OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [frv/] [frv400/] [v2_0/] [src/] [hal_diag.c] - Rev 797

Go to most recent revision | Compare with Previous | Blame | View Log

/*=============================================================================
//
//      hal_diag.c
//
//      HAL diagnostic output code
//
//=============================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):   nickg, gthomas
// Contributors:nickg, gthomas
// Date:        1998-03-02
// Purpose:     HAL diagnostic output
// Description: Implementations of HAL diagnostic output support.
//
//####DESCRIPTIONEND####
//
//===========================================================================*/
 
#include <pkgconf/hal.h>
#include <pkgconf/hal_frv_frv400.h>     // board specific configury
 
#include <cyg/infra/cyg_type.h>         // base types
#include <cyg/infra/cyg_trac.h>         // tracing macros
#include <cyg/infra/cyg_ass.h>          // assertion macros
 
#include <cyg/hal/hal_arch.h>           // basic machine info
#include <cyg/hal/hal_intr.h>           // interrupt macros
#include <cyg/hal/hal_io.h>             // IO macros
#include <cyg/hal/hal_diag.h>
#include <cyg/hal/drv_api.h>
#include <cyg/hal/hal_if.h>             // interface API
#include <cyg/hal/hal_misc.h>           // Helper functions
 
#include <cyg/hal/frv400.h>             // Platform specific (registers, etc)
 
extern long _system_clock;
#define _ROUND(n) ((((n)*100)+50)/100)
#define _BRG(r) _ROUND(_system_clock/((r)*16))
 
/*---------------------------------------------------------------------------*/
/* From serial_16550.h */
// Define the serial registers.
#define CYG_DEV_RBR 0x00   // receiver buffer register, read, dlab = 0
#define CYG_DEV_THR 0x00   // transmitter holding register, write, dlab = 0
#define CYG_DEV_DLL 0x00   // divisor latch (LS), read/write, dlab = 1
#define CYG_DEV_IER 0x08   // interrupt enable register, read/write, dlab = 0
#define CYG_DEV_DLM 0x08   // divisor latch (MS), read/write, dlab = 1
#define CYG_DEV_IIR 0x10   // interrupt identification register, read, dlab = 0
#define CYG_DEV_FCR 0x10   // fifo control register, write, dlab = 0
#define CYG_DEV_LCR 0x18   // line control register, read/write
#define CYG_DEV_MCR 0x20   // modem control register, read/write
#define CYG_DEV_LSR 0x28   // line status register, read
#define CYG_DEV_MSR 0x30   // modem status register, read
 
#define CYG_DEV_CLK 0x90   // Prescaler clock control register - Fujitsu special
#define CYG_DEV_PSC 0x98   // Prescaler value
 
// Interrupt Enable Register
#define SIO_IER_RCV 0x01
#define SIO_IER_XMT 0x02
#define SIO_IER_LS  0x04
#define SIO_IER_MS  0x08
 
// The line status register bits.
#define SIO_LSR_DR      0x01            // data ready
#define SIO_LSR_OE      0x02            // overrun error
#define SIO_LSR_PE      0x04            // parity error
#define SIO_LSR_FE      0x08            // framing error
#define SIO_LSR_BI      0x10            // break interrupt
#define SIO_LSR_THRE    0x20            // transmitter holding register empty
#define SIO_LSR_TEMT    0x40            // transmitter register empty
#define SIO_LSR_ERR     0x80            // any error condition
 
// The modem status register bits.
#define SIO_MSR_DCTS  0x01              // delta clear to send
#define SIO_MSR_DDSR  0x02              // delta data set ready
#define SIO_MSR_TERI  0x04              // trailing edge ring indicator
#define SIO_MSR_DDCD  0x08              // delta data carrier detect
#define SIO_MSR_CTS   0x10              // clear to send
#define SIO_MSR_DSR   0x20              // data set ready
#define SIO_MSR_RI    0x40              // ring indicator
#define SIO_MSR_DCD   0x80              // data carrier detect
 
// The line control register bits.
#define SIO_LCR_WLS0   0x01             // word length select bit 0
#define SIO_LCR_WLS1   0x02             // word length select bit 1
#define SIO_LCR_STB    0x04             // number of stop bits
#define SIO_LCR_PEN    0x08             // parity enable
#define SIO_LCR_EPS    0x10             // even parity select
#define SIO_LCR_SP     0x20             // stick parity
#define SIO_LCR_SB     0x40             // set break
#define SIO_LCR_DLAB   0x80             // divisor latch access bit
 
// Modem Control Register
#define SIO_MCR_DTR 0x01
#define SIO_MCR_RTS 0x02
#define SIO_MCR_INT 0x08   // Enable interrupts
 
//-----------------------------------------------------------------------------
typedef struct {
    cyg_uint8* base;
    cyg_int32 msec_timeout;
    int isr_vector;
} channel_data_t;
 
//-----------------------------------------------------------------------------
 
static void
cyg_hal_plf_serial_init_channel(void* __ch_data)
{
    channel_data_t* chan = (channel_data_t*)__ch_data;
    cyg_uint8* base = chan->base;
    cyg_uint8 lcr;
    int _brg = _BRG(CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD);
 
    // 8-1-no parity.
    HAL_WRITE_UINT8(base+CYG_DEV_LCR, SIO_LCR_WLS0 | SIO_LCR_WLS1);
 
    // Set the baud rate
    HAL_READ_UINT8(base+CYG_DEV_LCR, lcr);
    lcr |= SIO_LCR_DLAB;
    HAL_WRITE_UINT8(base+CYG_DEV_LCR, lcr);
    HAL_WRITE_UINT8(base+CYG_DEV_DLL, _brg & 0xFF);
    HAL_WRITE_UINT8(base+CYG_DEV_DLM, _brg >> 8);
    lcr &= ~SIO_LCR_DLAB;
    HAL_WRITE_UINT8(base+CYG_DEV_LCR, lcr);
 
    // Enable & clear FIFO
    HAL_WRITE_UINT8(base+CYG_DEV_FCR, 0x07);  
 
    // Configure interrupt
    HAL_INTERRUPT_CONFIGURE(chan->isr_vector, 1, 1);  // Interrupt when IRQ is high
}
 
void
cyg_hal_plf_serial_putc(void *__ch_data, char c)
{
    cyg_uint8* base = ((channel_data_t*)__ch_data)->base;
    cyg_uint8 lsr;
    CYGARC_HAL_SAVE_GP();
 
#ifdef CYGSEM_HAL_DIAG_USES_LEDS 
    *(cyg_uint32 *)_FRV400_MB_LEDS = ~(0xC000 | c);
#endif // CYGSEM_HAL_DIAG_USES_LEDS 
    do {
        HAL_READ_UINT8(base+CYG_DEV_LSR, lsr);
    } while ((lsr & SIO_LSR_THRE) == 0);
 
    HAL_WRITE_UINT8(base+CYG_DEV_THR, c);
 
    CYGARC_HAL_RESTORE_GP();
}
 
static cyg_bool
cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)
{
    cyg_uint8* base = ((channel_data_t*)__ch_data)->base;
    cyg_uint8 lsr;
 
    HAL_READ_UINT8(base+CYG_DEV_LSR, lsr);
    if ((lsr & SIO_LSR_DR) == 0)
        return false;
 
    HAL_READ_UINT8(base+CYG_DEV_RBR, *ch);
 
    return true;
}
 
cyg_uint8
cyg_hal_plf_serial_getc(void* __ch_data)
{
    cyg_uint8 ch;
    CYGARC_HAL_SAVE_GP();
 
#ifdef CYGSEM_HAL_DIAG_USES_LEDS 
    *(cyg_uint32 *)_FRV400_MB_LEDS = ~(0x1000);
#endif // CYGSEM_HAL_DIAG_USES_LEDS 
    while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch));
#ifdef CYGSEM_HAL_DIAG_USES_LEDS 
    *(cyg_uint32 *)_FRV400_MB_LEDS = ~(0x3000 | ch);
#endif // CYGSEM_HAL_DIAG_USES_LEDS 
 
    CYGARC_HAL_RESTORE_GP();
    return ch;
}
 
static channel_data_t pid_ser_channels[] = {
    { (cyg_uint8*)_FRV400_UART0, 1000, CYGNUM_HAL_INTERRUPT_SERIALA },
#if CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1
    { (cyg_uint8*)_FRV400_UART1, 1000, CYGNUM_HAL_INTERRUPT_SERIALB },
#endif
};
 
static void
cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, 
                         cyg_uint32 __len)
{
    CYGARC_HAL_SAVE_GP();
 
    while(__len-- > 0)
        cyg_hal_plf_serial_putc(__ch_data, *__buf++);
 
    CYGARC_HAL_RESTORE_GP();
}
 
static void
cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len)
{
    CYGARC_HAL_SAVE_GP();
 
    while(__len-- > 0)
        *__buf++ = cyg_hal_plf_serial_getc(__ch_data);
 
    CYGARC_HAL_RESTORE_GP();
}
 
cyg_bool
cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch)
{
    int delay_count;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    cyg_bool res;
    CYGARC_HAL_SAVE_GP();
 
    delay_count = chan->msec_timeout * 10; // delay in .1 ms steps
 
    for(;;) {
        res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch);
        if (res || 0 == delay_count--)
            break;
 
        CYGACC_CALL_IF_DELAY_US(100);
    }
 
    CYGARC_HAL_RESTORE_GP();
    return res;
}
 
static int
cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)
{
    static int irq_state = 0;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    int ret = 0;
    CYGARC_HAL_SAVE_GP();
 
    switch (__func) {
    case __COMMCTL_IRQ_ENABLE:
        irq_state = 1;
 
        HAL_WRITE_UINT8(chan->base+CYG_DEV_IER, SIO_IER_RCV);
        HAL_WRITE_UINT8(chan->base+CYG_DEV_MCR, SIO_MCR_INT|SIO_MCR_DTR|SIO_MCR_RTS);
 
        HAL_INTERRUPT_UNMASK(chan->isr_vector);
        break;
    case __COMMCTL_IRQ_DISABLE:
        ret = irq_state;
        irq_state = 0;
 
        HAL_WRITE_UINT8(chan->base+CYG_DEV_IER, 0);
 
        HAL_INTERRUPT_MASK(chan->isr_vector);
        break;
    case __COMMCTL_DBG_ISR_VECTOR:
        ret = chan->isr_vector;
        break;
    case __COMMCTL_SET_TIMEOUT:
    {
        va_list ap;
 
        va_start(ap, __func);
 
        ret = chan->msec_timeout;
        chan->msec_timeout = va_arg(ap, cyg_uint32);
 
        va_end(ap);
    }        
    default:
        break;
    }
    CYGARC_HAL_RESTORE_GP();
    return ret;
}
 
static int
cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, 
                       CYG_ADDRWORD __vector, CYG_ADDRWORD __data)
{
    int res = 0;
    channel_data_t* chan = (channel_data_t*)__ch_data;
    char c;
    cyg_uint8 lsr;
    CYGARC_HAL_SAVE_GP();
 
    *__ctrlc = 0;
    HAL_READ_UINT8(chan->base+CYG_DEV_LSR, lsr);
    if ( (lsr & SIO_LSR_DR) != 0 ) {
 
        HAL_READ_UINT8(chan->base+CYG_DEV_RBR, c);
        if( cyg_hal_is_break( &c , 1 ) )
            *__ctrlc = 1;
 
        res = CYG_ISR_HANDLED;
    }
 
    cyg_drv_interrupt_acknowledge(chan->isr_vector);
 
    CYGARC_HAL_RESTORE_GP();
    return res;
}
 
static void
cyg_hal_plf_serial_init(void)
{
    hal_virtual_comm_table_t* comm;
    int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);
 
    // Special case - turn on clocks for UARTS
    HAL_WRITE_UINT32(_FRV400_UART0+CYG_DEV_CLK, 0x80<<24);
 
    // Disable interrupts.
    HAL_INTERRUPT_MASK(pid_ser_channels[0].isr_vector);
#if CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1
    HAL_INTERRUPT_MASK(pid_ser_channels[1].isr_vector);
#endif
 
    // Init channels
    cyg_hal_plf_serial_init_channel(&pid_ser_channels[0]);
#if CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1
    cyg_hal_plf_serial_init_channel(&pid_ser_channels[1]);
#endif
 
    // Setup procs in the vector table
 
    // Set channel 0
    CYGACC_CALL_IF_SET_CONSOLE_COMM(0);
    comm = CYGACC_CALL_IF_CONSOLE_PROCS();
    CYGACC_COMM_IF_CH_DATA_SET(*comm, &pid_ser_channels[0]);
    CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write);
    CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read);
    CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc);
    CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc);
    CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control);
    CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr);
    CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout);
 
#if CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS > 1
    // Set channel 1
    CYGACC_CALL_IF_SET_CONSOLE_COMM(1);
    comm = CYGACC_CALL_IF_CONSOLE_PROCS();
    CYGACC_COMM_IF_CH_DATA_SET(*comm, &pid_ser_channels[1]);
    CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write);
    CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read);
    CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc);
    CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc);
    CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control);
    CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr);
    CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout);
#endif
 
    // Restore original console
    CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
}
 
void
cyg_hal_plf_comms_init(void)
{
    static int initialized = 0;
 
    if (initialized)
        return;
 
    initialized = 1;
 
    cyg_hal_plf_serial_init();
}
 
/*---------------------------------------------------------------------------*/
/* End of hal_diag.c */
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.