2(printk(KERN_DEBUG "Adding new frag (%p) at root of tree\n", newfrag)); rb_link_node(&newfrag->rb, NULL, &list->rb_node); } rb_insert_color(&newfrag->rb, list); return 0; } D2(printk(KERN_DEBUG "j_a_f_d_t_f: dealing with frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n", this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this)); /* OK. 'this' is pointing at the first frag that newfrag->ofs at least partially obsoletes, * - i.e. newfrag->ofs < this->ofs+this->size && newfrag->ofs >= this->ofs */ if (newfrag->ofs > this->ofs) { /* This node isn't completely obsoleted. The start of it remains valid */ /* Mark the new node and the partially covered node REF_NORMAL -- let the GC take a look at them */ mark_ref_normal(newfrag->node->raw); if (this->node) mark_ref_normal(this->node->raw); if (this->ofs + this->size > newfrag->ofs + newfrag->size) { /* The new node splits 'this' frag into two */ struct jffs2_node_frag *newfrag2 = jffs2_alloc_node_frag(); if (!newfrag2) { jffs2_free_node_frag(newfrag); return -ENOMEM; } D2(printk(KERN_DEBUG "split old frag 0x%04x-0x%04x -->", this->ofs, this->ofs+this->size); if (this->node) printk("phys 0x%08x\n", ref_offset(this->node->raw)); else printk("hole\n"); ) /* New second frag pointing to this's node */ newfrag2->ofs = newfrag->ofs + newfrag->size; newfrag2->size = (this->ofs+this->size) - newfrag2->ofs; newfrag2->node = this->node; if (this->node) this->node->frags++; /* Adjust size of original 'this' */ this->size = newfrag->ofs - this->ofs; /* Now, we know there's no node with offset greater than this->ofs but smaller than newfrag2->ofs or newfrag->ofs, for obvious reasons. So we can do a tree insert from 'this' to insert newfrag, and a tree insert from newfrag to insert newfrag2. */ jffs2_fragtree_insert(newfrag, this); rb_insert_color(&newfrag->rb, list); jffs2_fragtree_insert(newfrag2, newfrag); rb_insert_color(&newfrag2->rb, list); return 0; } /* New node just reduces 'this' frag in size, doesn't split it */ this->size = newfrag->ofs - this->ofs; /* Again, we know it lives down here in the tree */ jffs2_fragtree_insert(newfrag, this); rb_insert_color(&newfrag->rb, list); } else { /* New frag starts at the same point as 'this' used to. Replace it in the tree without doing a delete and insertion */ D2(printk(KERN_DEBUG "Inserting newfrag (*%p),%d-%d in before 'this' (*%p),%d-%d\n", newfrag, newfrag->ofs, newfrag->ofs+newfrag->size, this, this->ofs, this->ofs+this->size)); rb_replace_node(&this->rb, &newfrag->rb, list); if (newfrag->ofs + newfrag->size >= this->ofs+this->size) { D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x)\n", this, this->ofs, this->ofs+this->size)); jffs2_obsolete_node_frag(c, this); } else { this->ofs += newfrag->size; this->size -= newfrag->size; jffs2_fragtree_insert(this, newfrag); rb_insert_color(&this->rb, list); return 0; } } /* OK, now we have newfrag added in the correct place in the tree, but frag_next(newfrag) may be a fragment which is overlapped by it */ while ((this = frag_next(newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) { /* 'this' frag is obsoleted completely. */ D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x) and removing from tree\n", this, this->ofs, this->ofs+this->size)); rb_erase(&this->rb, list); jffs2_obsolete_node_frag(c, this); } /* Now we're pointing at the first frag which isn't totally obsoleted by the new frag */ if (!this || newfrag->ofs + newfrag->size == this->ofs) { return 0; } /* Still some overlap but we don't need to move it in the tree */ this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size); this->ofs = newfrag->ofs + newfrag->size; /* And mark them REF_NORMAL so the GC takes a look at them */ if (this->node) mark_ref_normal(this->node->raw); mark_ref_normal(newfrag->node->raw); return 0; } void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size) { struct jffs2_node_frag *frag = jffs2_lookup_node_frag(list, size); D1(printk(KERN_DEBUG "Truncating fraglist to 0x%08x bytes\n", size)); /* We know frag->ofs <= size. That's what lookup does for us */ if (frag && frag->ofs != size) { if (frag->ofs+frag->size >= size) { D1(printk(KERN_DEBUG "Truncating frag 0x%08x-0x%08x\n", frag->ofs, frag->ofs+frag->size)); frag->size = size - frag->ofs; } frag = frag_next(frag); } while (frag && frag->ofs >= size) { struct jffs2_node_frag *next = frag_next(frag); D1(printk(KERN_DEBUG "Removing frag 0x%08x-0x%08x\n", frag->ofs, frag->ofs+frag->size)); frag_erase(frag, list); jffs2_obsolete_node_frag(c, frag); frag = next; } } /* Scan the list of all nodes present for this ino, build map of versions, etc. */ static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *latest_node); int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t ino, struct jffs2_raw_inode *latest_node) { D2(printk(KERN_DEBUG "jffs2_do_read_inode(): getting inocache\n")); retry_inocache: spin_lock(&c->inocache_lock); f->inocache = jffs2_get_ino_cache(c, ino); D2(printk(KERN_DEBUG "jffs2_do_read_inode(): Got inocache at %p\n", f->inocache)); if (f->inocache) { /* Check its state. We may need to wait before we can use it */ switch(f->inocache->state) { case INO_STATE_UNCHECKED: case INO_STATE_CHECKEDABSENT: f->inocache->state = INO_STATE_READING; break; case INO_STATE_CHECKING: case INO_STATE_GC: /* If it's in either of these states, we need to wait for whoever's got it to finish and put it back. */ D1(printk(KERN_DEBUG "jffs2_get_ino_cache_read waiting for ino #%u in state %d\n", ino, f->inocache->state)); sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); goto retry_inocache; case INO_STATE_READING: case INO_STATE_PRESENT: /* Eep. This should never happen. It can happen if Linux calls read_inode() again before clear_inode() has finished though. */ printk(KERN_WARNING "Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state); /* Fail. That's probably better than allowing it to succeed */ f->inocache = NULL; break; default: BUG(); } } spin_unlock(&c->inocache_lock); if (!f->inocache && ino == 1) { /* Special case - no root inode on medium */ f->inocache = jffs2_alloc_inode_cache(); if (!f->inocache) { printk(KERN_CRIT "jffs2_do_read_inode(): Cannot allocate inocache for root inode\n"); return -ENOMEM; } D1(printk(KERN_DEBUG "jffs2_do_read_inode(): Creating inocache for root inode\n")); memset(f->inocache, 0, sizeof(struct jffs2_inode_cache)); f->inocache->ino = f->inocache->nlink = 1; f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; f->inocache->state = INO_STATE_READING; jffs2_add_ino_cache(c, f->inocache); } if (!f->inocache) { printk(KERN_WARNING "jffs2_do_read_inode() on nonexistent ino %u\n", ino); return -ENOENT; } return jffs2_do_read_inode_internal(c, f, latest_node); } int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic) { struct jffs2_raw_inode n; struct jffs2_inode_info *f = kmalloc(sizeof(*f), GFP_KERNEL); if (!f) return -ENOMEM; memset(f, 0, sizeof(*f)); init_MUTEX_LOCKED(&f->sem); f->inocache = ic; return jffs2_do_read_inode_internal(c, f, &n); } static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *latest_node) { struct jffs2_tmp_dnode_info *tn_list, *tn; struct jffs2_full_dirent *fd_list; struct jffs2_full_dnode *fn = NULL; uint32_t crc; uint32_t latest_mctime, mctime_ver; uint32_t mdata_ver = 0; size_t retlen; int ret; D1(printk(KERN_DEBUG "jffs2_do_read_inode_internal(): ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink)); /* Grab all nodes relevant to this ino */ ret = jffs2_get_inode_nodes(c, f->inocache->ino, f, &tn_list, &fd_list, &f->highest_version, &latest_mctime, &mctime_ver); if (ret) { printk(KERN_CRIT "jffs2_get_inode_nodes() for ino %u returned %d\n", f->inocache->ino, ret); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return ret; } f->dents = fd_list; while (tn_list) { tn = tn_list; fn = tn->fn; if (f->metadata && tn->version > mdata_ver) { D1(printk(KERN_DEBUG "Obsoleting old metadata at 0x%08x\n", ref_offset(f->metadata->raw))); jffs2_mark_node_obsolete(c, f->metadata->raw); jffs2_free_full_dnode(f->metadata); f->metadata = NULL; mdata_ver = 0; } if (fn->size) { jffs2_add_full_dnode_to_inode(c, f, fn); } else { /* Zero-sized node at end of version list. Just a metadata update */ D1(printk(KERN_DEBUG "metadata @%08x: ver %d\n", ref_offset(fn->raw), tn->version)); f->metadata = fn; mdata_ver = tn->version; } tn_list = tn->next; jffs2_free_tmp_dnode_info(tn); } if (!fn) { /* No data nodes for this inode. */ if (f->inocache->ino != 1) { printk(KERN_WARNING "jffs2_do_read_inode(): No data nodes found for ino #%u\n", f->inocache->ino); if (!fd_list) { if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); return -EIO; } printk(KERN_WARNING "jffs2_do_read_inode(): But it has children so we fake some modes for it\n"); } latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); latest_node->version = cpu_to_je32(0); latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); latest_node->isize = cpu_to_je32(0); latest_node->gid = cpu_to_je16(0); latest_node->uid = cpu_to_je16(0); if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; } ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(*latest_node), &retlen, (void *)latest_node); if (ret || retlen != sizeof(*latest_node)) { printk(KERN_NOTICE "MTD read in jffs2_do_read_inode() failed: Returned %d, %zd of %zd bytes read\n", ret, retlen, sizeof(*latest_node)); /* FIXME: If this fails, there seems to be a memory leak. Find it. */ up(&f->sem); jffs2_do_clear_inode(c, f); return ret?ret:-EIO; } crc = crc32(0, latest_node, sizeof(*latest_node)-8); if (crc != je32_to_cpu(latest_node->node_crc)) { printk(KERN_NOTICE "CRC failed for read_inode of inode %u at physical location 0x%x\n", f->inocache->ino, ref_offset(fn->raw)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { case S_IFDIR: if (mctime_ver > je32_to_cpu(latest_node->version)) { /* The times in the latest_node are actually older than mctime in the latest dirent. Cheat. */ latest_node->ctime = latest_node->mtime = cpu_to_je32(latest_mctime); } break; case S_IFREG: /* If it was a regular file, truncate it to the latest node's isize */ jffs2_truncate_fraglist(c, &f->fragtree, je32_to_cpu(latest_node->isize)); break; case S_IFLNK: /* Hack to work around broken isize in old symlink code. Remove this when dwmw2 comes to his senses and stops symlinks from being an entirely gratuitous special case. */ if (!je32_to_cpu(latest_node->isize)) latest_node->isize = latest_node->dsize; /* fall through... */ case S_IFBLK: case S_IFCHR: /* Certain inode types should have only one data node, and it's kept as the metadata node */ if (f->metadata) { printk(KERN_WARNING "Argh. Special inode #%u with mode 0%o had metadata node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } if (!frag_first(&f->fragtree)) { printk(KERN_WARNING "Argh. Special inode #%u with mode 0%o has no fragments\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* ASSERT: f->fraglist != NULL */ if (frag_next(frag_first(&f->fragtree))) { printk(KERN_WARNING "Argh. Special inode #%u with mode 0x%x had more than one node\n", f->inocache->ino, jemode_to_cpu(latest_node->mode)); /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ up(&f->sem); jffs2_do_clear_inode(c, f); return -EIO; } /* OK. We're happy */ f->metadata = frag_first(&f->fragtree)->node; jffs2_free_node_frag(frag_first(&f->fragtree)); f->fragtree = RB_ROOT; break; } if (f->inocache->state == INO_STATE_READING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); return 0; } void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f) { struct jffs2_full_dirent *fd, *fds; /* I don't think we care about the potential race due to reading this without f->sem. It can never get undeleted. */ int deleted = f->inocache && !f->inocache->nlink; /* If it's a deleted inode, grab the alloc_sem. This prevents jffs2_garbage_collect_pass() from deciding that it wants to garbage collect one of the nodes we're just about to mark obsolete -- by the time we drop alloc_sem and return, all the nodes are marked obsolete, and jffs2_g_c_pass() won't call iget() for the inode in question. We also used to do this to keep the temporary BUG() in jffs2_mark_node_obsolete() from triggering. */ if(deleted) down(&c->alloc_sem); down(&f->sem); if (f->metadata) { if (deleted) jffs2_mark_node_obsolete(c, f->metadata->raw); jffs2_free_full_dnode(f->metadata); } jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL); fds = f->dents; while(fds) { fd = fds; fds = fd->next; jffs2_free_full_dirent(fd); } if (f->inocache && f->inocache->state != INO_STATE_CHECKING) jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); up(&f->sem); if(deleted) up(&c->alloc_sem); }
Go to most recent revision | Compare with Previous | Blame | View Log