URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [arm/] [integrator/] [v2_0/] [src/] [integrator_misc.c] - Rev 174
Compare with Previous | Blame | View Log
//========================================================================== // // integrator_misc.c // // HAL misc board support code for ARM INTEGRATOR7 // //========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): David A Rusling // Contributors: Philippe Robin // Date: November 7, 2000 // Purpose: HAL board support // Description: Implementations of HAL board interfaces // //####DESCRIPTIONEND#### // //===========================================================================*/ #include <pkgconf/hal.h> #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_arch.h> // Register state info #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_intr.h> // necessary? #include <cyg/hal/hal_integrator.h> /*------------------------------------------------------------------------*/ // On-board timer /*------------------------------------------------------------------------*/ // forward declarations void hal_if_init(void); // declarations static cyg_uint32 _period; void hal_clock_initialize(cyg_uint32 period) { //diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, period); //diag_printf("psr = %x\n", psr()); HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL, CTL_DISABLE); // Turn off HAL_WRITE_UINT32(CYG_DEVICE_TIMER_LOAD, period); HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CONTROL, CTL_ENABLE | CTL_PERIODIC | CTL_SCALE_16); _period = period; } void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period) { //diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__); HAL_WRITE_UINT32(CYG_DEVICE_TIMER_CLEAR, 0); _period = period; } void hal_clock_read(cyg_uint32 *pvalue) { cyg_uint32 value; // diag_init(); diag_printf("%s\n", __PRETTY_FUNCTION__); HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, value); value &= 0xFFFF; *pvalue = _period - (value & 0xFFFF); // Note: counter is only 16 bits // and decreases } // Delay for some usecs. void hal_delay_us(cyg_uint32 delay) { #if 0 int i; for( i = 0; i < delay; i++ ); #else cyg_uint32 now, last, diff, ticks; // The timer actually runs at 1.25 ticks per micrsecond. // Adjust the supplied delay to compensate. delay *= 4; delay /= 5; hal_clock_read(&last); diff = ticks = 0; while (delay > ticks) { hal_clock_read(&now); // Cope with wrap-around of timer if (now < last) diff = ((_period - last) + now); else diff = (now - last); last = now; ticks += diff; } #endif } #if defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM7) void hal_hardware_init(void) #elif defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9) void plf_hardware_init(void) #endif { // Any hardware/platform initialization that needs to be done. // Clear all interrupt sources HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 0xFFFF); #ifndef CYGFUN_HAL_COMMON_KERNEL_SUPPORT HAL_CLOCK_INITIALIZE( CYGNUM_HAL_RTC_PERIOD ); #endif // FIXME: The line with the thumb check is a hack, allowing // the farm to run test. Problem is that virtual vector table // API needs to be ARM/Thumb consistent. Will fix later. #if !defined(__thumb__) && !defined(CYGPKG_HAL_ARM_INTEGRATOR_ARM9) // Set up eCos/ROM interfaces hal_if_init(); #endif } // // This routine is called to respond to a hardware interrupt (IRQ). It // should interrogate the hardware and return the IRQ vector number. int hal_IRQ_handler(void) { // Do hardware-level IRQ handling int irq_status, vector; HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status); //diag_init(); diag_printf("IRQ status: 0x%x\n", irq_status); for (vector = 1; vector <= 16; vector++) { if (irq_status & (1<<vector)) return vector; } return -1 ; // This shouldn't happen! } // // Interrupt control // void hal_interrupt_mask(int vector) { //diag_init(); diag_printf("hal_interrupt_mask(%d)\n", vector); HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableClear, 1<<vector); } #if 0 void hal_interrupt_status(void) { int irq_status, irq_enable, timer_status, timer_value, timer_load; HAL_READ_UINT32(CYG_DEVICE_IRQ_Status, irq_status); HAL_READ_UINT32(CYG_DEVICE_IRQ_Enable, irq_enable); HAL_READ_UINT32(CYG_DEVICE_TIMER_LOAD, timer_load); HAL_READ_UINT32(CYG_DEVICE_TIMER_CURRENT, timer_value); HAL_READ_UINT32(CYG_DEVICE_TIMER_CONTROL, timer_status); diag_printf("Interrupt: IRQ: %x.%x, TIMER: %x.%x.%x, psr: %x\n", irq_status, irq_enable, timer_status, timer_value, timer_load, psr()); } #endif void hal_interrupt_unmask(int vector) { //diag_init(); diag_printf("hal_interrupt_unmask(%d)\n", vector); HAL_WRITE_UINT32(CYG_DEVICE_IRQ_EnableSet, 1<<vector); } void hal_interrupt_acknowledge(int vector) { //diag_init(); diag_printf("%s(%d)\n", __PRETTY_FUNCTION__, vector); } void hal_interrupt_configure(int vector, int level, int up) { //diag_init(); diag_printf("%s(%d,%d,%d)\n", __PRETTY_FUNCTION__, vector, level, up); } void hal_interrupt_set_level(int vector, int level) { //diag_init(); diag_printf("%s(%d,%d)\n", __PRETTY_FUNCTION__, vector, level); } void hal_show_IRQ(int vector, int data, int handler) { // diag_printf("IRQ - vector: %x, data: %x, handler: %x\n", vector, data, handler); } /*---------------------------------------------------------------------------*/ __externC void cyg_plf_pci_init(void) { // Only do this for non-RAM startups. If we do it during RAM // startup and we are using the ethernet for debugging, this kills // the ethernet controller. #ifndef CYG_HAL_STARTUP_RAM volatile int i, j; /* setting this register will take the V3 out of reset */ *(volatile cyg_uint32 *)(INTEGRATOR_SC_PCIENABLE) = 1; /* wait a few usecs to settle the device and the PCI bus */ for (i = 0; i < 100 ; i++) j = i + 1; /* Now write the Base I/O Address Word to V3_BASE + 0x6C */ *(volatile cyg_uint16 *)(V3_BASE + V3_LB_IO_BASE) = (cyg_uint16)(V3_BASE >> 16); do { *(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) = 0xAA; *(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) = 0x55; } while (*(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA) != 0xAA || *(volatile cyg_uint8 *)(V3_BASE + V3_MAIL_DATA + 4) != 0x55); /* Make sure that V3 register access is not locked, if it is, unlock it */ if ((*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) & V3_SYSTEM_M_LOCK) == V3_SYSTEM_M_LOCK) *(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) = 0xA05F; /* Ensure that the slave accesses from PCI are disabled while we */ /* setup windows */ *(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) &= ~(V3_COMMAND_M_MEM_EN | V3_COMMAND_M_IO_EN); /* Clear RST_OUT to 0; keep the PCI bus in reset until we've finished */ *(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) &= ~V3_SYSTEM_M_RST_OUT; /* Make all accesses from PCI space retry until we're ready for them */ *(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) |= V3_PCI_CFG_M_RETRY_EN; /* Set up any V3 PCI Configuration Registers that we absolutely have to */ /* LB_CFG controls Local Bus protocol. */ /* Enable LocalBus byte strobes for READ accesses too. */ /* set bit 7 BE_IMODE and bit 6 BE_OMODE */ *(volatile cyg_uint16 *)(V3_BASE + V3_LB_CFG) |= 0x0C0; /* PCI_CMD controls overall PCI operation. */ /* Enable PCI bus master. */ *(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) |= 0x04; /* PCI_MAP0 controls where the PCI to CPU memory window is on Local Bus*/ *(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP0) = (INTEGRATOR_BOOT_ROM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_512M | V3_PCI_MAP_M_REG_EN | V3_PCI_MAP_M_ENABLE); /* PCI_BASE0 is the PCI address of the start of the window */ *(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE0) = INTEGRATOR_BOOT_ROM_BASE; /* PCI_MAP1 is LOCAL address of the start of the window */ *(volatile cyg_uint32 *)(V3_BASE + V3_PCI_MAP1) = (INTEGRATOR_HDR0_SDRAM_BASE) | (V3_PCI_MAP_M_ADR_SIZE_1024M | V3_PCI_MAP_M_REG_EN | V3_PCI_MAP_M_ENABLE); /* PCI_BASE1 is the PCI address of the start of the window */ *(volatile cyg_uint32 *)(V3_BASE + V3_PCI_BASE1) = INTEGRATOR_HDR0_SDRAM_BASE; /* Set up the windows from local bus memory into PCI configuration, */ /* I/O and Memory. */ /* PCI I/O, LB_BASE2 and LB_MAP2 are used exclusively for this. */ *(volatile cyg_uint16 *)(V3_BASE +V3_LB_BASE2) = ((CPU_PCI_IO_ADRS >> 24) << 8) | V3_LB_BASE_M_ENABLE; *(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP2) = 0; /* PCI Configuration, use LB_BASE1/LB_MAP1. */ /* PCI Memory use LB_BASE0/LB_MAP0 and LB_BASE1/LB_MAP1 */ /* Map first 256Mbytes as non-prefetchable via BASE0/MAP0 */ /* (INTEGRATOR_PCI_BASE == PCI_MEM_BASE) */ *(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE0) = INTEGRATOR_PCI_BASE | (0x80 | V3_LB_BASE_M_ENABLE); *(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP0) = ((INTEGRATOR_PCI_BASE >> 20) << 0x4) | 0x0006; /* Map second 256 Mbytes as prefetchable via BASE1/MAP1 */ *(volatile cyg_uint32 *)(V3_BASE + V3_LB_BASE1) = INTEGRATOR_PCI_BASE | (0x84 | V3_LB_BASE_M_ENABLE); *(volatile cyg_uint16 *)(V3_BASE + V3_LB_MAP1) = (((INTEGRATOR_PCI_BASE + SZ_256M) >> 20) << 4) | 0x0006; /* Allow accesses to PCI Configuration space */ /* and set up A1, A0 for type 1 config cycles */ *(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG) = ((*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CFG)) & ~(V3_PCI_CFG_M_RETRY_EN | V3_PCI_CFG_M_AD_LOW1) ) | V3_PCI_CFG_M_AD_LOW0; /* now we can allow in PCI MEMORY accesses */ *(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD) = (*(volatile cyg_uint16 *)(V3_BASE + V3_PCI_CMD)) | V3_COMMAND_M_MEM_EN; /* Set RST_OUT to take the PCI bus is out of reset, PCI devices can */ /* initialise and lock the V3 system register so that no one else */ /* can play with it */ *(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) = (*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_RST_OUT; *(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM) = (*(volatile cyg_uint16 *)(V3_BASE + V3_SYSTEM)) | V3_SYSTEM_M_LOCK; #endif } /*---------------------------------------------------------------------------*/ /* End of hal_misc.c */