OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [arm/] [aeb/] [v2_0/] [src/] [hal_diag.c] - Rev 454

Go to most recent revision | Compare with Previous | Blame | View Log

/*=============================================================================
//
//      hal_diag.c
//
//      HAL diagnostic output code
//
//=============================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):   nickg, gthomas
// Contributors:nickg, gthomas
// Date:        1998-03-02
// Purpose:     HAL diagnostic output
// Description: Implementations of HAL diagnostic output support.
//
//####DESCRIPTIONEND####
//
//===========================================================================*/
 
#include <pkgconf/hal.h>
 
#include <cyg/infra/cyg_type.h>         // base types
#include <cyg/infra/cyg_trac.h>         // tracing macros
#include <cyg/infra/cyg_ass.h>          // assertion macros
 
#include <cyg/hal/hal_arch.h>           // SAVE/RESTORE GP macros
#include <cyg/hal/hal_io.h>             // IO macros
#include <cyg/hal/hal_if.h>             // interface API
#include <cyg/hal/hal_intr.h>           // HAL_ENABLE/MASK/UNMASK_INTERRUPTS
#include <cyg/hal/hal_misc.h>           // Helper functions
#include <cyg/hal/drv_api.h>            // CYG_ISR_HANDLED
 
/*---------------------------------------------------------------------------*/
// AEB Serial Port (UART1) for Debug
 
/*---------------------------------------------------------------------------*/
/* From serial_16550.h */
 
// UART1, 38400  (Using raw 24MHz system clock)
#define CYG_DEVICE_SERIAL_RS232_BAUD_MSB        (0)
#define CYG_DEVICE_SERIAL_RS232_BAUD_LSB        (13*3)
// This is the base address of UART1
#define CYG_DEV_UART1_BASE      0xFFFF0400
 
// Interrupt Enable Register
#define SIO_IER_RCV 0x01
#define SIO_IER_XMT 0x02
#define SIO_IER_LS  0x04
#define SIO_IER_MS  0x08
 
// Define the serial registers.
#define CYG_DEV_RBR 0x00   // receiver buffer register, read, dlab = 0
#define CYG_DEV_THR 0x00   // transmitter holding register, write, dlab = 0
#define CYG_DEV_DLL 0x00   // divisor latch (LS), read/write, dlab = 1
#define CYG_DEV_IER 0x04   // interrupt enable register, read/write, dlab = 0
#define CYG_DEV_DLM 0x04   // divisor latch (MS), read/write, dlab = 1
#define CYG_DEV_IIR 0x08   // interrupt identification register, read, dlab = 0
#define CYG_DEV_FCR 0x08   // fifo control register, write, dlab = 0
#define CYG_DEV_LCR 0x0C   // line control register, read/write
#define CYG_DEV_MCR 0x10   // modem control register, read/write
#define CYG_DEV_LSR 0x14   // line status register, read
#define CYG_DEV_MSR 0x18   // modem status register, read
 
// The line status register bits.
#define SIO_LSR_DR      0x01            // data ready
#define SIO_LSR_OE      0x02            // overrun error
#define SIO_LSR_PE      0x04            // parity error
#define SIO_LSR_FE      0x08            // framing error
#define SIO_LSR_BI      0x10            // break interrupt
#define SIO_LSR_THRE    0x20            // transmitter holding register empty
#define SIO_LSR_TEMT    0x40            // transmitter register empty
#define SIO_LSR_ERR     0x80            // any error condition
 
// The modem status register bits.
#define SIO_MSR_DCTS  0x01              // delta clear to send
#define SIO_MSR_DDSR  0x02              // delta data set ready
#define SIO_MSR_TERI  0x04              // trailing edge ring indicator
#define SIO_MSR_DDCD  0x08              // delta data carrier detect
#define SIO_MSR_CTS   0x10              // clear to send
#define SIO_MSR_DSR   0x20              // data set ready
#define SIO_MSR_RI    0x40              // ring indicator
#define SIO_MSR_DCD   0x80              // data carrier detect
 
// The line control register bits.
#define SIO_LCR_WLS0   0x01             // word length select bit 0
#define SIO_LCR_WLS1   0x02             // word length select bit 1
#define SIO_LCR_STB    0x04             // number of stop bits
#define SIO_LCR_PEN    0x08             // parity enable
#define SIO_LCR_EPS    0x10             // even parity select
#define SIO_LCR_SP     0x20             // stick parity
#define SIO_LCR_SB     0x40             // set break
#define SIO_LCR_DLAB   0x80             // divisor latch access bit
 
// Modem Control Register
#define SIO_MCR_DTR 0x01
#define SIO_MCR_RTS 0x02
#define SIO_MCR_INT 0x08   // Enable interrupts
 
 
//-----------------------------------------------------------------------------
typedef struct {
    cyg_uint8* base;
    cyg_int32 msec_timeout;
    int isr_vector;
} channel_data_t;
 
//-----------------------------------------------------------------------------
 
static void
cyg_hal_plf_serial_init_channel(void* __ch_data)
{
    cyg_uint8* base = ((channel_data_t*)__ch_data)->base;
    cyg_uint8 lcr, dll, dlm;
 
    // 8-1-no parity.
    HAL_WRITE_UINT8(base+CYG_DEV_LCR, SIO_LCR_WLS0 | SIO_LCR_WLS1);
 
    HAL_READ_UINT8(base+CYG_DEV_LCR, lcr);
    lcr |= SIO_LCR_DLAB;
    HAL_WRITE_UINT8(base+CYG_DEV_LCR, lcr);
    HAL_READ_UINT8(base+CYG_DEV_DLL, dll);
    HAL_READ_UINT8(base+CYG_DEV_DLM, dlm);
    HAL_WRITE_UINT8 (base+CYG_DEV_DLL, CYG_DEVICE_SERIAL_RS232_BAUD_LSB);
    HAL_WRITE_UINT8 (base+CYG_DEV_DLM, CYG_DEVICE_SERIAL_RS232_BAUD_MSB);
    lcr &= ~SIO_LCR_DLAB;
    HAL_WRITE_UINT8 (base+CYG_DEV_LCR, lcr);
    HAL_WRITE_UINT8 (base+CYG_DEV_FCR, 0x07);  // Enable & clear FIFO
}
 
void
cyg_hal_plf_serial_putc(void *__ch_data, char c)
{
    cyg_uint8* base = ((channel_data_t*)__ch_data)->base;
    cyg_uint8 lsr;
    CYGARC_HAL_SAVE_GP();
 
    do {
        HAL_READ_UINT8(base+CYG_DEV_LSR, lsr);
    } while ((lsr & SIO_LSR_THRE) == 0);
 
    HAL_WRITE_UINT8(base+CYG_DEV_THR, c);
 
    CYGARC_HAL_RESTORE_GP();
}
 
static cyg_bool
cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)
{
    cyg_uint8* base = ((channel_data_t*)__ch_data)->base;
    cyg_uint8 lsr;
 
    HAL_READ_UINT8(base+CYG_DEV_LSR, lsr);
    if ((lsr & SIO_LSR_DR) == 0)
        return false;
 
    HAL_READ_UINT8(base+CYG_DEV_RBR, *ch);
 
    return true;
}
 
cyg_uint8
cyg_hal_plf_serial_getc(void* __ch_data)
{
    cyg_uint8 ch;
    CYGARC_HAL_SAVE_GP();
 
    while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch));
 
    CYGARC_HAL_RESTORE_GP();
    return ch;
}
 
static void
cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, 
                         cyg_uint32 __len)
{
    CYGARC_HAL_SAVE_GP();
 
    while(__len-- > 0)
        cyg_hal_plf_serial_putc(__ch_data, *__buf++);
 
    CYGARC_HAL_RESTORE_GP();
}
 
static void
cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len)
{
    CYGARC_HAL_SAVE_GP();
 
    while(__len-- > 0)
        *__buf++ = cyg_hal_plf_serial_getc(__ch_data);
 
    CYGARC_HAL_RESTORE_GP();
}
 
cyg_bool
cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch)
{
    int delay_count;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    cyg_bool res;
    CYGARC_HAL_SAVE_GP();
 
    delay_count = chan->msec_timeout * 10; // delay in .1 ms steps
 
    for(;;) {
        res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch);
        if (res || 0 == delay_count--)
            break;
 
        CYGACC_CALL_IF_DELAY_US(100);
    }
 
    CYGARC_HAL_RESTORE_GP();
    return res;
}
 
static int
cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)
{
    static int irq_state = 0;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    int ret = 0;
    CYGARC_HAL_SAVE_GP();
 
    switch (__func) {
    case __COMMCTL_IRQ_ENABLE:
        irq_state = 1;
 
        HAL_WRITE_UINT8(chan->base+CYG_DEV_IER, SIO_IER_RCV);
        HAL_WRITE_UINT8(chan->base+CYG_DEV_MCR, SIO_MCR_INT|SIO_MCR_DTR|SIO_MCR_RTS);
 
        HAL_INTERRUPT_UNMASK(chan->isr_vector);
        break;
    case __COMMCTL_IRQ_DISABLE:
        ret = irq_state;
        irq_state = 0;
 
        HAL_WRITE_UINT8(chan->base+CYG_DEV_IER, 0);
        HAL_WRITE_UINT8(chan->base+CYG_DEV_MCR, SIO_MCR_INT|SIO_MCR_DTR|SIO_MCR_RTS);
 
        HAL_INTERRUPT_MASK(chan->isr_vector);
        break;
    case __COMMCTL_DBG_ISR_VECTOR:
        ret = chan->isr_vector;
        break;
    case __COMMCTL_SET_TIMEOUT:
    {
        va_list ap;
 
        va_start(ap, __func);
 
        ret = chan->msec_timeout;
        chan->msec_timeout = va_arg(ap, cyg_uint32);
 
        va_end(ap);
    }        
    default:
        break;
    }
    CYGARC_HAL_RESTORE_GP();
    return ret;
}
 
static int
cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, 
                       CYG_ADDRWORD __vector, CYG_ADDRWORD __data)
{
    int res = 0;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    char c;
    cyg_uint8 lsr;
    CYGARC_HAL_SAVE_GP();
 
    cyg_drv_interrupt_acknowledge(chan->isr_vector);
 
 
    *__ctrlc = 0;
    HAL_READ_UINT8(chan->base+CYG_DEV_LSR, lsr);
    if ( (lsr & SIO_LSR_DR) != 0 ) {
 
        HAL_READ_UINT8(chan->base+CYG_DEV_RBR, c);
        if( cyg_hal_is_break( &c , 1 ) )
            *__ctrlc = 1;
 
        res = CYG_ISR_HANDLED;
    }
 
    CYGARC_HAL_RESTORE_GP();
    return res;
}
 
static channel_data_t aeb_ser_channels[1];
 
static void
cyg_hal_plf_serial_init(void)
{
    hal_virtual_comm_table_t* comm;
    int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);
    channel_data_t* chan;
 
    chan = &aeb_ser_channels[0];
    chan->base = (cyg_uint8*)CYG_DEV_UART1_BASE;
    chan->isr_vector = CYGNUM_HAL_INTERRUPT_UART1;
    chan->msec_timeout = 1000;
 
    // Init channel
    cyg_hal_plf_serial_init_channel(chan);
 
    // Setup procs in the vector table
 
    // Set channel 0
    CYGACC_CALL_IF_SET_CONSOLE_COMM(0);
    comm = CYGACC_CALL_IF_CONSOLE_PROCS();
    CYGACC_COMM_IF_CH_DATA_SET(*comm, chan);
    CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write);
    CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read);
    CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc);
    CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc);
    CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control);
    CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr);
    CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout);
 
    // Restore original console
    CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
}
 
void
cyg_hal_plf_comms_init(void)
{
    static int initialized = 0;
 
    if (initialized)
        return;
 
    initialized = 1;
 
    cyg_hal_plf_serial_init();
}
 
//=============================================================================
// Compatibility with older stubs
//=============================================================================
 
#ifndef CYGSEM_HAL_VIRTUAL_VECTOR_DIAG
 
#ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
#include <cyg/hal/drv_api.h>
#include <cyg/hal/hal_stub.h>           // cyg_hal_gdb_interrupt
#endif
 
// Assumption: all diagnostic output must be GDB packetized unless this is a ROM (i.e.
// totally stand-alone) system.
 
#if defined(CYG_HAL_STARTUP_ROM) || !defined(CYGDBG_HAL_DIAG_TO_DEBUG_CHAN)
#define HAL_DIAG_USES_HARDWARE
#endif
 
 
static channel_data_t aeb_ser_channel = {(cyg_uint8*)CYG_DEV_UART1_BASE, 0, 0};
 
#ifdef HAL_DIAG_USES_HARDWARE
 
void hal_diag_init(void)
{
    static int init = 0;
    char *msg = "\n\rAEB-1 eCos\n\r";
 
    if (init++) return;
 
    cyg_hal_plf_serial_init_channel(&aeb_ser_channel);
 
    while (*msg) cyg_hal_plf_serial_putc(&aeb_ser_channel, *msg++);
}
 
#ifdef DEBUG_DIAG
#if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS)
#define DIAG_BUFSIZE 32
#else
#define DIAG_BUFSIZE 2048
#endif
static char diag_buffer[DIAG_BUFSIZE];
static int diag_bp = 0;
#endif
 
void hal_diag_write_char(char c)
{
    hal_diag_init();
 
    cyg_hal_plf_serial_putc(&aeb_ser_channel, c);
 
#ifdef DEBUG_DIAG
    diag_buffer[diag_bp++] = c;
    if (diag_bp == DIAG_BUFSIZE) diag_bp = 0;
#endif
}
 
void hal_diag_read_char(char *c)
{
    *c = cyg_hal_plf_serial_getc(&aeb_ser_channel);
}
 
#else // HAL_DIAG relies on GDB
 
// Initialize diag port - assume GDB channel is already set up
void hal_diag_init(void)
{
    if (0) cyg_hal_plf_serial_init_channel(&aeb_ser_channel); // avoid warning
}
 
// Actually send character down the wire
static void
hal_diag_write_char_serial(char c)
{
    hal_diag_init();
 
    cyg_hal_plf_serial_putc(&aeb_ser_channel, c);
}
 
static bool
hal_diag_read_serial(char *c)
{
    long timeout = 1000000000;  // A long time...
    while (!cyg_hal_plf_serial_getc_nonblock(&aeb_ser_channel, c))
        if (0 == --timeout) return false;
 
    return true;
}
 
void 
hal_diag_read_char(char *c)
{
    while (!hal_diag_read_serial(c)) ;
}
 
void 
hal_diag_write_char(char c)
{
    static char line[100];
    static int pos = 0;
 
    // No need to send CRs
    if( c == '\r' ) return;
 
    line[pos++] = c;
 
    if( c == '\n' || pos == sizeof(line) )
    {
 
        CYG_INTERRUPT_STATE old;
 
        // Disable interrupts. This prevents GDB trying to interrupt us
        // while we are in the middle of sending a packet. The serial
        // receive interrupt will be seen when we re-enable interrupts
        // later.
 
#ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
        CYG_HAL_GDB_ENTER_CRITICAL_IO_REGION(old);
#else
        HAL_DISABLE_INTERRUPTS(old);
#endif
 
        while(1)
        {
            static char hex[] = "0123456789ABCDEF";
            cyg_uint8 csum = 0;
            int i;
            char c1;
 
            hal_diag_write_char_serial('$');
            hal_diag_write_char_serial('O');
            csum += 'O';
            for( i = 0; i < pos; i++ )
            {
                char ch = line[i];
                char h = hex[(ch>>4)&0xF];
                char l = hex[ch&0xF];
                hal_diag_write_char_serial(h);
                hal_diag_write_char_serial(l);
                csum += h;
                csum += l;
            }
            hal_diag_write_char_serial('#');
            hal_diag_write_char_serial(hex[(csum>>4)&0xF]);
            hal_diag_write_char_serial(hex[csum&0xF]);
 
            // Wait for the ACK character '+' from GDB here and handle
            // receiving a ^C instead.  This is the reason for this clause
            // being a loop.
            if (!hal_diag_read_serial(&c1))
                continue;   // No response - try sending packet again
 
            if( c1 == '+' )
                break;              // a good acknowledge
 
#ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
            cyg_drv_interrupt_acknowledge(CYGNUM_HAL_INTERRUPT_UART1);
            if( c1 == 3 ) {
                // Ctrl-C: breakpoint.
                cyg_hal_gdb_interrupt (__builtin_return_address(0));
                break;
            }
#endif
            // otherwise, loop round again
        }
 
        pos = 0;
 
 
        // And re-enable interrupts
#ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
        CYG_HAL_GDB_LEAVE_CRITICAL_IO_REGION(old);
#else
        HAL_RESTORE_INTERRUPTS(old);
#endif
 
    }
}
#endif
 
#endif // CYGSEM_HAL_VIRTUAL_VECTOR_DIAG
 
 
/*---------------------------------------------------------------------------*/
/* End of hal_diag.c */
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.