URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [i386/] [pcmb/] [v2_0/] [include/] [pcmb.inc] - Rev 174
Compare with Previous | Blame | View Log
#ifndef CYGONCE_HAL_PCMB_INC
#define CYGONCE_HAL_PCMB_INC
##=============================================================================
##
## pcmb.inc
##
## PC platform support
##
##=============================================================================
#####ECOSGPLCOPYRIGHTBEGIN####
## -------------------------------------------
## This file is part of eCos, the Embedded Configurable Operating System.
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
##
## eCos is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free
## Software Foundation; either version 2 or (at your option) any later version.
##
## eCos is distributed in the hope that it will be useful, but WITHOUT ANY
## WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License along
## with eCos; if not, write to the Free Software Foundation, Inc.,
## 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
##
## As a special exception, if other files instantiate templates or use macros
## or inline functions from this file, or you compile this file and link it
## with other works to produce a work based on this file, this file does not
## by itself cause the resulting work to be covered by the GNU General Public
## License. However the source code for this file must still be made available
## in accordance with section (3) of the GNU General Public License.
##
## This exception does not invalidate any other reasons why a work based on
## this file might be covered by the GNU General Public License.
##
## Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
## at http://sources.redhat.com/ecos/ecos-license/
## -------------------------------------------
#####ECOSGPLCOPYRIGHTEND####
##=============================================================================
#######DESCRIPTIONBEGIN####
##
## Author(s): jskov
## Contributors:jskov, pjo, nickg
## Date: 1999-01-07
## Purpose: PC platform support
## Description: This file contains any PC specific assembler macros needed to
## run eCos on a standard i386 PC.
##
##
######DESCRIPTIONEND####
##
##=============================================================================
##=============================================================================
## CPU initialization
#ifndef CYGPKG_HAL_I386_CPU_INIT_DEFINED
#ifdef CYG_HAL_STARTUP_FLOPPY
#define CYGPKG_HAL_I386_CPU_INIT_DEFINED
.macro hal_cpu_init
/* This code is loaded from a floppy disk when the PC powers up. */
.code16
.extern _end
sectorsPerTrack = 18
bytesPerSector = 512
esPerSector = 32 /* = 512/16 */
cld /* always count up. */
/* Configure a stack that we can use. */
movl $_start, %eax
movw %ax, %sp
shr $4, %eax
andl $0xF000, %eax
movw %ax, %ss
/* Ask the BIOS for info about the amount of RAM available. We push
* these onto the stack for later use.
*/
xorl %eax, %eax
movb $0x88, %ah /* Get the amount of extended memory. */
int $0x15
shl $10, %eax
pushl %eax
xorl %eax, %eax
int $0x12 /* Get the amount of standard memory. */
shl $10, %eax
pushl %eax
/* reset floppy */
movb $0,%ah
movb $0,%dl
int $0x13
jc _error1
/* Read the rest of the image to _start. This code works by reading
only one sector at a time to avoid "buffer cross 64k boundary" fatal
problem... This is slow but should work in almost all situations.
_start should be aligned on a 512 bytes boundary to be sure.
*/
/* destination pointer es:bx */
/* With correct alignement, bx should be 0 and es should be a multiple
* of 32. If not it may cause the "buffer cross 64k boundary" problem
* (cf above)
*/
movl $_start,%eax
movw %ax,%bx
andw $0xF,%bx
shrl $4,%eax
movw %ax, %es
/* initials head/track/sector */
movw $0,%dx
movw $1,%cx
movl $_edata,%edi
addl $(bytesPerSector-1),%edi
shrl $4,%edi
jmp _loadsector
_nextsector:
movw %es,%ax
cmpw %di,%ax
jge _endload
addw $esPerSector,%ax
movw %ax,%es
incb %cl
cmpb $sectorsPerTrack, %cl
jbe _loadsector /* next head ?*/
movb $1, %cl
incb %dh
cmpb $1, %dh
je _loadsector /* next track ? */
movb $0, %dh
incb %ch
_loadsector:
pushw %es
pushw %di
movw $0x0201, %ax
clc
int $0x13
popw %di
popw %es
jc _error2
movw $(0x0E*256+'.'), %ax /* print a dot */
int $0x10
/* So go ahead and resume execution at the real starting address. This
only serves to move us quickly to the real starting location; and has
no effect after reading additional tracks. If we didn't jump after
reading the first track, then we limit ourselves to reading images of
30k bytes max before overwriting ourselves at 0x7C00.
*/
ljmp $0,$_nextsector
_error1:
movw $(0x0E*256+'1'), %ax /* print a ! */
int $0x10
jmp _error
_error2:
mov %ah,%al
pushw %ax
shrw $4,%ax
andw $15,%ax
addw $0x0E41,%ax
int $0x10
popw %ax
andw $15,%ax
addw $0x0E41,%ax
int $0x10
movw $(0x0E*256+'2'), %ax /* print a ! */
int $0x10
jmp _error
_error: /* halt on error */
movw $(0x0E*256+'!'), %ax /* print a ! */
int $0x10
cli
hlt
jmp _start
/* Write the 0x55/0xAA signature at the end of the first
block. Without this signature the BIOS won't consider this
block to be bootable.
*/
. = _start + 510
.byte 0x55
.byte 0xAA
_endload:
1:
/* Lets be nice and wait for the diskette drive motor to go off
* before continuing. */
movw $0x40, %ax
movw %ax, %es
movl $0x40, %ebx
2: es
movb (%bx), %al
cmpb $0, %al
jne 2b
/* Now we're all loaded up in memory. */
/* Optionally switch to a high-res video before entering */
/* protected mode. The mode is controlled by an option in */
/* the RedBoot configuration, which is not readily visible */
/* in the application configuration. Therefore RedBoot also */
/* performs some information-related BIOS calls, getting the */
/* main SVGA BIOS information and the mode-specific */
/* information. These are placed in video memory, because */
/* nothing else should be touching that and it avoids having */
/* some other special buffer shared between RedBoot and the */
/* application. The disadvantage is possibly some strange junk */
/* visible on the screen after RedBoot has started. */
#ifdef CYGNUM_HAL_I386_PC_STARTUP_VIDEO_MODE
movw $0x4f02, %ax
movw $ CYGNUM_HAL_I386_PC_STARTUP_VIDEO_MODE, %bx
int $0x10
/* SVGA information @ 0x000A0000 */
/* Placing VBE2 at this location before the int10 gives more information */
movw $0xA000, %ax
movw %ax, %es
movw $0x0, %di
movb $('V'), %es:0(%di)
movb $('B'), %es:1(%di)
movb $('E'), %es:2(%di)
movb $('2'), %es:3(%di)
movw $0x4f00, %ax
int $0x10
/* Information about all supported modes starting @ 0x000A0400 */
/* ds:si is used to index the main mode table, offset 14 */
movw %es:14(%di),%si
movw %es:16(%di),%ax
movw %ax,%ds
/* es:di is used for the destination. */
movw $0xA000,%ax
movw %ax,%es
movw $0x0400,%di
modes_loop:
/* The mode table is terminated by a -1 entry */
movw %ds:0(%si), %cx
cmpw $0xffff,%cx
je modes_done
movw $0x4f01, %ax
int $0x10
addw $0x0100, %di
addw $2,%si
jmp modes_loop
modes_done:
/* Information about the current mode @ 0x000A0200 */
movw $0xA000, %ax
movw %ax, %es
movw $0x0200, %di
movw $0x4f01, %ax
movw $ CYGNUM_HAL_I386_PC_STARTUP_VIDEO_MODE, %cx
int $0x10
#endif
/* Disable interrupt handling. */
cli
/* Load GDTR and IDTR. */
lgdt %cs:gdt
lidt %cs:idt
/* Switch to protected mode. */
movl %cr0,%eax
orb $1, %al
movl %eax,%cr0
ljmp $8, $3f
hlt
.align 4, 0xFF
gdt:
.word gdtEnd - gdtStart
.long gdtStart
.align 4, 0xFF
idt:
.extern idtStart
.word 0x07FF # space for 256 entries
.long idtStart
gdtStart:
/* Selector 0x00 == invalid. */
.word 0x0000
.word 0x0000
.byte 0x00
.byte 0x00
.byte 0x00
.byte 0x00
/* Selector 0x08 == code. */
.word 0xFFFF
.word 0x0000
.byte 0x00
.byte 0x9B
.byte 0xCF
.byte 0x00
/* Selector 0x10 == data. */
.word 0xFFFF
.word 0x0000
.byte 0x00
.byte 0x93
.byte 0xCF
.byte 0x00
/* Selector 0x18 == shorter code: faults any code
* access 0xF0000000-0xFFFFFFFF.
*/
.word 0xFFFF
.word 0x0000
.byte 0x00
.byte 0x9B
.byte 0xC7
.byte 0x00
/* Selector 0x20 == data; faults any access 0xF0000000-0xFFFFFFFF. */
.word 0xFFFF
.word 0x0000
.byte 0x00
.byte 0x93
.byte 0xC7
.byte 0x00
.align 4, 0xFF
gdtEnd:
.code32
3:
movw $0x10, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw %ax, %gs
/* Make our new stack point to the same place as the old one. */
xorl %ebx, %ebx
movw %ss, %bx
shl $4, %ebx
addl %esp, %ebx
movw %ax, %ss
movl %ebx, %esp
movl $0, %ebp
/* Reset the flags register. */
pushl $0
popfl
hal_cpu_init_end:
nop
.endm /* hal_cpu_init */
#endif /* CYG_HAL_STARTUP_FLOPPY */
#endif // CYGPKG_HAL_I386_CPU_INIT_DEFINED
##=============================================================================
## Interrupt controller support
#define CYGPKG_HAL_I386_INTC_INIT_DEFINED
#ifndef CYG_HAL_STARTUP_RAM
.macro hal_intc_init
# The interrupt controller is configured so that IRQ levels 0-7 trigger
# interrupt vector 32-39; levels 8-15 trigger 40-47.
movb $0x11, %al
outb %al, $0x20
movb $0x20, %al
outb %al, $0x21
movb $0x04, %al
outb %al, $0x21
movb $0x01, %al
outb %al, $0x21
movb $0xFB, %al /* Mask off all interrupts except 2. */
outb %al, $0x21
movb $0x11, %al
outb %al, $0xA0
movb $0x28, %al
outb %al, $0xA1
movb $0x02, %al
outb %al, $0xA1
movb $0x01, %al
outb %al, $0xA1
movb $0xFF, %al /* Mask off all interrupts. */
outb %al, $0xA1
.endm /* hal_intc_init */
#else
# No need to do any initialization in RAM startup
.macro hal_intc_init
.endm
#endif
.macro hal_intc_ack vector
# Use any registers you like.
movl \vector, %edx
movb $0x20, %al
cmpl $0x20, %edx
jl 8f
cmpl $0x28, %edx
jl 9f
outb %al, $0xA0
9: outb %al, $0x20
8: nop
.endm
##=============================================================================
#endif // ifndef CYGONCE_HAL_PCMB_INC
## end of pcmb.inc