OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [i386/] [arch/] [v2_0/] [include/] [hal_arch.h] - Rev 174

Compare with Previous | Blame | View Log

#ifndef CYGONCE_HAL_HAL_ARCH_H
#define CYGONCE_HAL_HAL_ARCH_H
 
//=============================================================================
//
//      hal_arch.h
//
//      Architecture specific abstractions
//
//=============================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//=============================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):   proven
// Contributors:proven, pjo, nickg
// Date:        1998-10-05
// Purpose:     Define architecture abstractions
// Usage:       #include <cyg/hal/hal_arch.h>
//
//####DESCRIPTIONEND####
//
//=============================================================================
 
#include <pkgconf/hal.h>
#include <cyg/infra/cyg_type.h>
 
#include <cyg/hal/var_arch.h>
 
//-----------------------------------------------------------------------------
// Processor saved states. This structure is also defined in i386.inc for
// assembly code. Do not change this without changing that (or vice versa).
 
#ifdef CYGHWR_HAL_I386_FPU
 
typedef struct
{
    cyg_uint32  fpstate_valid;
    cyg_uint32  fpstate[108/sizeof(cyg_uint32)];
#ifdef CYGHWR_HAL_I386_PENTIUM_SSE
    cyg_uint32  xmm0[4];
    cyg_uint32  xmm1[4];
    cyg_uint32  xmm2[4];
    cyg_uint32  xmm3[4];
    cyg_uint32  xmm4[4];
    cyg_uint32  xmm5[4];
    cyg_uint32  xmm6[4];
    cyg_uint32  xmm7[4];
    cyg_uint32  mxcsr;
#endif
} HAL_FPU_Context;
 
#endif
 
typedef struct 
{
#ifdef CYGHWR_HAL_I386_FPU
#ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
    HAL_FPU_Context     *fpucontext;
#else
    HAL_FPU_Context     fpucontext;    
#endif    
#endif    
    cyg_uint32  edi;
    cyg_uint32  esi;
    cyg_uint32  ebp;
    cyg_uint32  esp;
    cyg_uint32  ebx;
    cyg_uint32  edx;
    cyg_uint32  ecx;
    cyg_uint32  eax;    
    cyg_uint32  vector; // if saved on interrupt contains intr vector
    cyg_uint32  pc;
    cyg_uint32  cs;
    cyg_uint32  eflags;
} HAL_SavedRegisters;
 
 
//-----------------------------------------------------------------------------
// Exception handling function.
// This function is defined by the kernel according to this prototype. It is
// invoked from the HAL to deal with any CPU exceptions that the HAL does
// not want to deal with itself. It usually invokes the kernel's exception
// delivery mechanism.
externC void cyg_hal_deliver_exception( CYG_WORD code, CYG_ADDRWORD data );
 
//-----------------------------------------------------------------------------
// Bit manipulation routines
 
#define HAL_LSBIT_INDEX(index, mask)            \
CYG_MACRO_START                                 \
    asm volatile( "bsfl %1,%0\n"                \
                  : "=r" (index)                \
                  : "r" (mask)                  \
                );                              \
CYG_MACRO_END
 
#define HAL_MSBIT_INDEX(index, mask)            \
CYG_MACRO_START                                 \
    asm volatile( "bsrl %1,%0\n"                \
                  : "=r" (index)                \
                  : "r" (mask)                  \
                );                              \
CYG_MACRO_END
 
//-----------------------------------------------------------------------------
// Context Initialization
// Initialize the context of a thread.
// Arguments:
// _sp_ name of variable containing current sp, will be written with new sp
// _thread_ thread object address, passed as argument to entry point
// _entry_ entry point address.
// _id_ bit pattern used in initializing registers, for debugging.
 
#ifndef CYG_HAL_DEFAULT_CS
#define CYG_HAL_DEFAULT_CS 0x0008
#endif
 
#ifdef CYGHWR_HAL_I386_FPU
# ifdef CYGHWR_HAL_I386_FPU_SWITCH_LAZY
# define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace )   \
         __sp -= sizeof(HAL_FPU_Context);                       \
         __fpspace = __sp;
# define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace )                               \
CYG_MACRO_START                                                                         \
    cyg_ucount8 __i;                                                                    \
    HAL_FPU_Context *__fpspace_ = (HAL_FPU_Context *)(__fpspace);                       \
    (__regs)->fpucontext = __fpspace_;                                                  \
    __fpspace_->fpstate_valid = 0;                                                      \
    for( __i = 0; __i < (sizeof(__fpspace_->fpstate)/sizeof(cyg_uint32)); __i++ )       \
        __fpspace_->fpstate[__i] = 0;                                                   \
CYG_MACRO_END
# else
# define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace )                   \
         (__fpspace) = (__fpspace);
# define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace )                               \
CYG_MACRO_START                                                                         \
    cyg_ucount8 __i;                                                                    \
    HAL_FPU_Context *__fpspace_ = &((__regs)->fpucontext);                              \
    __fpspace_->fpstate_valid = 0;                                                      \
    for( __i = 0; __i < (sizeof(__fpspace_->fpstate)/sizeof(cyg_uint32)); __i++ )       \
        __fpspace_->fpstate[__i] = 0;                                                   \
CYG_MACRO_END
# endif
#else
# define HAL_THREAD_INIT_FPU_CONTEXT_SPACE( __sp, __fpspace )                   \
         (__fpspace) = (__fpspace);
# define HAL_THREAD_INIT_FPU_CONTEXT( __regs, __fpspace )
#endif
 
 
#define HAL_THREAD_INIT_CONTEXT( _sparg_, _thread_, _entry_, _id_ )     \
CYG_MACRO_START                                                         \
    register CYG_WORD* _sp_ = ((CYG_WORD*)((_sparg_) &~15));            \
    register CYG_WORD *_fpspace_ = NULL;                                \
    register HAL_SavedRegisters *_regs_;                                \
                                                                        \
    HAL_THREAD_INIT_FPU_CONTEXT_SPACE( _sp_, _fpspace_ );               \
    *(--_sp_) = (CYG_WORD)(0);                                          \
    *(--_sp_) = (CYG_WORD)(0);                                          \
    *(--_sp_) = (CYG_WORD)(_thread_);                                   \
    *(--_sp_) = (CYG_WORD)(0);                                          \
                                                                        \
    _regs_ = (HAL_SavedRegisters *)                                     \
               ((unsigned long)_sp_ - sizeof(HAL_SavedRegisters));      \
    HAL_THREAD_INIT_FPU_CONTEXT( _regs_, _fpspace_ );                   \
    _regs_->eflags = (CYG_WORD)(0x00000200);                            \
    _regs_->cs     = (CYG_WORD)(CYG_HAL_DEFAULT_CS);                    \
    _regs_->pc	   = (CYG_WORD)(_entry_);                               \
    _regs_->vector = (CYG_WORD)(_id_);                                  \
    _regs_->esp    = (CYG_WORD) _sp_-4;                                 \
    _regs_->ebp    = (CYG_WORD)(_id_);                                  \
    _regs_->esi    = (CYG_WORD)(_id_);                                  \
    _regs_->edi    = (CYG_WORD)(_id_);                                  \
    _regs_->eax    = (CYG_WORD)(_id_);                                  \
    _regs_->ebx    = (CYG_WORD)(_id_);                                  \
    _regs_->ecx    = (CYG_WORD)(_id_);                                  \
    _regs_->edx    = (CYG_WORD)(_id_);                                  \
    (_sparg_)      = (CYG_ADDRESS) _regs_;                              \
CYG_MACRO_END
 
//-----------------------------------------------------------------------------
// Context switch macros.
// The arguments are pointers to locations where the stack pointer
// of the current thread is to be stored, and from where the sp of the
// next thread is to be fetched.
 
externC void hal_thread_switch_context( CYG_ADDRESS to, CYG_ADDRESS from );
externC void hal_thread_load_context( CYG_ADDRESS to )
    __attribute__ ((noreturn));
 
#define HAL_THREAD_SWITCH_CONTEXT(_fspptr_,_tspptr_)                    \
        hal_thread_switch_context((CYG_ADDRESS)_tspptr_,(CYG_ADDRESS)_fspptr_);
 
#define HAL_THREAD_LOAD_CONTEXT(_tspptr_)                               \
        hal_thread_load_context( (CYG_ADDRESS)_tspptr_ );
 
//-----------------------------------------------------------------------------
// Execution reorder barrier.
// When optimizing the compiler can reorder code. In multithreaded systems
// where the order of actions is vital, this can sometimes cause problems.
// This macro may be inserted into places where reordering should not happen.
 
#define HAL_REORDER_BARRIER() asm volatile ( "" : : : "memory" )
 
//-----------------------------------------------------------------------------
// Breakpoint support
// HAL_BREAKPOINT() is a code sequence that will cause a breakpoint to happen 
// if executed.
// HAL_BREAKINST is the value of the breakpoint instruction and 
// HAL_BREAKINST_SIZE is its size in bytes.
 
#define HAL_BREAKPOINT(_label_)                 \
CYG_MACRO_START                                 \
    asm volatile (" .globl  " #_label_ ";"      \
                  #_label_":"                   \
                  "int $3"                      \
        );                                      \
CYG_MACRO_END
 
#define HAL_BREAKINST                    0xCC
#define HAL_BREAKINST_SIZE               1
 
//-----------------------------------------------------------------------------
// Thread register state manipulation for GDB support.
 
// Translate a stack pointer as saved by the thread context macros above into
// a pointer to a HAL_SavedRegisters structure.
#define HAL_THREAD_GET_SAVED_REGISTERS( _sp_, _regs_ )  \
        (_regs_) = (HAL_SavedRegisters *)(_sp_)
 
// Copy a set of registers from a HAL_SavedRegisters structure into a
// GDB ordered array.    
 
externC void hal_get_gdb_registers(CYG_ADDRWORD *, HAL_SavedRegisters *);
externC void hal_set_gdb_registers(HAL_SavedRegisters *, CYG_ADDRWORD *);
 
#define HAL_GET_GDB_REGISTERS( _aregval_, _regs_ ) \
		hal_get_gdb_registers((CYG_ADDRWORD *)(_aregval_), (_regs_))
 
// Copy a GDB ordered array into a HAL_SavedRegisters structure.
#define HAL_SET_GDB_REGISTERS( _regs_ , _aregval_ ) \
		hal_set_gdb_registers((_regs_), (CYG_ADDRWORD *)(_aregval_))
 
//-----------------------------------------------------------------------------
// HAL setjmp
 
#define CYGARC_JMP_BUF_SP        0
#define CYGARC_JMP_BUF_EBP       1
#define CYGARC_JMP_BUF_EBX       2
#define CYGARC_JMP_BUF_ESI       3
#define CYGARC_JMP_BUF_EDI       4
#define CYGARC_JMP_BUF_PC        5
 
#define CYGARC_JMP_BUF_SIZE      6
 
typedef cyg_uint32 hal_jmp_buf[CYGARC_JMP_BUF_SIZE];
 
externC int hal_setjmp(hal_jmp_buf env);
externC void hal_longjmp(hal_jmp_buf env, int val);
 
//-----------------------------------------------------------------------------
// Idle thread code.
// This macro is called in the idle thread loop, and gives the HAL the
// chance to insert code. Typical idle thread behaviour might be to halt the
// processor.
 
externC void hal_idle_thread_action(cyg_uint32 loop_count);
 
#define HAL_IDLE_THREAD_ACTION(_count_) hal_idle_thread_action(_count_)
 
//-----------------------------------------------------------------------------
// Minimal and sensible stack sizes: the intention is that applications
// will use these to provide a stack size in the first instance prior to
// proper analysis.  Idle thread stack should be this big.
 
//    THESE ARE NOT INTENDED TO BE MICROMETRICALLY ACCURATE FIGURES.
//           THEY ARE HOWEVER ENOUGH TO START PROGRAMMING.
// YOU MUST MAKE YOUR STACKS LARGER IF YOU HAVE LARGE "AUTO" VARIABLES!
 
// This is not a config option because it should not be adjusted except
// under "enough rope" sort of disclaimers.
 
// Stack frame overhead per call. Four arguments, 3 local registers
// (edi, esi, ebx), four local variables and return address.
#define CYGNUM_HAL_STACK_FRAME_SIZE (12 * 4)
 
// Stack needed for a context switch ( sizeof(HAL_SavedRegisters) ).
#ifdef CYGHWR_HAL_I386_FPU
# define CYGNUM_HAL_STACK_CONTEXT_SIZE ((4 * 12) + 108)
#else
# define CYGNUM_HAL_STACK_CONTEXT_SIZE (4 * 12)
#endif
 
// Interrupt + call to ISR, interrupt_end() and the DSR
#define CYGNUM_HAL_STACK_INTERRUPT_SIZE \
    ((4*CYGNUM_HAL_STACK_CONTEXT_SIZE) + 4 * CYGNUM_HAL_STACK_FRAME_SIZE)
 
// We define a minimum stack size as the minimum any thread could ever
// legitimately get away with. We can throw asserts if users ask for less
// than this. Allow enough for three interrupt sources - clock, serial and
// one other
 
#if defined(CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK)
 
// An interrupt stack which is large enough for all possible interrupt
// conditions (and only used for that purpose) exists.  "User" stacks
// can therefore be much smaller
 
# define CYGNUM_HAL_STACK_SIZE_MINIMUM \
         (2*CYGNUM_HAL_STACK_FRAME_SIZE + 2*CYGNUM_HAL_STACK_INTERRUPT_SIZE)
 
#else
 
// No separate interrupt stack exists.  Make sure all threads contain
// a stack sufficiently large
 
# define CYGNUM_HAL_STACK_SIZE_MINIMUM                  \
        (((2+3+10)*CYGNUM_HAL_STACK_INTERRUPT_SIZE) +   \
         (2*CYGNUM_HAL_STACK_FRAME_SIZE))
 
#endif
 
// Now make a reasonable choice for a typical thread size. Pluck figures
// from thin air and say 15 call frames with an average of 16 words of
// automatic variables per call frame
 
#define CYGNUM_HAL_STACK_SIZE_TYPICAL                \
        (CYGNUM_HAL_STACK_SIZE_MINIMUM +             \
         15 * (CYGNUM_HAL_STACK_FRAME_SIZE+(16*4)))
 
//--------------------------------------------------------------------------
// Memory access macros
 
#define CYGARC_CACHED_ADDRESS(x)                       (x)
#define CYGARC_UNCACHED_ADDRESS(x)                     (x)
#define CYGARC_PHYSICAL_ADDRESS(x)                     (x)
 
//--------------------------------------------------------------------------
// Region size finder
 
#if CYGINT_HAL_I386_MEM_REAL_REGION_TOP
 
externC cyg_uint8 *hal_i386_mem_real_region_top( cyg_uint8 *_regionend_ );
 
# define HAL_MEM_REAL_REGION_TOP( _regionend_ ) \
    hal_i386_mem_real_region_top( _regionend_ )
#endif
 
//--------------------------------------------------------------------------
// Macros for switching context between two eCos instances (jump from
// code in ROM to code in RAM or vice versa).
 
#define CYGARC_HAL_SAVE_GP()
#define CYGARC_HAL_RESTORE_GP()
 
//--------------------------------------------------------------------------
#endif // CYGONCE_HAL_HAL_ARCH_H
// End of hal_arch.h
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.