URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [arm/] [xscale/] [verde/] [v2_0/] [src/] [verde_misc.c] - Rev 587
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // verde_misc.c // // HAL misc board support code for Intel Verde I/O Coprocessor // //========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): msalter // Contributors: msalter // Date: 2001-12-03 // Purpose: HAL board support // Description: Implementations of HAL board interfaces // //####DESCRIPTIONEND#### // //========================================================================*/ #include <pkgconf/hal.h> #include <pkgconf/system.h> #include CYGBLD_HAL_PLATFORM_H #include CYGHWR_MEMORY_LAYOUT_H #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_stub.h> // Stub macros #include <cyg/hal/hal_if.h> // calling interface API #include <cyg/hal/hal_arch.h> // Register state info #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_intr.h> // Interrupt names #include <cyg/hal/hal_cache.h> #include <cyg/hal/plf_io.h> #include <cyg/infra/diag.h> // diag_printf #include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED // Most initialization has already been done before we get here. // All we do here is set up the interrupt environment. // FIXME: some of the stuff in hal_platform_setup could be moved here. externC void plf_hardware_init(void); static cyg_uint32 mcu_ISR(cyg_vector_t vector, cyg_addrword_t data); void hal_hardware_init(void) { hal_xscale_core_init(); // Perform any platform specific initializations plf_hardware_init(); // Let the timer run at a default rate (for delays) hal_clock_initialize(CYGNUM_HAL_RTC_PERIOD); // Set up eCos/ROM interfaces hal_if_init(); // Enable caches HAL_DCACHE_ENABLE(); HAL_ICACHE_ENABLE(); // attach interrupt handlers for MCU errors HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_MCU_ERR, &mcu_ISR, CYGNUM_HAL_INTERRUPT_MCU_ERR, 0); HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_MCU_ERR); } // ------------------------------------------------------------------------- // This routine is called to respond to a hardware interrupt (IRQ). It // should interrogate the hardware and return the IRQ vector number. int hal_IRQ_handler(void) { cyg_uint32 sources, mask; int index; INTCTL_READ(mask); IINTSRC_READ(sources); sources &= mask; // just the unmasked ones if (sources) { HAL_LSBIT_INDEX( index, sources ); return index; } return CYGNUM_HAL_INTERRUPT_NONE; // This shouldn't happen! } static inline void _scrub_ecc(unsigned p) { cyg_uint32 iacr; // The following ldr/str pair need to be atomic on the bus. Since // the XScale core doesn't support atomic RMW, we have to disable // arbitration to prevent other bus masters from taking the bus // between the the ldr and str. // Disable internal bus arbitration for everything except the CPU iacr = *ARB_IACR; *ARB_IACR = IACR_ATU(IACR_PRI_OFF) | IACR_DMA0(IACR_PRI_OFF) | IACR_DMA1(IACR_PRI_OFF) | IACR_AAU(IACR_PRI_OFF) | IACR_PBI(IACR_PRI_OFF) | IACR_CORE(IACR_PRI_HIGH); // drain write buffer asm volatile ("mrc p15,0,r1,c7,c10,4\n"); CPWAIT(); asm volatile ("ldrb r4, [%0]\n" "strb r4, [%0]\n" : : "r"(p) : "r4"); // Restore normal internal bus arbitration priorities *ARB_IACR = iacr; } static cyg_uint32 mcu_ISR(cyg_vector_t vector, cyg_addrword_t data) { cyg_uint32 eccr_reg, mcisr_reg; // Read current state of ECC register eccr_reg = *MCU_ECCR; // and the interrupt status mcisr_reg = *MCU_MCISR; // Turn off all ecc error reporting *MCU_ECCR = 0xc; #ifdef DEBUG_ECC diag_printf("mcu_ISR entry: ECCR = 0x%X, MCISR = 0x%X\n", eccr_reg, mcisr_reg); #endif // Check for ECC Error 0 if(mcisr_reg & 1) { #ifdef DEBUG_ECC diag_printf("ELOG0 = 0x%X\n", *MCU_ELOG0); diag_printf("ECC Error Detected at Address 0x%X\n",*MCU_ECAR0); #endif // Check for single-bit error if(!(*MCU_ELOG0 & 0x00000100)) { // call ECC restoration function _scrub_ecc((*MCU_ECAR0 - SDRAM_PHYS_BASE) + SDRAM_UNCACHED_BASE); // Clear the MCISR *MCU_MCISR = 1; } else { #ifdef DEBUG_ECC diag_printf("Multi-bit or nibble error\n"); #endif } } // Check for ECC Error 1 if(mcisr_reg & 2) { #ifdef DEBUG_ECC diag_printf("ELOG1 = 0x%X\n",*MCU_ELOG1); diag_printf("ECC Error Detected at Address 0x%X\n",*MCU_ECAR1); #endif // Check for single-bit error if(!(*MCU_ELOG1 & 0x00000100)) { // call ECC restoration function _scrub_ecc((*MCU_ECAR1 - SDRAM_PHYS_BASE) + SDRAM_UNCACHED_BASE); // Clear the MCISR *MCU_MCISR = 2; } else { #ifdef DEBUG_ECC diag_printf("Multi-bit or nibble error\n"); #endif } } // Check for ECC Error N if(mcisr_reg & 4) { // Clear the MCISR *MCU_MCISR = 4; diag_printf("Uncorrectable error during RMW\n"); } // Restore ECCR register *MCU_ECCR = eccr_reg; #ifdef DEBUG_ECC diag_printf("mcu_ISR exit: MCISR = 0x%X\n", *MCU_MCISR); #endif return CYG_ISR_HANDLED; } // // Interrupt control // void hal_interrupt_mask(int vector) { if (vector <= CYGNUM_HAL_INTERRUPT_HPI) { int mask; INTCTL_READ(mask); mask &= ~(1 << vector); INTCTL_WRITE(mask); CPWAIT(); } } void hal_interrupt_unmask(int vector) { if (vector <= CYGNUM_HAL_INTERRUPT_HPI) { int mask; INTCTL_READ(mask); mask |= (1 << vector); INTCTL_WRITE(mask); CPWAIT(); } } void hal_interrupt_acknowledge(int vector) { // If this is a timer interrupt, write a 1 to the appropriate bit // in the TISR register. if( vector == CYGNUM_HAL_INTERRUPT_TIMER0 || vector == CYGNUM_HAL_INTERRUPT_TIMER1 ) { TISR_WRITE(1<<(vector-CYGNUM_HAL_INTERRUPT_TIMER0)); } } void hal_interrupt_configure(int vector, int level, int up) { } void hal_interrupt_set_level(int vector, int level) { } /*------------------------------------------------------------------------*/ // RTC Support static cyg_uint32 _period; #define CLOCK_MULTIPLIER 200 void hal_clock_initialize(cyg_uint32 period) { cyg_uint32 val; cyg_uint32 tmr_period; _period = period; tmr_period = period * CLOCK_MULTIPLIER; // disable timer TMR0_WRITE(0); // clear interrupts TISR_WRITE(1); // set reload/count value TRR0_WRITE(tmr_period); TCR0_WRITE(tmr_period); // let it run TMR0_WRITE(TMR_ENABLE | TMR_RELOAD | TMR_CLK_1); TMR0_READ(val); } // Dynamically set the timer interrupt rate. // Not for eCos application use at all, just special GPROF code in RedBoot. void hal_clock_reinitialize( int *pfreq, /* inout */ unsigned int *pperiod, /* inout */ unsigned int old_hz ) /* in */ { unsigned int newp = 0, period, i = 0; int hz; int do_set_hw; // Arbitrary choice somewhat - so the CPU can make // progress with the clock set like this, we hope. #define MIN_TICKS (2000) #define MAX_TICKS N/A: 32-bit counter if ( ! pfreq || ! pperiod ) return; // we cannot even report a problem! hz = *pfreq; period = *pperiod; // Requested HZ: // 0 => tell me the current value (no change, implemented in caller) // - 1 => tell me the slowest (no change) // - 2 => tell me the default (no change, implemented in caller) // -nnn => tell me what you would choose for nnn (no change) // MIN_INT => tell me the fastest (no change) // // 1 => tell me the slowest (sets the clock) // MAX_INT => tell me the fastest (sets the clock) do_set_hw = (hz > 0); if ( hz < 0 ) hz = -hz; // Be paranoid about bad args, and very defensive about underflows if ( 0 < hz && 0 < period && 0 < old_hz ) { newp = period * old_hz / (unsigned)hz; if ( newp < MIN_TICKS ) { newp = MIN_TICKS; // recalculate to get the exact delay for this integral hz // and hunt hz down to an acceptable value if necessary i = period * old_hz / newp; if ( i ) do { newp = period * old_hz / i; i--; } while (newp < MIN_TICKS && i); } // So long as period * old_hz fits in 32 bits, there is no need to // worry about overflow; hz >= 1 in the initial divide. If the // clock cannot do a whole second (period * old_hz >= 2^32), we // will get overflow here, and random returned HZ values. // Recalculate the actual value installed. i = period * old_hz / newp; } *pfreq = i; *pperiod = newp; if ( do_set_hw ) { hal_clock_initialize( newp ); } } // This routine is called during a clock interrupt. void hal_clock_reset(cyg_uint32 vector, cyg_uint32 period) { } // Read the current value of the clock, returning the number of hardware // "ticks" that have occurred (i.e. how far away the current value is from // the start) void hal_clock_read(cyg_uint32 *pvalue) { cyg_uint32 timer_val; TCR0_READ(timer_val); // Translate timer value back into microseconds timer_val /= CLOCK_MULTIPLIER; *pvalue = _period - timer_val; } // Delay for some usecs. void hal_delay_us(cyg_int32 delay) { #define _TICKS_PER_USEC CLOCK_MULTIPLIER cyg_uint32 now, prev, diff, usecs; cyg_uint32 tmr_period = _period * CLOCK_MULTIPLIER; diff = usecs = 0; TCR0_READ(prev); while (delay > usecs) { TCR0_READ(now); if (prev < now) diff += (prev + (tmr_period - now)); else diff += (prev - now); prev = now; if (diff >= _TICKS_PER_USEC) { usecs += (diff / _TICKS_PER_USEC); diff %= _TICKS_PER_USEC; } } } /*------------------------------------------------------------------------*/ // EOF verde_misc.c
Go to most recent revision | Compare with Previous | Blame | View Log