URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [arm/] [edb7xxx/] [v2_0/] [src/] [edb7xxx_misc.c] - Rev 174
Compare with Previous | Blame | View Log
//========================================================================== // // edb7xxx_misc.c // // HAL misc board support code for ARM EDB7XXX-1 // //========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // Copyright (C) 2003 Gary Thomas <gary@mind.be> // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): gthomas // Contributors: gthomas // Date: 1999-02-20 // Purpose: HAL board support // Description: Implementations of HAL board interfaces // //####DESCRIPTIONEND#### // //========================================================================*/ #include <pkgconf/hal.h> #include <pkgconf/system.h> #include CYGBLD_HAL_PLATFORM_H #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_arch.h> // Register state info #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_intr.h> // Interrupt names #include <cyg/hal/hal_cache.h> #include <cyg/hal/hal_edb7xxx.h> // Hardware definitions #include <cyg/hal/hal_if.h> // calling interface API // #define CYGHWR_HAL_ARM_EDB7XXX_BATLOW #ifdef CYGHWR_HAL_ARM_EDB7XXX_BATLOW #include <cyg/hal/hal_intr.h> // HAL interrupt macros #include <cyg/hal/drv_api.h> // HAL ISR support static cyg_interrupt batlow_interrupt; static cyg_handle_t batlow_interrupt_handle; #endif #if (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK == 18432) #define CPU_CLOCK 0 #elif (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK == 36864) #define CPU_CLOCK 1 #elif (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK == 49152) #define CPU_CLOCK 2 #elif (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK == 73728) #define CPU_CLOCK 3 #elif (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK == 90317) #define CPU_CLOCK 3 // Yes, the same #define CPU_CLOCK_90MHZ #else #error Invalid CPU clock frequency #endif static cyg_uint32 _period; void dram_delay_loop(void); // Use Timer/Counter #2 for system clock void hal_clock_initialize(cyg_uint32 period) { volatile cyg_uint32 *syscon1 = (volatile cyg_uint32 *)SYSCON1; volatile cyg_uint32 *tc2d = (volatile cyg_uint32 *)TC2D; // Set timer to 512KHz, prescale mode *syscon1 = (*syscon1 & ~(SYSCON1_TC2M|SYSCON1_TC2S)) | SYSCON1_TC2S | SYSCON1_TC2M; // Initialize counter *tc2d = period; _period = period; } // This routine is called during a clock interrupt. static void __inline__ enable_FIQ(void) { asm volatile ("mrs r0,cpsr;" "bic r0,r0,#0x40;" "msr cpsr,r0"); } #ifdef CYGHWR_HAL_ARM_EDB7XXX_SOFTWARE_DRAM_REFRESH #define DRAM_START 0x00000000 #define DRAM_END 0x01000000 #define DRAM_ROW_SIZE 0x00000400 #define DRAM_REFRESH (((DRAM_END-DRAM_START)/DRAM_ROW_SIZE)+99)/100 static void do_DRAM_refresh(void) { static cyg_uint32 *row_ptr; volatile cyg_uint32 val; int i; for (i = 0; i < DRAM_REFRESH; i++) { val = *row_ptr; row_ptr += DRAM_ROW_SIZE / sizeof(*row_ptr); if (row_ptr >= (cyg_uint32 *)DRAM_END) row_ptr = (cyg_uint32 *)DRAM_START; } } #endif // CYGHWR_HAL_ARM_EDB7XXX_SOFTWARE_DRAM_REFRESH void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period) { volatile cyg_uint32 *tc2d = (volatile cyg_uint32 *)TC2D; if (period != _period) { *tc2d = period; _period = period; } #if !defined(__EDB7312) #ifndef CYGPKG_HAL_ARM_EDB7209 // EP7209 has no DRAM/controller, thus no problem enable_FIQ(); // Should be safe here #ifdef CYGHWR_HAL_ARM_EDB7XXX_SOFTWARE_DRAM_REFRESH do_DRAM_refresh(); #else dram_delay_loop(); #endif #endif #endif // !defined(__EDB7312) } // Read the current value of the clock, returning the number of hardware "ticks" // that have occurred (i.e. how far away the current value is from the start) void hal_clock_read(cyg_uint32 *pvalue) { volatile cyg_int32 *tc2d = (volatile cyg_int32 *)TC2D; static cyg_int32 clock_val; clock_val = *tc2d & 0x0000FFFF; // Register has only 16 bits if (clock_val & 0x00008000) clock_val |= 0xFFFF8000; // Extend sign bit *pvalue = (cyg_uint32)(_period - clock_val); // 'clock_val' counts down and wraps } // Delay for some number of useconds. Assume that the system clock // has been set up to run at 512KHz (default). void hal_delay_us(int us) { volatile cyg_int32 *tc2d = (volatile cyg_int32 *)TC2D; cyg_int32 val, prev; while (us >= 2) { prev = *tc2d & 0x0000FFFF; // Register has only 16 bits if (prev & 0x00008000) prev |= 0xFFFF8000; // Extend sign bit while (true) { val = *tc2d & 0x0000FFFF; // Register has only 16 bits if (val & 0x00008000) { val |= 0xFFFF8000; // Extend sign bit *tc2d = _period; // Need to reset counter } if (val != prev) { break; // At least 2us have passed } } us -= 2; } } void dram_delay_loop(void) { // Temporary fix for DRAM starvation problem if (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK > 37000) { int i; for (i = 0; i < (CYGHWR_HAL_ARM_EDB7XXX_PROCESSOR_CLOCK*2)/24; i++) ; // approx 300 us } } // These tables map the various [soft] interrupt numbers onto the hardware static cyg_uint32 hal_interrupt_bitmap[] = { 0, // CYGNUM_HAL_INTERRUPT_unused 0 INTSR1_EXTFIQ, // CYGNUM_HAL_INTERRUPT_EXTFIQ 1 INTSR1_BLINT, // CYGNUM_HAL_INTERRUPT_BLINT 2 INTSR1_WEINT, // CYGNUM_HAL_INTERRUPT_WEINT 3 INTSR1_MCINT, // CYGNUM_HAL_INTERRUPT_MCINT 4 INTSR1_CSINT, // CYGNUM_HAL_INTERRUPT_CSINT 5 INTSR1_EINT1, // CYGNUM_HAL_INTERRUPT_EINT1 6 INTSR1_EINT2, // CYGNUM_HAL_INTERRUPT_EINT2 7 INTSR1_EINT3, // CYGNUM_HAL_INTERRUPT_EINT3 8 INTSR1_TC1OI, // CYGNUM_HAL_INTERRUPT_TC1OI 9 INTSR1_TC2OI, // CYGNUM_HAL_INTERRUPT_TC2OI 10 INTSR1_RTCMI, // CYGNUM_HAL_INTERRUPT_RTCMI 11 INTSR1_TINT, // CYGNUM_HAL_INTERRUPT_TINT 12 INTSR1_UTXINT1, // CYGNUM_HAL_INTERRUPT_UTXINT1 13 INTSR1_URXINT1, // CYGNUM_HAL_INTERRUPT_URXINT1 14 INTSR1_UMSINT, // CYGNUM_HAL_INTERRUPT_UMSINT 15 INTSR1_SSEOTI, // CYGNUM_HAL_INTERRUPT_SSEOTI 16 INTSR2_KBDINT, // CYGNUM_HAL_INTERRUPT_KBDINT 17 INTSR2_SS2RX, // CYGNUM_HAL_INTERRUPT_SS2RX 18 INTSR2_SS2TX, // CYGNUM_HAL_INTERRUPT_SS2TX 19 INTSR2_UTXINT2, // CYGNUM_HAL_INTERRUPT_UTXINT2 20 INTSR2_URXINT2, // CYGNUM_HAL_INTERRUPT_URXINT2 21 #if defined(__EDB7211) INTSR3_MCPINT // CYGNUM_HAL_INTERRUPT_MCPINT 22 #endif #if defined(__EDB7209) INTSR3_I2SINT // CYGNUM_HAL_INTERRUPT_I2SINT 22 #endif #if defined(__EDB7312) INTSR3_DAIINT // CYGNUM_HAL_INTERRUPT_DAIINT 22 #endif }; static cyg_uint32 hal_interrupt_mask_regmap[] = { 0, // CYGNUM_HAL_INTERRUPT_unused 0 INTMR1, // CYGNUM_HAL_INTERRUPT_EXTFIQ 1 INTMR1, // CYGNUM_HAL_INTERRUPT_BLINT 2 INTMR1, // CYGNUM_HAL_INTERRUPT_WEINT 3 INTMR1, // CYGNUM_HAL_INTERRUPT_MCINT 4 INTMR1, // CYGNUM_HAL_INTERRUPT_CSINT 5 INTMR1, // CYGNUM_HAL_INTERRUPT_EINT1 6 INTMR1, // CYGNUM_HAL_INTERRUPT_EINT2 7 INTMR1, // CYGNUM_HAL_INTERRUPT_EINT3 8 INTMR1, // CYGNUM_HAL_INTERRUPT_TC1OI 9 INTMR1, // CYGNUM_HAL_INTERRUPT_TC2OI 10 INTMR1, // CYGNUM_HAL_INTERRUPT_RTCMI 11 INTMR1, // CYGNUM_HAL_INTERRUPT_TINT 12 INTMR1, // CYGNUM_HAL_INTERRUPT_UTXINT1 13 INTMR1, // CYGNUM_HAL_INTERRUPT_URXINT1 14 INTMR1, // CYGNUM_HAL_INTERRUPT_UMSINT 15 INTMR1, // CYGNUM_HAL_INTERRUPT_SSEOTI 16 INTMR2, // CYGNUM_HAL_INTERRUPT_KBDINT 17 INTMR2, // CYGNUM_HAL_INTERRUPT_SS2RX 18 INTMR2, // CYGNUM_HAL_INTERRUPT_SS2TX 19 INTMR2, // CYGNUM_HAL_INTERRUPT_UTXINT2 20 INTMR2, // CYGNUM_HAL_INTERRUPT_URXINT2 21 #if defined(__EDB7211) INTMR3, // CYGNUM_HAL_INTERRUPT_MCPINT 22 #endif #if defined(__EDB7209) INTMR3, // CYGNUM_HAL_INTERRUPT_I2SINT 22 #endif #if defined(__EDB7312) INTMR3, // CYGNUM_HAL_INTERRUPT_DAIINT 22 #endif }; static cyg_uint32 hal_interrupt_clear_map[] = { 0, // CYGNUM_HAL_INTERRUPT_unused 0 0, // CYGNUM_HAL_INTERRUPT_EXTFIQ 1 BLEOI, // CYGNUM_HAL_INTERRUPT_BLINT 2 TEOI, // CYGNUM_HAL_INTERRUPT_WEINT 3 MCEOI, // CYGNUM_HAL_INTERRUPT_MCINT 4 COEOI, // CYGNUM_HAL_INTERRUPT_CSINT 5 0, // CYGNUM_HAL_INTERRUPT_EINT1 6 0, // CYGNUM_HAL_INTERRUPT_EINT2 7 0, // CYGNUM_HAL_INTERRUPT_EINT3 8 TC1EOI, // CYGNUM_HAL_INTERRUPT_TC1OI 9 TC2EOI, // CYGNUM_HAL_INTERRUPT_TC2OI 10 RTCEOI, // CYGNUM_HAL_INTERRUPT_RTCMI 11 TEOI, // CYGNUM_HAL_INTERRUPT_TINT 12 0, // CYGNUM_HAL_INTERRUPT_UTXINT1 13 0, // CYGNUM_HAL_INTERRUPT_URXINT1 14 UMSEOI, // CYGNUM_HAL_INTERRUPT_UMSINT 15 0, // CYGNUM_HAL_INTERRUPT_SSEOTI 16 KBDEOI, // CYGNUM_HAL_INTERRUPT_KBDINT 17 0, // CYGNUM_HAL_INTERRUPT_SS2RX 18 0, // CYGNUM_HAL_INTERRUPT_SS2TX 19 0, // CYGNUM_HAL_INTERRUPT_UTXINT2 20 0, // CYGNUM_HAL_INTERRUPT_URXINT2 21 #if defined(__EDB7211) 0, // CYGNUM_HAL_INTERRUPT_MCPINT 22 #endif #if defined(__EDB7209) 0, // CYGNUM_HAL_INTERRUPT_I2SINT 22 #endif #if defined(__EDB7312) 0, // CYGNUM_HAL_INTERRUPT_DAIINT 22 #endif }; static struct regmap { int first_int, last_int; cyg_uint32 stat_reg, mask_reg; } hal_interrupt_status_regmap[] = { { CYGNUM_HAL_INTERRUPT_EXTFIQ, CYGNUM_HAL_INTERRUPT_MCINT, INTSR1, INTMR1}, #if defined(__EDB7211) { CYGNUM_HAL_INTERRUPT_MCPINT, CYGNUM_HAL_INTERRUPT_MCPINT, INTSR3, INTMR3}, #endif #if defined(__EDB7209) { CYGNUM_HAL_INTERRUPT_I2SINT, CYGNUM_HAL_INTERRUPT_I2SINT, INTSR3, INTMR3}, #endif #if defined(__EDB7312) { CYGNUM_HAL_INTERRUPT_DAIINT, CYGNUM_HAL_INTERRUPT_DAIINT, INTSR3, INTMR3}, #endif { CYGNUM_HAL_INTERRUPT_CSINT, CYGNUM_HAL_INTERRUPT_SSEOTI, INTSR1, INTMR1}, { CYGNUM_HAL_INTERRUPT_KBDINT, CYGNUM_HAL_INTERRUPT_URXINT2, INTSR2, INTMR2}, { 0, 0, 0, 0 } }; #ifdef CYGHWR_HAL_ARM_EDB7XXX_BATLOW // This ISR is called when the battery low interrupt occurs int cyg_hal_batlow_isr(cyg_vector_t vector, cyg_addrword_t data, HAL_SavedRegisters *regs) { diag_printf("Battery low\n"); cyg_drv_interrupt_mask(CYGNUM_HAL_INTERRUPT_BLINT); // Presumably, one would leave this masked until the battery changed cyg_drv_interrupt_acknowledge(CYGNUM_HAL_INTERRUPT_BLINT); return 0; // No need to run DSR } #endif // // Early stage hardware initialization // Some initialization has already been done before we get here. For now // just set up the interrupt environment. void hal_hardware_init(void) { volatile cyg_uint32 *icr; int vector; // Clear and initialize instruction cache HAL_ICACHE_INVALIDATE_ALL(); HAL_ICACHE_ENABLE(); // Any hardware/platform initialization that needs to be done. *(volatile cyg_uint32 *)INTMR1 = 0; *(volatile cyg_uint32 *)INTMR2 = 0; #if !defined(__CL7111) *(volatile cyg_uint32 *)INTMR3 = 0; #endif #if !defined(__CL7111) && !defined(__EDB7312) *(volatile cyg_uint8 *)SYSCON3 = SYSCON3_CLKCTL(CPU_CLOCK); #endif #if 0 diag_printf("IMR1: %04x, IMR2: %04x\n", *(volatile cyg_uint32 *)INTMR1, *(volatile cyg_uint32 *)INTMR2); diag_printf("Memcfg1: %08x, Memcfg2: %08x, DRAM refresh: %08x\n", *(volatile cyg_uint32 *)MEMCFG1, *(volatile cyg_uint32 *)MEMCFG2, *(volatile cyg_uint8 *)DRFPR); #endif #define MEMCFG_BUS_WIDTH(n) (n<<0) #define MEMCFG_BUS_WIDTH_32 (0<<0) #define MEMCFG_BUS_WIDTH_16 (1<<0) #define MEMCFG_BUS_WIDTH_8 (2<<0) #define MEMCFG_WAIT_STATES(n) (n<<2) // 0 is max, 15 min #define MEMCFG_SQAEN (1<<6) #define MEMCFG_CLKENB (1<<7) // These need to be checked/improved #define CS0_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(3) | MEMCFG_SQAEN #define CS1_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(4) #define CS2_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #define CS3_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #define CS4_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #define CS5_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #define CS6_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #define CS7_CONFIG MEMCFG_BUS_WIDTH_32 | MEMCFG_WAIT_STATES(0) #if defined(__EDB7209) *(volatile cyg_uint32 *)MEMCFG1 = (CS0_CONFIG << 0) | // FLASH rom (CS1_CONFIG << 8) | // NAND flash (CS2_CONFIG << 16) | // Ethernet (CS3_CONFIG << 24); // Parallel printer, keyboard, touch panel *(volatile cyg_uint32 *)MEMCFG2 = (CS4_CONFIG << 0) | // USB (CS5_CONFIG << 8) | // Expansion (CS6_CONFIG << 16) | // Local SRAM (CS7_CONFIG << 24); // Boot ROM // This value came from Cirrus, but doesn't match the recommendations above? *(volatile cyg_uint32 *)MEMCFG1 = 0x3C001814; // Set up GPIO lines *(volatile cyg_uint8 *)PADDR = 0x00; // Keyboard data 0-7 input *(volatile cyg_uint8 *)PBDDR = 0xFA; // 0 - I/O on J22 // 1 - RTS on UART1 // 2 - Ring on UART1 // 3 - SSI header, Pin 13 // 4 - NAND Command Latch Enable // 5 - NAND Address Latch Enable // 6 - On-board NAND Select (active low) // 7 - SmartMedia Card Enable (active low) *(volatile cyg_uint8 *)PBDR = 0xC0; // Everything off *(volatile cyg_uint8 *)PDDDR = 0x40; // 0 - Diagnostic LED control // 1 - Enable DC-DC converter for LCD // 2 - Enable LCD // 3 - ENable LCD Backlight // 4 - CS4342 I2C Data // 5 - CS4342 I2C Clock // 6 - SmartMedia Presence indicator // 7 - I/O on J22 *(volatile cyg_uint8 *)PDDR = 0x00; // Everything off *(volatile cyg_uint8 *)PEDDR = 0x05; // 0 - Codec or ADC/DAC // 1 - I/O on JP38 (0 when inserted) // 2 - Enable touch panel *(volatile cyg_uint8 *)PEDR = 0x01; // Enable audio (not CODEC) // Initialize system control *(volatile cyg_uint32 *)SYSCON2 = SYSCON2_KBWEN; #endif #if defined(__EDB7312) *(volatile cyg_uint32 *)MEMCFG1 = 0x1F101710; *(volatile cyg_uint32 *)MEMCFG2 = 0x00001F93; // Set up GPIO lines *(volatile cyg_uint8 *)PADDR = 0x00; // Keyboard data 0-7 input *(volatile cyg_uint8 *)PBDDR = 0xF2; *(volatile cyg_uint8 *)PDDDR = 0x2F; *(volatile cyg_uint8 *)PDDDR = 0x10; // Directions are inverted! *(volatile cyg_uint8 *)PDDR = 0x00; // Everything off *(volatile cyg_uint8 *)PEDDR = 0x01; // Initialize system control *(volatile cyg_uint32 *)SYSCON1 = 0x00040100; *(volatile cyg_uint32 *)SYSCON2 = 0x00000102; #ifdef CPU_CLOCK_90MHZ // We must slow down the RAM timings compared to default by adding // wait states or it does not work. // Slow them all down to Random=5, Seq=3 waitstates by replacing // that field throughout the default value copied from above: *(volatile cyg_uint32 *)MEMCFG1 = (0x1F101710 & ~0x3c3c3c3c) | 0x0c0c0c0c; *(volatile cyg_uint32 *)MEMCFG2 = (0x00001F93 & ~0x00003c3c) | 0x00000c0c; #endif // CPU_CLOCK_90MHZ *(volatile cyg_uint32 *)SYSCON3 = 0x00000208 | SYSCON3_CLKCTL(CPU_CLOCK); #ifdef CPU_CLOCK_90MHZ // Let the clock change settle before hitting the PLL multiplier // register to change up by a further 22.5% asm volatile( "nop;nop;nop;nop;nop;nop;nop;nop;"); *(volatile cyg_uint32 *)EP7312_PLL_MR = EP7312_PLL_MR_FOR_90MHz; asm volatile( "nop;nop;nop;nop;nop;nop;nop;nop;"); #endif // CPU_CLOCK_90MHZ #endif // Reset all interrupt masks (disable all interrupt sources) for (vector = CYGNUM_HAL_ISR_MIN; vector < CYGNUM_HAL_ISR_COUNT; vector++) { icr = (volatile cyg_uint32 *)hal_interrupt_clear_map[vector]; if (icr) *icr = 0; // Just a write clears the latch } #ifndef __EDB7312 // Turn on the DIAG LED to let the world know the board is alive *(volatile unsigned char *)LEDFLSH = LEDFLSH_ENABLE|LEDFLSH_DUTY(16)|LEDFLSH_PERIOD(1); #endif #ifdef CYGHWR_HAL_ARM_EDB7XXX_BATLOW cyg_drv_interrupt_create(CYGNUM_HAL_INTERRUPT_BLINT, 99, // Priority - what goes here? 0, // Data item passed to interrupt handler cyg_hal_batlow_isr, 0, &batlow_interrupt_handle, &batlow_interrupt); cyg_drv_interrupt_attach(batlow_interrupt_handle); cyg_drv_interrupt_unmask(CYGNUM_HAL_INTERRUPT_BLINT); #endif // Initialize real-time clock (for delays, etc, even if kernel doesn't use it) hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD); // Set up eCos/ROM interfaces hal_if_init(); #ifdef CYGSEM_EDB7XXX_LCD_COMM // Initialize I/O channel lcd_comm_init(); #endif } // // This routine is called to respond to a hardware interrupt (IRQ). It // should interrogate the hardware and return the IRQ vector number. // This code is a little convoluted to keep it general while still avoiding // reading the hardware a lot, since the interrupt status is split across // three separate registers. int hal_spurious_ints; int hal_IRQ_handler(void) { struct regmap *map = hal_interrupt_status_regmap; cyg_uint32 stat; int vector; while (map->first_int) { stat = *(volatile cyg_uint32 *)map->stat_reg & *(volatile cyg_uint32 *)map->mask_reg; for (vector = map->first_int; vector <= map->last_int; vector++) { if (stat & hal_interrupt_bitmap[vector]) return vector; } map++; // Next interrupt status register } hal_spurious_ints++; return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen! } // // Interrupt control // void hal_interrupt_mask(int vector) { volatile cyg_uint32 *imr; imr = (volatile cyg_uint32 *)hal_interrupt_mask_regmap[vector]; *imr &= ~hal_interrupt_bitmap[vector]; } void hal_interrupt_unmask(int vector) { volatile cyg_uint32 *imr; imr = (volatile cyg_uint32 *)hal_interrupt_mask_regmap[vector]; *imr |= hal_interrupt_bitmap[vector]; } void hal_interrupt_acknowledge(int vector) { // Some interrupt sources have a register for this. volatile cyg_uint8 *icr; icr = (volatile cyg_uint8 *)hal_interrupt_clear_map[vector]; if (icr) { *icr = 0; // Any data clears interrupt } } void hal_interrupt_configure(int vector, int level, int up) { // No interrupts are configurable on this hardware } void hal_interrupt_set_level(int vector, int level) { // No interrupts are configurable on this hardware } #define _CYGHWR_LAYOUT_ONLY #include <cyg/hal/hal_platform_setup.h> unsigned long _edb7xxx_physical_address(unsigned long addr) { unsigned long res; if (addr < DRAM_LA_END) { res = addr + DRAM_PA; } else { res = addr | 0xC0000000; } return res; } /*------------------------------------------------------------------------*/ // EOF hal_misc.c