URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [powerpc/] [arch/] [v2_0/] [src/] [ppc_stub.c] - Rev 27
Go to most recent revision | Compare with Previous | Blame | View Log
//======================================================================== // // ppc_stub.c // // Helper functions for stub, generic to all PowerPC processors // //======================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //======================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): Red Hat, jskov // Contributors: Red Hat, jskov, gthomas // Date: 1998-08-20 // Purpose: // Description: Helper functions for stub, generic to all PowerPC processors // Usage: // //####DESCRIPTIONEND#### // //======================================================================== #include <stddef.h> #include <pkgconf/hal.h> #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS #define CYGARC_HAL_COMMON_EXPORT_CPU_MACROS #include <cyg/hal/ppc_regs.h> #include <cyg/hal/hal_stub.h> #include <cyg/hal/hal_arch.h> #include <cyg/hal/hal_intr.h> #ifdef CYGNUM_HAL_NO_VECTOR_TRACE #define USE_BREAKPOINTS_FOR_SINGLE_STEP #endif #ifdef CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT #include <cyg/hal/dbg-threads-api.h> // dbg_currthread_id #endif /* Given a trap value TRAP, return the corresponding signal. */ int __computeSignal (unsigned int trap_number) { switch (trap_number) { case CYGNUM_HAL_VECTOR_MACHINE_CHECK: /* Machine check */ case CYGNUM_HAL_VECTOR_DSI: /* Data access */ return SIGSEGV; case CYGNUM_HAL_VECTOR_ISI: /* Instruction access (Ifetch) */ case CYGNUM_HAL_VECTOR_ALIGNMENT: /* Data access */ return SIGBUS; case CYGNUM_HAL_VECTOR_INTERRUPT: /* External interrupt */ return SIGINT; case CYGNUM_HAL_VECTOR_TRACE: /* Instruction trace */ return SIGTRAP; case CYGNUM_HAL_VECTOR_PROGRAM: #ifdef CYGPKG_HAL_POWERPC_PPC40x // The 40x is b0rken, returning 0 for these bits. Translate to // SIGTRAP to allow thread debugging. return SIGTRAP; #else // The register PS contains the value of SRR1 at the time of // exception entry. Bits 11-15 contain information about the // cause of the exception. Bits 16-31 the PS (MSR) state. #ifdef USE_BREAKPOINTS_FOR_SINGLE_STEP if (__is_single_step(get_register(PC))) { return SIGTRAP; } #endif switch ((get_register (PS) >> 17) & 0xf){ case 1: /* trap */ return SIGTRAP; case 2: /* privileged instruction */ case 4: /* illegal instruction */ return SIGILL; case 8: /* floating point */ return SIGFPE; default: /* should never happen! */ return SIGILL; } #endif case CYGNUM_HAL_VECTOR_RESERVED_A: case CYGNUM_HAL_VECTOR_RESERVED_B: return SIGILL; case CYGNUM_HAL_VECTOR_FP_UNAVAILABLE: /* FPU disabled */ case CYGNUM_HAL_VECTOR_FP_ASSIST: /* FPU assist */ return SIGFPE; case CYGNUM_HAL_VECTOR_DECREMENTER: /* Decrementer alarm */ return SIGALRM; case CYGNUM_HAL_VECTOR_SYSTEM_CALL: /* System call */ return SIGSYS; #if defined(CYGPKG_HAL_POWERPC_MPC8xx) || defined(CYGPKG_HAL_POWERPC_MPC5xx) case CYGNUM_HAL_VECTOR_SW_EMUL: /* A SW_EMUL is generated instead of PROGRAM for illegal instructions. */ return SIGILL; case CYGNUM_HAL_VECTOR_DATA_BP: case CYGNUM_HAL_VECTOR_INSTRUCTION_BP: case CYGNUM_HAL_VECTOR_PERIPHERAL_BP: case CYGNUM_HAL_VECTOR_NMI: /* Developer port debugging exceptions. */ return SIGTRAP; #if defined(CYGNUM_HAL_VECTOR_ITLB_MISS) case CYGNUM_HAL_VECTOR_ITLB_MISS: /* Software reload of TLB required. */ return SIGTRAP; #endif #if defined(CYGNUM_HAL_VECTOR_DTLB_MISS) case CYGNUM_HAL_VECTOR_DTLB_MISS: /* Software reload of TLB required. */ return SIGTRAP; #endif case CYGNUM_HAL_VECTOR_ITLB_ERROR: /* Invalid instruction access. */ return SIGBUS; case CYGNUM_HAL_VECTOR_DTLB_ERROR: /* Invalid data access. */ return SIGSEGV; #endif // defined(CYGPKG_HAL_POWERPC_MPC8xx) default: return SIGTERM; } } /* Return the trap number corresponding to the last-taken trap. */ int __get_trap_number (void) { // The vector is not not part of the GDB register set so get it // directly from the save context. return _hal_registers->vector >> 8; } /* Set the currently-saved pc register value to PC. This also updates NPC as needed. */ void set_pc (target_register_t pc) { put_register (PC, pc); } /*---------------------------------------------------------------------- * Single-step support */ /* Set things up so that the next user resume will execute one instruction. This may be done by setting breakpoints or setting a single step flag in the saved user registers, for example. */ #ifdef USE_BREAKPOINTS_FOR_SINGLE_STEP #if (HAL_BREAKINST_SIZE == 1) typedef cyg_uint8 t_inst; #elif (HAL_BREAKINST_SIZE == 2) typedef cyg_uint16 t_inst; #elif (HAL_BREAKINST_SIZE == 4) typedef cyg_uint32 t_inst; #else #error "Don't know how to handle that size" #endif typedef struct { t_inst *targetAddr; t_inst savedInstr; } instrBuffer; static instrBuffer sstep_instr[2]; static target_register_t irq_state = 0; static void __insert_break(int indx, target_register_t pc) { sstep_instr[indx].targetAddr = (t_inst *)pc; sstep_instr[indx].savedInstr = *(t_inst *)pc; *(t_inst*)pc = (t_inst)HAL_BREAKINST; __data_cache(CACHE_FLUSH); __instruction_cache(CACHE_FLUSH); } static void __remove_break(int indx) { if (sstep_instr[indx].targetAddr != 0) { *(sstep_instr[indx].targetAddr) = sstep_instr[indx].savedInstr; sstep_instr[indx].targetAddr = 0; __data_cache(CACHE_FLUSH); __instruction_cache(CACHE_FLUSH); } } int __is_single_step(target_register_t pc) { return (sstep_instr[0].targetAddr == pc) || (sstep_instr[1].targetAddr == pc); } // Compute the target address for this instruction, if the instruction // is some sort of branch/flow change. struct xl_form { unsigned int op : 6; unsigned int bo : 5; unsigned int bi : 5; unsigned int reserved : 5; unsigned int xo : 10; unsigned int lk : 1; }; struct i_form { unsigned int op : 6; signed int li : 24; unsigned int aa : 1; unsigned int lk : 1; }; struct b_form { unsigned int op : 6; unsigned int bo : 5; unsigned int bi : 5; signed int bd : 14; unsigned int aa : 1; unsigned int lk : 1; }; union ppc_insn { unsigned int word; struct i_form i; struct b_form b; struct xl_form xl; }; static target_register_t __branch_pc(target_register_t pc) { union ppc_insn insn; insn.word = *(t_inst *)pc; // Decode the instruction to determine the instruction which will follow // Note: there are holes in this process, but the important ones work switch (insn.i.op) { case 16: /* bcx */ if (insn.b.aa) { return (target_register_t)(insn.b.bd << 2); } else { return (target_register_t)((insn.b.bd << 2) + (long)pc); } case 18: /* bx */ if (insn.i.aa) { return (target_register_t)(insn.i.li << 2); } else { return (target_register_t)((insn.i.li << 2) + (long)pc); } case 19: if (insn.xl.reserved == 0) { if (insn.xl.xo == 528) { /* bcctrx */ return (target_register_t)(get_register(CNT) & ~3); } else if (insn.xl.xo == 16) { /* bclrx */ return (target_register_t)(get_register(LR) & ~3); } } break; default: break; } return (pc+4); } void __single_step(void) { target_register_t msr = get_register(PS); target_register_t pc = get_register(PC); target_register_t next_pc = __branch_pc(pc); // Disable interrupts. irq_state = msr & MSR_EE; msr &= ~MSR_EE; put_register (PS, msr); // Set a breakpoint at the next instruction __insert_break(0, pc+4); if (next_pc != (pc+4)) { __insert_break(1, next_pc); } } /* Clear the single-step state. */ void __clear_single_step(void) { target_register_t msr = get_register (PS); // Restore interrupt state. // FIXME: Should check whether the executed instruction changed the // interrupt state - or single-stepping a MSR changing instruction // may result in a wrong EE. Not a very likely scenario though. msr |= irq_state; // This function is called much more than its counterpart // __single_step. Only re-enable interrupts if they where // disabled during the previous cal to __single_step. Otherwise, // this function only makes "extra sure" that no trace or branch // exception will happen. irq_state = 0; put_register (PS, msr); // Remove breakpoints __remove_break(0); __remove_break(1); } #else static target_register_t irq_state = 0; void __single_step (void) { target_register_t msr = get_register (PS); // Set single-step flag in the exception context. msr |= (MSR_SE | MSR_BE); // Disable interrupts. irq_state = msr & MSR_EE; msr &= ~MSR_EE; put_register (PS, msr); } /* Clear the single-step state. */ void __clear_single_step (void) { target_register_t msr = get_register (PS); // Clear single-step flag in the exception context. msr &= ~(MSR_SE | MSR_BE); // Restore interrupt state. // FIXME: Should check whether the executed instruction changed the // interrupt state - or single-stepping a MSR changing instruction // may result in a wrong EE. Not a very likely scenario though. msr |= irq_state; // This function is called much more than its counterpart // __single_step. Only re-enable interrupts if they where // disabled during the previous cal to __single_step. Otherwise, // this function only makes "extra sure" that no trace or branch // exception will happen. irq_state = 0; put_register (PS, msr); } #endif void __install_breakpoints (void) { /* NOP since single-step HW exceptions are used instead of breakpoints. */ } void __clear_breakpoints (void) { } /* If the breakpoint we hit is in the breakpoint() instruction, return a non-zero value. */ int __is_breakpoint_function () { return get_register (PC) == (target_register_t)&_breakinst; } /* Skip the current instruction. Since this is only called by the stub when the PC points to a breakpoint or trap instruction, we can safely just skip 4. */ void __skipinst (void) { put_register (PC, get_register (PC) + 4); } #endif // CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
Go to most recent revision | Compare with Previous | Blame | View Log