URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [arm/] [integrator/] [v2_0/] [src/] [flash.c] - Rev 279
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // flash.c // // ARM INTEGRATOR A/P FLASH program tool // //========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): gthomas // Contributors: Philippe Robin // Date: November 7, 2000 // Description: Tool used to program onboard FLASH image //####DESCRIPTIONEND#### // // This program will program the FLASH on INTEGRATOR A/P board // #include <pkgconf/libc.h> // Configuration header #include <cyg/kernel/kapi.h> #include <stdlib.h> #include <ctype.h> #include <cyg/infra/testcase.h> #include <sys/cstartup.h> #ifndef FALSE #define FALSE 0 #define TRUE 1 #endif #define PROGRAM_COMMAND 0x00100010 #define PROGRAM_VERIFY 0x00D000D0 #define READ_STATUS 0x70707070 #define SR_MASK 0x00800080 #define READ_ARRAY 0x00FF00FF #define BLOCK_ERASE 0x00200020 #define BLOCK_WRITE_MODE 0x00E800E8 #define BLOCK_LOCK_BITS 0x00600060 #define CFI_QUERY_OFFS 0x00000055 #define CFI_QUERY_COMMAND 0x00980098 #define CFI_DATA_OFFS 0x00000020 #define SYS_INFO_SIZE_OFF 0x00000027 #define SYS_INFO_WB_OFF 0x0000002A #define SYS_ERASE_SIZE_OFF 0x0000002F #define STATUS_READY_MASK 0x00800080 #define BANK_BOUNDARY 0x0001FFFF #define STATUS_ERROR 0x00100010 #define MAX_WRITE_BUFF 0xF // Integrator EBI register definitions #define INTEGRATOR_EBI_BASE 0x12000000 #define INTEGRATOR_EBI_CSR0_OFFSET 0x00 #define INTEGRATOR_EBI_CSR1_OFFSET 0x04 #define INTEGRATOR_EBI_CSR2_OFFSET 0x08 #define INTEGRATOR_EBI_CSR3_OFFSET 0x0C #define INTEGRATOR_EBI_LOCK_OFFSET 0x20 #define INTEGRATOR_EBI_CSR0 (INTEGRATOR_EBI_BASE + INTEGRATOR_EBI_CSR0_OFFSET) #define INTEGRATOR_EBI_CSR1 (INTEGRATOR_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET) #define INTEGRATOR_EBI_CSR2 (INTEGRATOR_EBI_BASE + INTEGRATOR_EBI_CSR2_OFFSET) #define INTEGRATOR_EBI_CSR3 (INTEGRATOR_EBI_BASE + INTEGRATOR_EBI_CSR3_OFFSET) #define INTEGRATOR_EBI_LOCK (INTEGRATOR_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET) #define INTEGRATOR_EBI_8_BIT 0x00 #define INTEGRATOR_EBI_16_BIT 0x01 #define INTEGRATOR_EBI_32_BIT 0x02 #define INTEGRATOR_EBI_WRITE_ENABLE 0x04 #define INTEGRATOR_EBI_SYNC 0x08 #define INTEGRATOR_EBI_WS_2 0x00 #define INTEGRATOR_EBI_WS_3 0x10 #define INTEGRATOR_EBI_WS_4 0x20 #define INTEGRATOR_EBI_WS_5 0x30 #define INTEGRATOR_EBI_WS_6 0x40 #define INTEGRATOR_EBI_WS_7 0x50 #define INTEGRATOR_EBI_WS_8 0x60 #define INTEGRATOR_EBI_WS_9 0x70 #define INTEGRATOR_EBI_WS_10 0x80 #define INTEGRATOR_EBI_WS_11 0x90 #define INTEGRATOR_EBI_WS_12 0xA0 #define INTEGRATOR_EBI_WS_13 0xB0 #define INTEGRATOR_EBI_WS_14 0xC0 #define INTEGRATOR_EBI_WS_15 0xD0 #define INTEGRATOR_EBI_WS_16 0xE0 #define INTEGRATOR_EBI_WS_17 0xF0 #define FL_SC_CONTROL 0x06 // Enable Flash Write and Vpp #define INVALID_FTYPE 0x00000000 #define UNKNOWN_FTYPE 0xFFFFFFFF #define ATMEL_FTYPE 0x00000001 #define INTEL_FTYPE 0x00000002 #define FLASH_TYPE_MASK (ATMEL_FTYPE | INTEL_FTYPE) // On Some platforms Boot and program flash may be part of the same device #define INTEGRATED_FTYPE 0x80000000 #define BOOT_FTYPE 0x40000000 #define APP_FTYPE 0x20000000 #define FLASH_USAGE_MASK (BOOT_FTYPE | APP_FTYPE) #define DEFAULT_FLASH_MASK 0xFFFFFFF8 #define FLASH_BLOCK_SIZE 0x00020000 // 128Kb #define EPROM_BASE 0x20000000 #define EPROM_SIZE 0x00080000 // 512Kb #define FLASH_BASE 0x24000000 #define FLASH_SIZE 0x02000000 // 32Mb typedef int flashWrite(char *address, unsignedint data, char *flash); typedef int flashWriteBlock(char *address, unsigned int *data, unsigned int size, char *flash); typedef int flashRead(char *address, unsigned int *value); typedef int flashReadBlock(char *address, unsigned int *data, unsigned int size); typedef int flashErase(char *address, unsigned size, char *flash); typedef int flashInit(char *address, char *flash); typedef int flashClose(char *address, char *flash); typedef struct flashType { char *base; // Base Address of flash char *physicalBase; // before mem initialisation unsigned int size; // Size of flash, in bytes unsigned int type; // Atmel / Intel (CFI) / Unknown unsigned int writeSize; // Size of physical block unsigned int eraseSize; // Size of block erase unsigned int logicalSize; // Size of logical block flashWrite *write; // Write one word flashWriteBlock *writeBlock;// Write a block of writeSize bytes flashRead *read; // Read one word flashReadBlock *readBlock; // Read a block of writeSize bytes flashErase *erase; // Erase a block of eraseSize bytes flashInit *init; // Lock a flash device flashClose *close; // Unlock a flash device char *ident; // identification string struct flashType *next; // Pointer to next flash device } tFlash; tFlash Integrator_Flash[2] = { { (char *)EPROM_BASE, // Base Address of flash (char *)EPROM_BASE, // Physical Address of flash EPROM_SIZE, // Size of flash, in bytes (512K) BOOT_FTYPE | ATMEL_FTYPE,// Flash type FLASH_BLOCK_SIZE, // Size of physical block FLASH_BLOCK_SIZE, // Size of block erase FLASH_BLOCK_SIZE, // Size of logical block ATMEL_Write_Word, // Write one word ATMEL_Write_Block, // Write a block of WriteSize ATMEL_Read_Word, ATMEL_Read_Block, ATMEL_Erase_Block, 0, // Lock a flash device 0, // Unlock a flash device "Atmel", // Null terminated Info string (tFlash *)&Integrator_Flash[1] // Pointer to next tFlash struct }, { (char *)FLASH_BASE, // Base Address of flash (char *)FLASH_BASE, // Physical Address of flash FLASH_SIZE, // Size of flash, in bytes APP_FTYPE | INTEL_FTYPE,// Flash type FLASH_BLOCK_SIZE, // Size of physical block FLASH_BLOCK_SIZE, // Size of block erase FLASH_BLOCK_SIZE, // Size of logical block CFI_Write_Word, // Write one word CFI_Write_Block, // Write a block of writeSize bytes CFI_Read_Word, // Read one word CFI_Read_Block, // Read a block of writeSize bytes CFI_Erase_Block, // Erase a block of eraseSize bytes 0, // Lock a flash device 0, // Unlock a flash device "Intel 28F320S3", // Null terminated Info string 0 // Pointer to next tFlash struct } }; #define SYNC_COUNT 63 extern void diag_printf(const char *, ...); int identify_FLASH(void); void write_sector(int, char *); bool load_srecords(char (*readc)(), CYG_ADDRESS *start, int *size); char dbuf[256]; char *raw = (char *)0x10000; char *flash_buffer = (char *)0x30000; int pos, len; // FUNCTIONS externC void cyg_package_start( void ) { #ifdef CYGPKG_LIBC cyg_iso_c_start(); #else (void)main(0, NULL); #endif } // cyg_package_start() char nextch(void) { return (raw[pos++]); } int main( int argc, char *argv[] ) { int i, j, size; CYG_ADDRESS entry; char c; diag_printf("FLASH here!\n"); CFI_Identify_Flash(Integrator_Flash[1]); while (identify_FLASH() == 0) { diag_printf("... Please change FLASH jumper - hit C/R to continue:"); do { hal_diag_read_char(&c); } while ((c != '\r') && (c != '\n')); diag_printf("\n"); } restart: diag_printf("Ready file - hit C/R to continue:"); while (TRUE) { hal_diag_read_char(&c); if (c == '>') break; } i = 0; j = 0; while (1) { hal_diag_read_char(&c); if (c == '!') { diag_printf("... Reset\n"); goto restart; } raw[i++] = c; if (++j == SYNC_COUNT) { hal_diag_write_char(c); j = 0; } if (c == ':') break; } diag_printf("\n"); pos = 0; len = i; if (load_srecords(nextch, &entry, &size)) { diag_printf("Read %x bytes, entry: %x\n", size, entry); dump_buf(flash_buffer, 128); diag_printf("\nData loaded - hit '!' to continue:"); while (TRUE) { hal_diag_read_char(&c); if (c == '!') break; } diag_printf("\n"); diag_printf("...Programming FLASH\n"); pos = 0; i = 0; while (pos < size) { write_sector(i++, flash_buffer+pos); pos += 256; } } else { // Display buffer around failure dump_buf(&raw[pos-32], 64); } diag_printf("All done!\n"); while (1) ; } int CFI_Identify_Flash(tFlash * flash) { int offset = CFI_DATA_OFFS; // CFI query to check for CFI string "QRY" // Write 0x98 to address flash + 55 *(unsigned int *)(flash->base + CFI_QUERY_OFFS) = CFI_QUERY_COMMAND; if ( *(flash->base + offset) == 'Q') { int temp = 0; offset += 2; if ( *(flash->base+ offset) == 'R') { temp = *(flash->base+ SYS_INFO_SIZE_OFF); // read block size flash->size = 2 ^ temp; temp = *(flash->base+ SYS_ERASE_SIZE_OFF); // Read Erase Regions temp += ( *(flash->base+ SYS_ERASE_SIZE_OFF + 1) << 4); flash->eraseSize = temp * 256; // Read Max write Buffer (logical Block size) } else return FALSE; } // Reset for Read operation *(unsigned int *)(flash->base) = READ_ARRAY; return TRUE; } // Adapted from ARM sample code #define SEQ_ADD1 0x5555 #define SEQ_ADD2 0xAAAA #define START_CMD1 0xAA #define START_CMD2 0x55 #define ID_CMD 0x90 #define PROG_CMD 0xA0 #define STOP_CMD 0xF0 #define MAN_ATMEL 0x1F #define ATMEL_AT29C040_ID 0X5B #define ATMEL_AT29C040A_ID 0XA4 #define ATMEL_AT29C1024_ID 0X25 #define ATMEL_SECTOR_SIZE 256 #define ATMEL_MAX_SECTORS 2048 int manuf_code, device_code, sector_size, max_no_of_sectors, word_mode; volatile char *FLASH = (volatile char *)0x24000000; int identify_FLASH(void ) { // enable write to the Flash flashWriteEnable(); // Enter Software Product Identification Mode FLASH[SEQ_ADD1] = START_CMD1; FLASH[SEQ_ADD2] = START_CMD2; FLASH[SEQ_ADD1] = ID_CMD; // Wait at least 10ms cyg_thread_delay(2); // Read Manufacturer and device code from the device manuf_code = FLASH[0]; device_code = FLASH[1]; diag_printf("manuf: %x, device: %x\n", manuf_code, device_code); // Exit Software Product Identification Mode FLASH[SEQ_ADD1] = START_CMD1; FLASH[SEQ_ADD2] = START_CMD2; FLASH[SEQ_ADD1] = STOP_CMD; // Wait at least 10ms cyg_thread_delay(5) // disble write to the Flash flashWriteDisable();; if (manuf_code != MAN_ATMEL) { diag_printf ( "Error: Wrong Manufaturer: %02x\n",manuf_code ); return (0); } switch (device_code) { case ATMEL_AT29C040A_ID: diag_printf ("AT29C040A recognised\n"); sector_size = ATMEL_SECTOR_SIZE; max_no_of_sectors = ATMEL_MAX_SECTORS; word_mode = FALSE; break; case ATMEL_AT29C1024_ID: diag_printf ("AT29C1024 recognised\n"); sector_size = ATMEL_SECTOR_SIZE; max_no_of_sectors = ATMEL_MAX_SECTORS; word_mode = TRUE; break; default : diag_printf ( "Error: Unsupported device: %02x\n", device_code); return (0); } return (1); } void write_sector(int num, char *buf) { int i, cnt; volatile char *wrt = (volatile int *)&FLASH[num*sector_size]; // diag_printf("Writing to %08x\n", wrt); // Enter Program Mode FLASH[SEQ_ADD1] = START_CMD1; FLASH[SEQ_ADD2] = START_CMD2; FLASH[SEQ_ADD1] = PROG_CMD; // Note: write bytes as longs regardless of bus width for (i = 0; i < sector_size; i++) { wrt[i] = buf[i]; } // Wait for sector to program cnt = 0; i = sector_size - 1; while (wrt[i] != buf[i]) { if (cnt++ > 0x01000000) break; } // diag_printf("Out - i: %d, wrt[i] = %08X.%08X, buf[i] = %08X, count = %x\n", i, &wrt[i], wrt[i], buf[i], cnt); // Verify for (i = 0; i < sector_size; i++) { for (cnt = 0; cnt < 10; cnt++) { if (*wrt == *buf) break; cyg_thread_delay(1); } if (cnt == 10) { diag_printf("Can't program at 0x%08X: %02X not %02X\n", wrt, *wrt, *buf); } wrt++; buf++; } } void flashWriteEnable(void) { volatile unsigned int *ebi_csr1 = (volatile unsigned int *)INTEGRATOR_EBI_CSR1; // allow write access to EBI_CSR1 area (Flash) *ebi_csr1 |= INTEGRATOR_EBI_WRITE_ENABLE; if (!(*ebi_csr1 & INTEGRATOR_EBI_WRITE_ENABLE)) { *(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebi_csr1 |= INTEGRATOR_EBI_WRITE_ENABLE; *(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0; } /* Enable Vpp and allow write access to Flash in system controller */ *(volatile unsigned int *)INTEGRATOR_SC_CTRLS = FL_SC_CONTROL; } // // flashWriteDisable: disable write access to the Flash memory // void flashWriteDisable(void) { volatile unsigned int *ebi_csr1 = (volatile unsigned int *)INTEGRATOR_EBI_CSR1; // disable write access to EBI_CSR1 area (Flash) *ebi_csr1 &= ~INTEGRATOR_EBI_WRITE_ENABLE; if (*ebi_csr1 & INTEGRATOR_EBI_WRITE_ENABLE) { *(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 0xA05F; *ebi_csr1 &= ~INTEGRATOR_EBI_WRITE_ENABLE; *(volatile unsigned int *)INTEGRATOR_EBI_LOCK = 1; } // Disable Vpp and disable write access to Flash in system controller *(volatile unsigned int *)INTEGRATOR_SC_CTRLS = 0; } // S-record download code - viciously 'adapted' from "kernel/src/sload/sload.c" /*---------------------------------------------------------------------------*/ /* // // An srecord looks like this: // // byte count-+ address // start ---+ | | data +- checksum // | | | | // S01000006F6B692D746573742E73726563E4 // S315000448600000000000000000FC00005900000000E9 // S31A0004000023C1400037DE00F023604000377B009020825000348D // S30B0004485A0000000000004E // S70500040000F6 // // S<type><length><address><data><checksum> // // Where // - length (2 characters) // is the number of bytes following upto the checksum. Note that // this is not the number of chars following, since it takes two // chars to represent a byte. // - type (2 characters) // is one of: // 0) header record // 1) two byte address data record // 2) three byte address data record // 3) four byte address data record // 5) record containing the number of S1, S2, or S3 records // 7) four byte address termination record // 8) three byte address termination record // 9) two byte address termination record // // - address (4, 6, or 8 characters) // is the start address of the data following, or in the case of // a termination record, the start address of the image // - data (0-2n characters) // is the data. // - checksum (2 characters) // is the sum of all the raw byte data in the record, from the length // upwards, modulo 256 and subtracted from 255. // // Useful S-records for testing purposes: // Start record: // S00B0000737461303030447563 // This sets the default address to be 0x02005000: // S31A020050002700801481C4E0B0A15000000100000091D02000018F // S31A0200501500000001000000010000002700801881C4E2E4A150C1 // S311020080A42407070A090B0A0781050000E1 // Termination record: // S70502005000A8 // */ #define S0 0 #define S1 1 #define S2 2 #define S3 3 #define S5 5 #define S7 7 #define S8 8 #define S9 9 /*---------------------------------------------------------------------------*/ int hex2digit(char c) { if( c & 0x40 ) c += 9;; return c &0x0f; // return ( c <= '9' ? c - '0' : // c <= 'Z' ? c - 'A' + 10 : // c - 'a' + 10); } /*---------------------------------------------------------------------------*/ bool load_srecords(char (*readc)(), CYG_ADDRESS *start, int *size) { CYG_ADDRESS addr, load_addr; int addrsize; int length; int i; cyg_uint8 chksum, ochksum; cyg_uint8 val; cyg_uint8 *tdata; char s; char type; char len0; char len1; bool first = true; do { // Skip whitespace characters until we find something that // might be an 'S'. do { s = readc(); } while( s == '\r' || s == '\n' || s == ' '); // Check that this is an S record if( s != 'S' ) { diag_printf("Invalid 'S' record\n"); return false; } // First 4 bytes are standard S + type + len type = readc(); len0 = readc(); len1 = readc(); // decode the type type = hex2digit(type); // determine address size switch (type) { case S0: // start records have no address addrsize = 0; break; case S1: // two byte address case S9: addrsize = 4; break; case S2: // 3 byte address case S8: addrsize = 6; break; case S3: // 4 byte address case S7: addrsize = 8; break; } length = hex2digit (len0) << 4; length |= hex2digit (len1); chksum = length; // read the address addr = 0; for (i = 0; i < addrsize; i++) { val = hex2digit(readc()); addr = (addr << 4) | val; } // calculate the checksum, which is done by the byte, not the digit for (i = 0; i < addrsize*4; i += 8) { chksum += ((addr >> i) & 0xff); } // decide where to load this data if (first && (type != S0)) { load_addr = addr; first = false; } // read the data and put it directly into memory where it belongs tdata = (cyg_uint8 *)((addr - load_addr) + flash_buffer); if (type < S7) { *size = (addr - load_addr); } val = 0; for (i = 0; i < ((length - 1) * 2) - addrsize; i += 2 ) { val = hex2digit (readc()) << 4; val |= hex2digit (readc()); chksum += val; if( type != S0 ) *tdata++ = val; if (type < S7) *size = *size + 1; } // now get the old checksum ochksum = hex2digit(readc()) << 4; ochksum |= hex2digit(readc()); chksum = ~chksum; if (chksum != ochksum) { diag_printf("Bad checksum - addr: %x\n", addr); return false; } } while( type < S7 ); *start = addr; return true; }
Go to most recent revision | Compare with Previous | Blame | View Log