URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [common/] [v2_0/] [src/] [generic-stub.c] - Rev 199
Go to most recent revision | Compare with Previous | Blame | View Log
#include "board.h" #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS /* Eventually, this should default to ON */ #if USE_GDBSTUB_PROTOTYPES #include "stub-tservice.h" #include "generic-stub.h" #else // Function declarations (prevents compiler warnings) int stubhex (unsigned char ch); static void unlock_thread_scheduler (void); static uint32 crc32 (target_addr_t mem, int len, uint32 crc); #endif #include "thread-pkts.h" /* Defines function macros if thread support is not selected in board.h */ #ifdef __ECOS__ char GDB_stubs_version[] CYGBLD_ATTRIB_WEAK = "eCos GDB stubs - built " __DATE__ " / " __TIME__; #endif /**************************************************************************** THIS SOFTWARE IS NOT COPYRIGHTED HP offers the following for use in the public domain. HP makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ****************************************************************************/ /**************************************************************************** * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ * * Module name: remcom.c $ * Revision: 1.34 $ * Date: 91/03/09 12:29:49 $ * Contributor: Lake Stevens Instrument Division$ * * Description: low level support for gdb debugger. $ * * Considerations: only works on target hardware $ * * Written by: Glenn Engel $ * ModuleState: Experimental $ * * NOTES: See Below $ * * Modified for SPARC by Stu Grossman, Red Hat. * Modified for generic CygMON stub support by Bob Manson, Red Hat. * * To enable debugger support, two things need to happen. One, a * call to set_debug_traps () is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint (). Breakpoint () * simulates a breakpoint by executing a trap #1. * ************* * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * ****************************************************************************/ #ifdef __ECOS__ // We cannot share memcpy and memset with the rest of the system since // the user may want to step through it. static inline void* _memcpy(void* dest, void* src, int size) { unsigned char* __d = (unsigned char*) dest; unsigned char* __s = (unsigned char*) src; while(size--) *__d++ = *__s++; return dest; } static inline void* _memset(void* s, int c, int size) { unsigned char* __s = (unsigned char*) s; unsigned char __c = (unsigned char) c; while(size--) *__s++ = __c; return s; } #else #include <string.h> #include <signal.h> #define _memcpy memcpy #define _memset memset #endif // __ECOS__ /************************************************************************/ /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/ /* at least NUMREGBYTES*2 are needed for register packets */ #ifdef __ECOS__ #ifdef NUMREGBYTES #define BUFMAX (32 + (NUMREGBYTES*2)) #else #define BUFMAX 2048 #endif #else #define BUFMAX 2048 #endif static int initialized = 0; /* !0 means we've been initialized */ static int process_exception (int sigval); static void do_nothing (void); /* and do it gracefully */ static int syscall_do_nothing (int); void __free_program_args (void); volatile __PFI __process_exception_vec = process_exception; volatile __PFV __process_exit_vec = do_nothing; volatile __PFI __process_syscall_vec = syscall_do_nothing; volatile __PFI __process_signal_vec = NULL; volatile __PFV __init_vec = NULL; volatile __PFV __cleanup_vec = NULL; static char *__add_program_arg (int argnum, uint32 arglen); static const char hexchars[] = "0123456789abcdef"; static void process_query (char *pkt); static void process_set (char *pkt); char __tohex (int c) { return hexchars [c & 15]; } #define __tohex(c) hexchars[(c) & 15] #ifndef NUMREGS_GDB #define NUMREGS_GDB NUMREGS #endif /* One pushback character. */ int ungot_char = -1; static int readDebugChar (void) { if (ungot_char > 0) { int result = ungot_char; ungot_char = -1; return result; } else return getDebugChar (); } /* Convert ch from a hex digit to an int. */ int stubhex (ch) unsigned char ch; { if (ch >= 'a' && ch <= 'f') return ch-'a'+10; if (ch >= '0' && ch <= '9') return ch-'0'; if (ch >= 'A' && ch <= 'F') return ch-'A'+10; return -1; } void __getpacket (buffer) char *buffer; { struct gdb_packet packet; int res; packet.state = 0; packet.contents = buffer; packet.err = 0; while ((res = __add_char_to_packet (readDebugChar () & 0xff, &packet)) != 1) { if (res == -2) { putDebugChar ('-'); // Tell host packet was not processed // Reset for the next packet packet.state = 0; packet.err = 0; } } } int __add_char_to_packet (ch, packet) unsigned int ch; struct gdb_packet *packet; { if (packet->state == 0) { if (ch == '$') { packet->state = 1; packet->length = 0; packet->checksum = 0; packet->xmitcsum = -1; } return 0; } if (packet->state == 1) { if (packet->length == BUFMAX) { packet->state = 0; packet->err = 1; } else if (ch == '#') { packet->contents[packet->length] = 0; packet->state = 2; } else { packet->checksum += ch; packet->contents[packet->length++] = ch; } return 0; } if (packet->state == 2) { packet->xmitcsum = stubhex (ch) << 4; packet->state = 3; return 0; } if (packet->state == 3) { packet->xmitcsum |= stubhex (ch); if (packet->err) { // Packet was too long - just tell the consumer return -2; } if ((packet->checksum & 255) != packet->xmitcsum) { putDebugChar ('-'); /* failed checksum */ packet->state = 0; return -1; } else { putDebugChar ('+'); /* successful transfer */ /* if a sequence char is present, reply the sequence ID */ if (packet->contents[2] == ':') { uint32 count = packet->length; uint32 i; putDebugChar (packet->contents[0]); putDebugChar (packet->contents[1]); /* remove sequence chars from buffer */ for (i=3; i <= count; i++) packet->contents[i-3] = packet->contents[i]; } return 1; } } /* We should never get here. */ packet->state = 0; return -1; } /* send the packet in buffer. */ void __putpacket (buffer) char *buffer; { unsigned char checksum; uint32 count; unsigned char ch; /* $<packet info>#<checksum>. */ do { putDebugChar ('$'); checksum = 0; count = 0; while ((ch = buffer[count])) { putDebugChar (ch); checksum += ch; count += 1; } putDebugChar ('#'); putDebugChar (hexchars[(checksum >> 4) & 0xf]); putDebugChar (hexchars[checksum & 0xf]); } while ((readDebugChar () & 0x7f) != '+'); } char __remcomInBuffer[BUFMAX]; char __remcomOutBuffer[BUFMAX]; /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ volatile int __mem_fault = 0; #ifndef TARGET_HAS_OWN_MEM_FUNCS /* * _target_readmem_hook / _target_writemem_hook: * Allow target to get involved in reading/writing memory. * * If these hooks are defined by the target, they will be * called for each user program memory access. Otherwise, the stub * will simply dereference a pointer to access user program memory. */ unsigned char (*_target_readmem_hook) (unsigned char* addr); void (*_target_writemem_hook) (unsigned char* addr, unsigned char value); static unsigned char get_target_byte (volatile unsigned char *address) { if (_target_readmem_hook) /* target needs to control memory access */ return _target_readmem_hook ((unsigned char *) address); else return *address; } static void put_target_byte (volatile unsigned char *address, unsigned char value) { if (_target_writemem_hook) /* target needs to control memory access */ _target_writemem_hook ((unsigned char *) address, value); else *address = value; } /* These are the "arguments" to __do_read_mem and __do_write_mem, which are passed as globals to avoid squeezing them thru __set_mem_fault_trap. */ static volatile target_register_t memCount; static volatile unsigned char *memSrc, *memDst; /* * __do_read_mem: * Copy from target memory to trusted memory. */ static void __do_read_mem (void) { __mem_fault = 0; while (memCount) { unsigned char ch = get_target_byte (memSrc++); if (__mem_fault) return; *memDst++ = ch; memCount--; } } /* * __do_write_mem: * Copy from trusted memory to target memory. */ static void __do_write_mem (void) { __mem_fault = 0; while (memCount) { unsigned char ch = *memSrc++; put_target_byte (memDst++, ch); if (__mem_fault) return; memCount--; } } /* * __read_mem_safe: * Get contents of target memory, abort on error. */ int __read_mem_safe (void *dst, target_register_t src, int count) { memCount = count; memSrc = (unsigned char *) src; memDst = (unsigned char *) dst; __set_mem_fault_trap (__do_read_mem); return count - memCount; /* return number of bytes successfully read */ } /* * __write_mem_safe: * Set contents of target memory, abort on error. */ int __write_mem_safe (unsigned char *src, target_register_t dst, int count) { memCount = count; memSrc = (unsigned char *) src; memDst = (unsigned char *) dst; __set_mem_fault_trap (__do_write_mem); return count - memCount; /* return number of bytes successfully read */ } #endif /* TARGET_HAS_OWN_MEM_FUNCS */ /* These are the "arguments" to __mem2hex_helper and __hex2mem_helper, which are passed as globals to avoid squeezing them thru __set_mem_fault_trap. */ static int hexMemCount; static char *hexMemSrc, *hexMemDst; static int may_fault_mode; #ifdef TARGET_HAS_HARVARD_MEMORY static int progMem; #endif /* Hamburger helper? */ static void __mem2hex_helper (void) { union { unsigned long long_val; unsigned char bytes[sizeof(long)]; } val; int len, i; unsigned char ch; __mem_fault = 0; while (hexMemCount > 0) { if (may_fault_mode) { if ((hexMemCount >= sizeof(long)) && (((target_register_t)hexMemSrc & (sizeof(long)-1)) == 0)) { // Should be safe to access via a long len = sizeof(long); } else if ((hexMemCount >= sizeof(short)) && (((target_register_t)hexMemSrc & (sizeof(short)-1)) == 0)) { // Should be safe to access via a short len = sizeof(short); } else { len = 1; } #ifdef TARGET_HAS_HARVARD_MEMORY if (progMem) __read_progmem_safe(&val.bytes[0], hexMemSrc, len); else #endif __read_mem_safe(&val.bytes[0], hexMemSrc, len); } else { len = 1; val.bytes[0] = *hexMemSrc; } if (__mem_fault) return; for (i = 0; i < len; i++) { ch = val.bytes[i]; *(hexMemDst++) = hexchars[(ch >> 4) & 0xf]; if (__mem_fault) return; *(hexMemDst++) = hexchars[ch & 0xf]; if (__mem_fault) return; } hexMemCount -= len; hexMemSrc += len; } } /* Convert the memory pointed to by MEM into HEX, placing result in BUF. * Return a pointer to the last char put in buf (NUL). In case of a memory * fault, return 0. * If MAY_FAULT is non-zero, then we will handle memory faults by returning * a 0 (and assume that MEM is a pointer into the user program), else we * treat a fault like any other fault in the stub (and assume that MEM is * a pointer into the stub's memory). */ char * __mem2hex (mem, buf, count, may_fault) char *mem; char *buf; int count; int may_fault; { hexMemDst = (unsigned char *) buf; hexMemSrc = (unsigned char *) mem; hexMemCount = count; may_fault_mode = may_fault; #ifdef TARGET_HAS_HARVARD_MEMORY progMem = 0; #endif if (may_fault) { if (__set_mem_fault_trap (__mem2hex_helper)) return 0; } else __mem2hex_helper (); *hexMemDst = 0; return (char *) hexMemDst; } /* Convert the target memory identified by MEM into HEX, placing result in BUF. * Return a pointer to the last char put in buf (NUL). In case of a memory * fault, return 0. */ static char * __mem2hex_safe (target_addr_t mem, char *buf, int count) { hexMemDst = (unsigned char *) buf; hexMemSrc = (unsigned char *) TARGET_ADDR_TO_PTR(mem); hexMemCount = count; may_fault_mode = 1; #ifdef TARGET_HAS_HARVARD_MEMORY progMem = TARGET_ADDR_IS_PROGMEM(mem); #endif if (__set_mem_fault_trap (__mem2hex_helper)) return 0; *hexMemDst = 0; return (char *) hexMemDst; } static void __hex2mem_helper (void) { union { unsigned long long_val; unsigned char bytes[sizeof(long)]; } val; int len, i; unsigned char ch = '\0'; __mem_fault = 0; while (hexMemCount > 0 && *hexMemSrc) { if (may_fault_mode) { if ((hexMemCount >= sizeof(long)) && (((target_register_t)hexMemDst & (sizeof(long)-1)) == 0)) { len = sizeof(long); } else if ((hexMemCount >= sizeof(short)) && (((target_register_t)hexMemDst & (sizeof(short)-1)) == 0)) { len = sizeof(short); } else { len = 1; } } else { len = 1; } for (i = 0; i < len; i++) { // Check for short data? ch = stubhex (*(hexMemSrc++)) << 4; if (__mem_fault) return; ch |= stubhex (*(hexMemSrc++)); if (__mem_fault) return; val.bytes[i] = ch; } if (may_fault_mode) { #ifdef TARGET_HAS_HARVARD_MEMORY if (progMem) __write_progmem_safe (&val.bytes[0], hexMemDst, len); else #endif __write_mem_safe (&val.bytes[0], hexMemDst, len); } else *hexMemDst = ch; if (__mem_fault) return; hexMemCount -= len; hexMemDst += len; } } /* Convert COUNT bytes of the hex array pointed to by BUF into binary to be placed in MEM. Return a pointer to the character AFTER the last byte written. If MAY_FAULT is set, we will return a non-zero value if a memory fault occurs (and we assume that MEM is a pointer into the user program). Otherwise, we will take a trap just like any other memory fault (and assume that MEM points into the stub's memory). */ char * __hex2mem (buf, mem, count, may_fault) char *buf; char *mem; int count; int may_fault; { hexMemSrc = (unsigned char *) buf; hexMemDst = (unsigned char *) mem; hexMemCount = count; may_fault_mode = may_fault; #ifdef TARGET_HAS_HARVARD_MEMORY progMem = 0; #endif if (may_fault) { if (__set_mem_fault_trap (__hex2mem_helper)) return 0; } else __hex2mem_helper (); return (char *) hexMemDst; } /* Convert COUNT bytes of the hex array pointed to by BUF into binary to be placed in target MEM. Return a pointer to the character AFTER the last byte written. */ char * __hex2mem_safe (char *buf, target_addr_t mem, int count) { hexMemSrc = (unsigned char *) buf; hexMemDst = (unsigned char *) TARGET_ADDR_TO_PTR(mem); hexMemCount = count; may_fault_mode = 1; #ifdef TARGET_HAS_HARVARD_MEMORY progMem = TARGET_ADDR_IS_PROGMEM(mem); #endif if (__set_mem_fault_trap (__hex2mem_helper)) return 0; return (char *) hexMemDst; } void set_debug_traps (void) { __install_traps (); initialized = 1; /* FIXME: Change this to dbg_stub_initialized */ } /* * While we find nice hex chars, build an int. * Return number of chars processed. */ unsigned int __hexToInt (char **ptr, target_register_t *intValue) { int numChars = 0; int hexValue; *intValue = 0; while (**ptr) { hexValue = stubhex (**ptr); if (hexValue < 0) break; *intValue = (*intValue << 4) | hexValue; numChars ++; (*ptr)++; } return (numChars); } /* * While we find nice hex chars, build a target memory address. * Return number of chars processed. */ unsigned int __hexToAddr (char **ptr, target_addr_t *val) { int numChars = 0; int hexValue; *val = 0; while (**ptr) { hexValue = stubhex (**ptr); if (hexValue < 0) break; *val = (*val << 4) | hexValue; numChars ++; (*ptr)++; } return (numChars); } /* * Complement of __hexToInt: take an int of size "numBits", * convert it to a hex string. Return length of (unterminated) output. */ unsigned int __intToHex (char *ptr, target_register_t intValue, int numBits) { int numChars = 0; if (intValue == 0) { *(ptr++) = '0'; *(ptr++) = '0'; return 2; } numBits = (numBits + 7) / 8; while (numBits) { int v = (intValue >> ((numBits - 1) * 8)); if (v || (numBits == 1)) { v = v & 255; *(ptr++) = __tohex ((v / 16) & 15); *(ptr++) = __tohex (v & 15); numChars += 2; } numBits--; } return (numChars); } #if DEBUG_THREADS /* * Kernel Thread Control * * If the current thread is set to other than zero (or minus one), * then ask the kernel to lock it's scheduler so that only that thread * can run. */ static unsigned char did_lock_scheduler = 0; static unsigned char did_disable_interrupts = 0; /* Pointer to "kernel call" for scheduler control */ static int (*schedlock_fn) (int, int, long) = stub_lock_scheduler; /* Pointer to target stub call for disabling interrupts. Target stub will initialize this if it can. */ int (*__disable_interrupts_hook) (int); /* don't initialize here! */ #endif static void lock_thread_scheduler (int kind) /* "step" or "continue" */ { #if DEBUG_THREADS int ret = 0; /* GDB will signal its desire to run a single thread by setting _gdb_cont_thread to non-zero / non-negative. */ if (_gdb_cont_thread <= 0) return; if (schedlock_fn) /* kernel call */ ret = (*schedlock_fn) (1, kind, _gdb_cont_thread); if (ret == 1) { did_lock_scheduler = 1; return; } if (schedlock_fn == 0 || /* no kernel scheduler call */ ret == -1) /* kernel asks stub to handle it */ if (__disable_interrupts_hook) /* target stub has capability */ if ((*__disable_interrupts_hook) (1)) { did_disable_interrupts = 1; return; } #endif /* DEBUG_THREADS */ } static void unlock_thread_scheduler () { #if DEBUG_THREADS if (did_lock_scheduler) if (schedlock_fn) /* kernel call */ { (*schedlock_fn) (0, 0, _gdb_cont_thread); /* I could check the return value, but what would I do if it failed??? */ did_lock_scheduler = 0; } if (did_disable_interrupts) if (__disable_interrupts_hook) /* target stub call */ { (*__disable_interrupts_hook) (0); /* Again, I could check the return value, but what would I do if it failed??? */ did_disable_interrupts = 0; } #endif /* DEBUG_THREADS */ } #ifdef CYGPKG_CYGMON int processing_breakpoint_function = 0; #endif void __handle_exception (void) { int sigval = 0; #ifdef TARGET_HAS_NEXT_STEP if (! __next_step_done ()) { __clear_breakpoints (); __install_breakpoints (); __single_step (); return; } #endif #ifdef __ECOS__ // We need to unpack the registers before they are accessed. if (__cleanup_vec != NULL) __cleanup_vec (); #if defined(CYGSEM_REDBOOT_BSP_SYSCALLS) // Temporary support for gnupro bsp SWIs if (__is_bsp_syscall()) { sigval = hal_syscall_handler(); if (0 == sigval) { if (__init_vec != NULL) __init_vec (); return; } } #endif #ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT // Special case for GDB BREAKs. This flag is set by cyg_stub_cleanup. if (cyg_hal_gdb_break) { cyg_hal_gdb_break = 0; sigval = SIGINT; } #endif // Only compute sigval if it wasn't already computed (in // hal_syscall_handler or as a result of a GDB async break) if (0 == sigval) sigval = __computeSignal (__get_trap_number ()); #else // __ECOS__ /* reply to host that an exception has occurred */ sigval = __computeSignal (__get_trap_number ()); #endif // __ECOS__ if (__is_breakpoint_function ()) { #ifdef CYGPKG_CYGMON processing_breakpoint_function = 1; #endif __skipinst (); } else { #ifdef CYGPKG_CYGMON processing_breakpoint_function = 0; #endif } #ifndef __ECOS__ if (__cleanup_vec != NULL) __cleanup_vec (); #endif // !__ECOS__ __clear_breakpoints (); /* Undo effect of previous single step. */ unlock_thread_scheduler (); __clear_single_step (); #ifdef __ECOS__ /* Need to flush the data and instruction cache here, as we may have removed a breakpoint in __single_step - and we may be sharing some code with the application! */ __data_cache (CACHE_FLUSH) ; __instruction_cache (CACHE_FLUSH) ; #endif #ifdef SIGSYSCALL if (sigval == SIGSYSCALL) { int val; /* Do the skipinst FIRST. */ #ifndef SYSCALL_PC_AFTER_INST __skipinst (); #endif val = __process_syscall_vec (__get_syscall_num ()); if (val < 0) sigval = -val; else sigval = 0; } #endif /* Indirect function call to stub, cygmon monitor or other */ if (sigval != 0) { while (__process_exception_vec (sigval)) { /* Empty! */ } } __install_breakpoints (); if (__init_vec != NULL) __init_vec (); } /* * _get_trace_register_hook: * This function pointer will be non-zero if the trace component * wants to intercept requests for register values. * * FIXME: evidently I need a new hook for large registers... */ int (*_get_trace_register_hook) (regnames_t, target_register_t *); void stub_format_registers(char *packet, char *ptr) { int regnum; int sr = 0, er = NUMREGS_GDB; if (packet[0] == 'p') { target_register_t regno; char *p = &packet[1]; if (__hexToInt (&p, ®no)) { sr = regno; er = regno + 1; } else { strcpy (ptr, "INVALID"); return; } } for (regnum = sr; regnum < er; regnum++) { /* We need to compensate for the value offset within the register. */ char dummyDat[32]; target_register_t addr; char *vptr; int reg_valid = 1; #ifdef TARGET_HAS_LARGE_REGISTERS if (sizeof (target_register_t) < REGSIZE (regnum)) { get_register_as_bytes (regnum, dummyDat); vptr = dummyDat; } else #endif { if (_get_trace_register_hook) reg_valid = _get_trace_register_hook (regnum, &addr); else { addr = get_register (regnum); #ifdef CYGHWR_REGISTER_VALIDITY_CHECKING reg_valid = get_register_valid (regnum); #endif } vptr = ((char *) &addr); if (sizeof (addr) > REGSIZE(regnum)) { /* May need to cope with endian-ness */ #if !defined(__LITTLE_ENDIAN__) && !defined(_LITTLE_ENDIAN) vptr += sizeof (addr) - REGSIZE (regnum); #endif } else if (sizeof (addr) < REGSIZE (regnum)) { int off = REGSIZE (regnum) - sizeof (addr); int x; char extend_val = 0; #ifdef CYGARC_SIGN_EXTEND_REGISTERS { unsigned long bits_in_addr = (sizeof(addr) << 3); // ie Size in bytes * 8 target_register_t sign_bit_mask = (1 << (bits_in_addr - 1)); if ((addr & sign_bit_mask) == sign_bit_mask) extend_val = ~0; } #endif #if defined(__LITTLE_ENDIAN__) || defined(_LITTLE_ENDIAN) for (x = 0; x < off; x++) dummyDat[x + sizeof(addr)] = extend_val; _memcpy (dummyDat, &addr, sizeof (addr)); #else for (x = 0; x < off; x++) dummyDat[x] = extend_val; _memcpy (dummyDat + off, &addr, sizeof (addr)); #endif vptr = dummyDat; } } if (reg_valid) { /* we have a valid reg value */ ptr = __mem2hex (vptr, ptr, REGSIZE (regnum), 0); } else { /* Trace component returned a failure code. This means that the register value is not available. We'll fill it with 'x's, and GDB will understand. */ _memset (ptr, 'x', 2 * REGSIZE (regnum)); ptr += 2 * REGSIZE (regnum); } } } void stub_update_registers(char *in_ptr, char *out_ptr) { char *ptr = &in_ptr[1]; int x; int sr = 0, er = NUMREGS_GDB; if (*in_ptr == 'P') { target_register_t regno; if (__hexToInt (&ptr, ®no) && (*ptr++ == '=')) { sr = regno; er = regno + 1; } else { strcpy (out_ptr, "P01"); return; } } for (x = sr; x < er; x++) { target_register_t value = 0; char *vptr; #ifdef TARGET_HAS_LARGE_REGISTERS if (sizeof (target_register_t) < REGSIZE (x)) { char dummyDat [32]; __hex2mem (ptr, dummyDat, REGSIZE (x), 0); put_register_as_bytes (x, dummyDat); } else #endif { vptr = ((char *) &value); #if !defined(__LITTLE_ENDIAN__) && !defined(_LITTLE_ENDIAN) vptr += sizeof (value) - REGSIZE (x); #endif __hex2mem (ptr, vptr, REGSIZE (x), 0); put_register (x, value); } ptr += REGSIZE (x) * 2; } strcpy (out_ptr, "OK"); } int __process_packet (char *packet) { int is_binary = 0; #if defined(CYGNUM_HAL_BREAKPOINT_LIST_SIZE) int is_Z = 0; #endif __remcomOutBuffer[0] = 0; switch (packet[0]) { case '?': { int sigval = __computeSignal (__get_trap_number ()); __remcomOutBuffer[0] = 'S'; __remcomOutBuffer[1] = hexchars[(sigval >> 4) & 0xf]; __remcomOutBuffer[2] = hexchars[sigval & 0xf]; __remcomOutBuffer[3] = 0; break; } #ifdef __ECOS__ #if !defined(CYG_HAL_STARTUP_RAM) // Only for ROM based stubs #if 0 // Disable to avoid conflict with stub-breakpoint z/Z-packets case 'z': /* report IO buffer sizes so download can achieve optimal download speed */ { int i; i = __intToHex (__remcomOutBuffer, BUFMAX, 32); __remcomOutBuffer[i] = 0; break; } #endif case 'd': /* toggle debug flag */ strcpy(__remcomOutBuffer, GDB_stubs_version); break; #endif #endif // __ECOS__ case 'q': /* general query packet */ process_query (&packet[1]); break; case 'Q': /* general set packet */ process_set (&packet[1]); break; case 'p': /* return the value of a single CPU register */ case 'g': /* return the value of the CPU registers */ { stub_format_registers(&packet[0], __remcomOutBuffer); break; } case 'A': /* set program arguments */ { #ifdef CYGSEM_ECOS_SUPPORTS_PROGRAM_ARGS if (packet[1] == '\0') { __free_program_args (); strcpy (__remcomOutBuffer, "OK"); } else { target_register_t arglen, argnum; char *ptr = &packet[1]; while (1) { if (__hexToInt (&ptr, &arglen) && (*ptr++ == ',') && __hexToInt (&ptr, &argnum) && (*ptr++ == ',')) { if (arglen > 0) { char *s = __add_program_arg (argnum, arglen); if (s != NULL) { __hex2mem (ptr, s, arglen, 0); } ptr += arglen * 2; } if (*ptr == ',') ptr++; else break; } else break; } if (*ptr == '\0') strcpy (__remcomOutBuffer, "OK"); else strcpy (__remcomOutBuffer, "E01"); } #else strcpy (__remcomOutBuffer, "E01"); #endif } break; case 'P': case 'G': /* set the value of the CPU registers - return OK */ { char *in_ptr = &packet[0]; char *out_ptr = __remcomOutBuffer; stub_update_registers(in_ptr, out_ptr); break; } case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ /* Try to read %x,%x. */ { target_register_t length; char *ptr = &packet[1]; target_addr_t addr; if (__hexToAddr (&ptr, &addr) && *ptr++ == ',' && __hexToInt (&ptr, &length)) { if (__mem2hex_safe (addr, __remcomOutBuffer, length)) break; strcpy (__remcomOutBuffer, "E03"); } else strcpy (__remcomOutBuffer, "E01"); break; } case 'X': /* XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA */ is_binary = 1; /* fall through */ case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ /* Try to read '%x,%x:'. */ { target_register_t length; char *ptr = &packet[1], buf[128]; int i; target_addr_t addr; if (__hexToAddr (&ptr, &addr) && *ptr++ == ',' && __hexToInt (&ptr, &length) && *ptr++ == ':') { /* GDB sometimes sends an impossible length */ if (length < 0 || length >= BUFMAX) strcpy (__remcomOutBuffer, "E01"); else if (is_binary) { while (length > 0) { for (i = 0; i < sizeof(buf) && i < length; i++) if ((buf[i] = *ptr++) == 0x7d) buf[i] = 0x20 | (*ptr++ & 0xff); #ifdef TARGET_HAS_HARVARD_MEMORY if (TARGET_ADDR_IS_PROGMEM(addr)) { if (__write_progmem_safe (buf, (void *)TARGET_ADDR_TO_PTR(addr), i) != i) break; } else #endif if (__write_mem_safe (buf, (void *)TARGET_ADDR_TO_PTR(addr), i) != i) break; length -= i; addr += i; } if (length <= 0) strcpy (__remcomOutBuffer, "OK"); else strcpy (__remcomOutBuffer, "E03"); } else { if (__hex2mem_safe (ptr, addr, length) != NULL) strcpy (__remcomOutBuffer, "OK"); else strcpy (__remcomOutBuffer, "E03"); } } else strcpy (__remcomOutBuffer, "E02"); break; } case 'S': case 's': /* sAA..AA Step from address AA..AA (optional) */ case 'C': case 'c': /* cAA..AA Continue at address AA..AA (optional) */ /* try to read optional parameter, pc unchanged if no parm */ { char *ptr = &packet[1]; target_addr_t addr; target_register_t sigval = 0; if (packet[0] == 'C' || packet[0] == 'S') { __hexToInt (&ptr, &sigval); if (*ptr == ';') ptr++; } if (__hexToAddr (&ptr, &addr)) set_pc ((target_register_t)TARGET_ADDR_TO_PTR(addr)); /* Need to flush the instruction cache here, as we may have deposited a breakpoint, and the icache probably has no way of knowing that a data ref to some location may have changed something that is in the instruction cache. */ #ifdef __ECOS__ __data_cache (CACHE_FLUSH) ; #endif __instruction_cache (CACHE_FLUSH) ; /* If we have a function to handle signals, call it. */ if (sigval != 0 && __process_signal_vec != NULL) { /* If 0 is returned, we either ignored the signal or invoked a user handler. Otherwise, the user program should die. */ if (! __process_signal_vec (sigval)) sigval = 0; } if (sigval != 0) { sigval = SIGKILL; /* Always nuke the program */ __kill_program (sigval); return 0; } #ifdef __ECOS__ // CASE 102327 - watchpoints fight with output, so do not step // through $O packet output routines. #ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT if ( cyg_hal_gdb_break_is_set() ) { packet[0] = 'c'; // Force it to be a "continue" instead of step. cyg_hal_gdb_running_step = 1; // And tell the hal_stub... } #endif #endif /* Set machine state to force a single step. */ if (packet[0] == 's' || packet[0] == 'S') { lock_thread_scheduler (0); /* 0 == single-step */ #ifdef __ECOS__ // PR 19845 workaround: // Make sure the single-step magic affects the correct registers. _registers = ®isters[0]; #endif __single_step (); } else { lock_thread_scheduler (1); /* 1 == continue */ } #ifdef __ECOS__ /* Need to flush the data and instruction cache here, as we may have deposited a breakpoint in __single_step. */ __data_cache (CACHE_FLUSH) ; __instruction_cache (CACHE_FLUSH) ; hal_flush_output(); #endif return -1; } case 'D' : /* detach */ __putpacket (__remcomOutBuffer); /* fall through */ case 'k' : /* kill the program */ #ifdef __ECOS__ hal_flush_output(); #endif #ifdef CYGSEM_REDBOOT_BSP_SYSCALLS_GPROF { // Reset the timer to default and cancel any callback extern void sys_profile_reset(void); sys_profile_reset(); } #endif // CYGSEM_REDBOOT_BSP_SYSCALLS_GPROF __process_exit_vec (); return -1; case 'r': /* Reset */ /* With the next 'k' packet, reset the board */ __process_exit_vec = &__reset; break; case 'H': STUB_PKT_CHANGETHREAD (packet+1, __remcomOutBuffer, 300) ; break ; case 'T' : STUB_PKT_THREAD_ALIVE (packet+1, __remcomOutBuffer, 300) ; break ; case 'B': /* breakpoint */ { target_register_t addr; char mode; char *ptr = &packet[1]; if (__hexToInt (&ptr, &addr) && *(ptr++) == ',') { mode = *(ptr++); if (mode == 'C') __remove_breakpoint (addr,0); else __set_breakpoint (addr,0); strcpy (__remcomOutBuffer, "OK"); } else { strcpy (__remcomOutBuffer, "E01"); } break; } case 'b': /* bBB... Set baud rate to BB... */ { target_register_t baudrate; char *ptr = &packet[1]; if (!__hexToInt (&ptr, &baudrate)) { strcpy (__remcomOutBuffer, "B01"); break; } __putpacket ("OK"); /* Ack before changing speed */ __set_baud_rate (baudrate); break; } #if defined(CYGNUM_HAL_BREAKPOINT_LIST_SIZE) && (CYGNUM_HAL_BREAKPOINT_LIST_SIZE > 0) case 'Z': is_Z = 1; case 'z': { char *ptr = &packet[1]; target_register_t ztype, addr, length; int err; target_addr_t taddr; if (__hexToInt (&ptr, &ztype) && *(ptr++) == ',') { if (__hexToAddr (&ptr, &taddr)) { if (*(ptr++) == ',') { /* When there is a comma, there must be a length */ if (!__hexToInt (&ptr, &length)) { strcpy (__remcomOutBuffer, "E02"); break; } } else length = 0; addr = (target_register_t)TARGET_ADDR_TO_PTR(taddr); switch (ztype) { case ZTYPE_SW_BREAKPOINT: /* sw breakpoint */ if (is_Z) err = __set_breakpoint(addr,length); else err = __remove_breakpoint(addr,length); if (!err) strcpy (__remcomOutBuffer, "OK"); else strcpy (__remcomOutBuffer, "E02"); break; case ZTYPE_HW_BREAKPOINT: #if defined(HAL_STUB_HW_BREAKPOINT_LIST_SIZE) && (HAL_STUB_HW_BREAKPOINT_LIST_SIZE > 0) if (is_Z) err = __set_hw_breakpoint(addr, length); else err = __remove_hw_breakpoint(addr, length); if (!err) strcpy (__remcomOutBuffer, "OK"); else #endif strcpy (__remcomOutBuffer, "E02"); break; case ZTYPE_HW_WATCHPOINT_WRITE: case ZTYPE_HW_WATCHPOINT_READ: case ZTYPE_HW_WATCHPOINT_ACCESS: #if defined(HAL_STUB_HW_WATCHPOINT_LIST_SIZE) && (HAL_STUB_HW_WATCHPOINT_LIST_SIZE > 0) if (is_Z) err = __set_hw_watchpoint(addr, length, ztype); else err = __remove_hw_watchpoint(addr, length, ztype); if (!err) strcpy (__remcomOutBuffer, "OK"); else #endif strcpy (__remcomOutBuffer, "E02"); break; } } } break; } #endif // Z packet support #ifdef CYGPKG_HAL_GDB_FILEIO // File I/O over the GDB remote protocol case 'F': { extern void cyg_hal_gdbfileio_process_F_packet( char *, char *); cyg_hal_gdbfileio_process_F_packet( packet, __remcomOutBuffer ); return -1; } #endif default: __process_target_packet (packet, __remcomOutBuffer, 300); break; } /* reply to the request */ __putpacket (__remcomOutBuffer); return 0; } static void send_t_packet (int sigval) { __build_t_packet (sigval, __remcomOutBuffer); __putpacket (__remcomOutBuffer); } /* * This function does all command procesing for interfacing to gdb. */ static int process_exception (int sigval) { int status; /* Nasty. */ if (ungot_char < 0) send_t_packet (sigval); do { __getpacket (__remcomInBuffer); status = __process_packet (__remcomInBuffer); } while (status == 0); if (status < 0) return 0; else return 1; } void __send_exit_status (int status) { __remcomOutBuffer[0] = 'W'; __remcomOutBuffer[1] = hexchars[(status >> 4) & 0xf]; __remcomOutBuffer[2] = hexchars[status & 0xf]; __remcomOutBuffer[3] = 0; __putpacket (__remcomOutBuffer); } /* Read up to MAXLEN bytes from the remote GDB client, and store in DEST (which is a pointer in the user program). BLOCK indicates what mode is being used; if it is set, we will wait for MAXLEN bytes to be entered. Otherwise, the function will return immediately with whatever bytes are waiting to be read. The value returned is the number of bytes read. A -1 indicates that an error of some sort occurred. */ int __get_gdb_input (target_register_t dest, int maxlen, int block) { char buf[4]; int len, i; char d; buf[0] = 'I'; buf[1] = '0'; buf[2] = block ? '0' : '1'; buf[3] = 0; __putpacket (buf); __getpacket (__remcomInBuffer); if (__remcomInBuffer[0] != 'I') return -1; len = stubhex (__remcomInBuffer[1]) * 16 + stubhex (__remcomInBuffer[2]); for (i = 0; i < len; i++) { d = stubhex (__remcomInBuffer[3 + i * 2]) * 16; d |= stubhex (__remcomInBuffer[3 + i * 2 + 1]); __write_mem_safe (&d, (void *)(dest + i), 1); } /* Write the trailing \0. */ d = '\0'; __write_mem_safe (&d, (void *)(dest + i), 1); return len; } void __output_hex_value (target_register_t i) { char buf[32], *ptr=buf+31; unsigned int x; *ptr = 0; for (x = 0; x < (sizeof (i) * 2); x++) { *(--ptr) = hexchars[i & 15]; i = i >> 4; } while (*ptr) { putDebugChar (*(ptr++)); } } /* Write the C-style string pointed to by STR to the GDB comm port. */ void __putDebugStr (char *str) { while (*str) { putDebugChar (*str); str++; } } /* Send STRING_LEN bytes of STR to GDB, using 'O' packets. STR is assumed to be in the program being debugged. */ int __output_gdb_string (target_register_t str, int string_len) { /* We will arbitrarily limit output packets to less than 400 bytes. */ static char buf[400]; int x; int len; if (string_len == 0) { /* We can't do strlen on a user pointer. */ return -1; } len = string_len; while (len > 0) { int packetlen = ((len < 175) ? len : 175); buf[0] = 'O'; for (x = 0; x < packetlen; x++) { char c; __read_mem_safe (&c, (void *)(str + x), 1); buf[x*2+1] = hexchars[(c >> 4) & 0xf]; buf[x*2+2] = hexchars[c % 16]; } str += x; len -= x; buf[x*2+1] = 0; __putpacket (buf); } return string_len; } static void do_nothing (void) { /* mmmm */ } static int syscall_do_nothing (int junk) { return 0; } /* Start the stub running. */ void __switch_to_stub (void) { __process_exception_vec = process_exception; #ifdef CYGPKG_CYGMON // Cygmon will have consumed the '$' character for this packet. // Let's put one in the unget buffer. // Actually, Cygmon does an unget, but since it uses different // unget handling, we need to do this here. ungetDebugChar('$'); #endif } #if ! defined(BOARD_SPECIFIC_STUB_INIT) void initialize_stub (void) { set_debug_traps (); /* FIXME: This function should be renamed to specifically init the hardware required by debug operations. If initHardware is implemented at all, it should be called before main (). */ initHardware () ; /* This acks any stale packets , NOT an effective solution */ putDebugChar ('+'); } #endif void ungetDebugChar (int c) { ungot_char = c; } void __kill_program (int sigval) { __remcomOutBuffer[0] = 'X'; __remcomOutBuffer[1] = hexchars[(sigval >> 4) & 15]; __remcomOutBuffer[2] = hexchars[sigval & 15]; __remcomOutBuffer[3] = 0; __putpacket (__remcomOutBuffer); } #define MAX_ARG_COUNT 20 #define MAX_ARGDATA 128 static char *program_argv [MAX_ARG_COUNT]; static int program_argc; static int last_program_arg; static char program_argstr [MAX_ARGDATA], *argptr; static int args_initted = 0; void __free_program_args (void) { last_program_arg = -1; program_argc = 0; program_argv [0] = NULL; argptr = program_argstr; args_initted = 1; } static char * __add_program_arg (int argc, uint32 len) { char *res; if (! args_initted) { __free_program_args (); } if ((argc >= (MAX_ARG_COUNT - 1)) || ((argptr - program_argstr + len) > MAX_ARGDATA)) { return NULL; } if (argc != last_program_arg) { if (argc >= program_argc) { program_argc = argc + 1; program_argv [program_argc] = NULL; } program_argv [argc] = argptr; last_program_arg = argc; } res = argptr; argptr += len; return res; } void __set_program_args (int argc, char **argv) { int x; __free_program_args (); if (argc) { for (x = 0; x < argc; x++) { uint32 len = strlen (argv[x])+1; char *s = __add_program_arg (x, len); if (s == NULL) return; _memcpy (s, argv[x], len); } } } char ** __get_program_args (target_register_t argcPtr) { if (!args_initted) { __free_program_args (); } __write_mem_safe ((char *) &program_argc, (void *)argcPtr, sizeof (program_argc)); return program_argv; } /* Table used by the crc32 function to calcuate the checksum. */ static uint32 crc32_table[256]; static int tableInit = 0; /* Calculate a CRC-32 using LEN bytes of PTR. CRC is the initial CRC value. PTR is assumed to be a pointer in the user program. */ static uint32 crc32 (target_addr_t mem, int len, uint32 crc) { unsigned char *ptr = (unsigned char *)TARGET_ADDR_TO_PTR(mem); #ifdef TARGET_HAS_HARVARD_MEMORY int is_progmem = TARGET_ADDR_IS_PROGMEM(mem); #endif if (! tableInit) { /* Initialize the CRC table and the decoding table. */ uint32 i, j; uint32 c; tableInit = 1; for (i = 0; i < 256; i++) { for (c = i << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); crc32_table[i] = c; } } __mem_fault = 0; while (len--) { unsigned char ch; #ifdef TARGET_HAS_HARVARD_MEMORY if (is_progmem) __read_progmem_safe (&ch, (void *)ptr, 1); else #endif __read_mem_safe (&ch, (void *)ptr, 1); if (__mem_fault) { break; } crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ ch) & 255]; ptr++; } return crc; } /* Handle the 'q' request */ static void process_query (char *pkt) { __remcomOutBuffer[0] = '\0'; #ifdef __ECOS__ if ('C' == pkt[0] && 'R' == pkt[1] && 'C' == pkt[2] && ':' == pkt[3]) #else // __ECOS__ if (strncmp (pkt, "CRC:", 4) == 0) #endif // __ECOS__ { target_addr_t startmem; target_register_t length; uint32 our_crc; pkt += 4; if (__hexToAddr (&pkt, &startmem) && *(pkt++) == ',' && __hexToInt (&pkt, &length)) { our_crc = crc32 (startmem, length, 0xffffffff); if (__mem_fault) { strcpy (__remcomOutBuffer, "E01"); } else { int numb = __intToHex (__remcomOutBuffer + 1, our_crc, 32); __remcomOutBuffer[0] = 'C'; __remcomOutBuffer[numb + 1] = 0; } } return; } #ifdef CYG_HAL_STUB_PROCESS_QUERY else if (CYG_HAL_STUB_PROCESS_QUERY (pkt, __remcomOutBuffer, sizeof(__remcomOutBuffer))) return; #endif else { char ch ; char * subpkt ; ch = *pkt ; subpkt = pkt + 1 ; switch (ch) { case 'L' : /* threadlistquery */ STUB_PKT_GETTHREADLIST (subpkt, __remcomOutBuffer, 300); break ; case 'P' : /* Thread or process information request */ STUB_PKT_GETTHREADINFO (subpkt, __remcomOutBuffer, 300); break ; case 'C' : /* current thread query */ STUB_PKT_CURRTHREAD(subpkt, __remcomOutBuffer, sizeof(__remcomOutBuffer)); break; default: __process_target_query (pkt, __remcomOutBuffer, 300); break ; } } } /* Handle the 'Q' request */ static void process_set (char *pkt) { char ch ; #ifdef CYG_HAL_STUB_PROCESS_SET if (CYG_HAL_STUB_PROCESS_SET (pkt, __remcomOutBuffer, sizeof(__remcomOutBuffer))) return; #endif ch = *pkt ; switch (ch) { case 'p' : /* Set current process or thread */ /* reserve the packet id even if support is not present */ /* Dont strip the 'p' off the header, there are several variations of this packet */ STUB_PKT_CHANGETHREAD (pkt, __remcomOutBuffer, 300) ; break ; default: __process_target_set (pkt, __remcomOutBuffer, 300); break ; } } #endif // CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
Go to most recent revision | Compare with Previous | Blame | View Log