URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [powerpc/] [cogent/] [v2_0/] [src/] [hal_diag.c] - Rev 291
Go to most recent revision | Compare with Previous | Blame | View Log
//============================================================================= // // hal_diag.c // // HAL diagnostic output code // //============================================================================= //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): nickg, jskov // Contributors: nickg, jskov // Date: 1999-03-23 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic output support. // //####DESCRIPTIONEND#### // //============================================================================= #include <pkgconf/hal.h> #include <cyg/hal/hal_diag.h> // our header. #include <cyg/infra/cyg_type.h> // base types, externC #include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED #include <cyg/hal/hal_misc.h> // Helper functions #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_intr.h> // Interrupt macros #include <cyg/hal/hal_arch.h> // SAVE/RESTORE GP #include <cyg/hal/hal_if.h> // Calling-if API static void cyg_hal_plf_serial_init(void); static void cyg_hal_plf_lcd_init(void); void cyg_hal_plf_comms_init(void) { static int initialized = 0; if (initialized) return; initialized = 1; cyg_hal_plf_serial_init(); cyg_hal_plf_lcd_init(); } //============================================================================= // Serial driver //============================================================================= //----------------------------------------------------------------------------- // There are two serial ports. #define CYG_DEV_SERIAL_BASE_A 0xe900047 // port A #define CYG_DEV_SERIAL_BASE_B 0xe900007 // port B //----------------------------------------------------------------------------- // Default baud rate is 38400 #define CYG_DEV_SERIAL_RS232_T1_VALUE_B38400 0x00 #define CYG_DEV_SERIAL_RS232_T2_VALUE_B38400 0x06 //----------------------------------------------------------------------------- // Define the serial registers. The Cogent board is equipped with a 16552 // serial chip. #define CYG_DEV_SERIAL_RBR 0x00 // receiver buffer register, read, dlab = 0 #define CYG_DEV_SERIAL_THR 0x00 // transmitter holding register, write, dlab = 0 #define CYG_DEV_SERIAL_DLL 0x00 // divisor latch (LS), read/write, dlab = 1 #define CYG_DEV_SERIAL_IER 0x08 // interrupt enable register, read/write, dlab = 0 #define CYG_DEV_SERIAL_DLM 0x08 // divisor latch (MS), read/write, dlab = 1 #define CYG_DEV_SERIAL_IIR 0x10 // interrupt identification register, read, dlab = 0 #define CYG_DEV_SERIAL_FCR 0x10 // fifo control register, write, dlab = 0 #define CYG_DEV_SERIAL_AFR 0x10 // alternate function register, read/write, dlab = 1 #define CYG_DEV_SERIAL_LCR 0x18 // line control register, read/write #define CYG_DEV_SERIAL_MCR 0x20 #define CYG_DEV_SERIAL_MCR_A 0x20 #define CYG_DEV_SERIAL_MCR_B 0x20 #define CYG_DEV_SERIAL_LSR 0x28 // line status register, read #define CYG_DEV_SERIAL_MSR 0x30 // modem status register, read #define CYG_DEV_SERIAL_SCR 0x38 // scratch pad register // The interrupt enable register bits. #define SIO_IER_ERDAI 0x01 // enable received data available irq #define SIO_IER_ETHREI 0x02 // enable THR empty interrupt #define SIO_IER_ELSI 0x04 // enable receiver line status irq #define SIO_IER_EMSI 0x08 // enable modem status interrupt // The interrupt identification register bits. #define SIO_IIR_IP 0x01 // 0 if interrupt pending #define SIO_IIR_ID_MASK 0x0e // mask for interrupt ID bits #define ISR_Tx 0x02 #define ISR_Rx 0x04 // The line status register bits. #define SIO_LSR_DR 0x01 // data ready #define SIO_LSR_OE 0x02 // overrun error #define SIO_LSR_PE 0x04 // parity error #define SIO_LSR_FE 0x08 // framing error #define SIO_LSR_BI 0x10 // break interrupt #define SIO_LSR_THRE 0x20 // transmitter holding register empty #define SIO_LSR_TEMT 0x40 // transmitter register empty #define SIO_LSR_ERR 0x80 // any error condition // The modem status register bits. #define SIO_MSR_DCTS 0x01 // delta clear to send #define SIO_MSR_DDSR 0x02 // delta data set ready #define SIO_MSR_TERI 0x04 // trailing edge ring indicator #define SIO_MSR_DDCD 0x08 // delta data carrier detect #define SIO_MSR_CTS 0x10 // clear to send #define SIO_MSR_DSR 0x20 // data set ready #define SIO_MSR_RI 0x40 // ring indicator #define SIO_MSR_DCD 0x80 // data carrier detect // The line control register bits. #define SIO_LCR_WLS0 0x01 // word length select bit 0 #define SIO_LCR_WLS1 0x02 // word length select bit 1 #define SIO_LCR_STB 0x04 // number of stop bits #define SIO_LCR_PEN 0x08 // parity enable #define SIO_LCR_EPS 0x10 // even parity select #define SIO_LCR_SP 0x20 // stick parity #define SIO_LCR_SB 0x40 // set break #define SIO_LCR_DLAB 0x80 // divisor latch access bit // The FIFO control register #define SIO_FCR_FCR0 0x01 // enable xmit and rcvr fifos #define SIO_FCR_FCR1 0x02 // clear RCVR FIFO #define SIO_FCR_FCR2 0x04 // clear XMIT FIFO //----------------------------------------------------------------------------- typedef struct { cyg_uint8* base; cyg_int32 msec_timeout; int isr_vector; } channel_data_t; //----------------------------------------------------------------------------- static void init_serial_channel(channel_data_t* __ch_data) { cyg_uint8* base = __ch_data->base; cyg_uint8 lcr; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_IER, 0); // Disable and clear FIFOs (need to enable to clear). HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, (SIO_FCR_FCR0 | SIO_FCR_FCR1 | SIO_FCR_FCR2)); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, 0); // 8-1-no parity. HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, SIO_LCR_WLS0 | SIO_LCR_WLS1); // Set speed to 38400. HAL_READ_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); lcr |= SIO_LCR_DLAB; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_DLL, CYG_DEV_SERIAL_RS232_T2_VALUE_B38400); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_DLM, CYG_DEV_SERIAL_RS232_T1_VALUE_B38400); lcr &= ~SIO_LCR_DLAB; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_LCR, lcr); { // Special initialization for ST16C552 on CMA102 cyg_uint8 mcr; HAL_READ_UINT8(base+CYG_DEV_SERIAL_MCR_A, mcr); mcr |= 8; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_MCR_A, mcr); HAL_READ_UINT8(base+CYG_DEV_SERIAL_MCR_B, mcr); mcr |= 8; HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_MCR_B, mcr); } // Enable FIFOs (and clear them). HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_FCR, (SIO_FCR_FCR0 | SIO_FCR_FCR1 | SIO_FCR_FCR2)); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { cyg_uint8* base = ((channel_data_t*)__ch_data)->base; cyg_uint8 lsr; HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); if ((lsr & SIO_LSR_DR) == 0) return false; HAL_READ_UINT8(base+CYG_DEV_SERIAL_RBR, *ch); return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } void cyg_hal_plf_serial_putc(void* __ch_data, cyg_uint8 c) { cyg_uint8* base = ((channel_data_t*)__ch_data)->base; cyg_uint8 lsr; CYGARC_HAL_SAVE_GP(); do { HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); } while ((lsr & SIO_LSR_THRE) == 0); HAL_WRITE_UINT8(base+CYG_DEV_SERIAL_THR, c); // Hang around until the character has been safely sent. do { HAL_READ_UINT8(base+CYG_DEV_SERIAL_LSR, lsr); } while ((lsr & SIO_LSR_THRE) == 0); CYGARC_HAL_RESTORE_GP(); } static channel_data_t channels[2] = { { (cyg_uint8*)CYG_DEV_SERIAL_BASE_A, 1000, CYGNUM_HAL_INTERRUPT_SIU_IRQ1}, { (cyg_uint8*)CYG_DEV_SERIAL_BASE_B, 1000, CYGNUM_HAL_INTERRUPT_SIU_IRQ1} }; static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_bool res; CYGARC_HAL_SAVE_GP(); delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint8 ier; int ret = 0; CYGARC_HAL_SAVE_GP(); switch (__func) { case __COMMCTL_IRQ_ENABLE: HAL_INTERRUPT_UNMASK(chan->isr_vector); HAL_INTERRUPT_SET_LEVEL(chan->isr_vector, 1); HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); ier |= SIO_IER_ERDAI; HAL_WRITE_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); irq_state = 1; break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_INTERRUPT_MASK(chan->isr_vector); HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); ier &= ~SIO_IER_ERDAI; HAL_WRITE_UINT8(chan->base+CYG_DEV_SERIAL_IER, ier); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint8 _iir; int res = 0; CYGARC_HAL_SAVE_GP(); HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_IIR, _iir); _iir &= SIO_IIR_ID_MASK; *__ctrlc = 0; if ( ISR_Rx == _iir ) { cyg_uint8 c, lsr; HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_LSR, lsr); if (lsr & SIO_LSR_DR) { HAL_READ_UINT8(chan->base+CYG_DEV_SERIAL_RBR, c); if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; } // Acknowledge the interrupt HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector); res = CYG_ISR_HANDLED; } CYGARC_HAL_RESTORE_GP(); return res; } static void cyg_hal_plf_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Disable interrupts. HAL_INTERRUPT_MASK(channels[0].isr_vector); HAL_INTERRUPT_MASK(channels[1].isr_vector); // Init channels init_serial_channel(&channels[0]); init_serial_channel(&channels[1]); // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Set channel 1 CYGACC_CALL_IF_SET_CONSOLE_COMM(1); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[1]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } //============================================================================= // LCD driver //============================================================================= // The LCD driver is only used by the new vector code. Cannot be used // by the old compatibility cruft. // FEMA 162B 16 character x 2 line LCD // base addresses and register offsets * #define MBD_BASE 0 #define LCD_BASE (MBD_BASE + 0xEB00007) #define LCD_DATA 0x00 // read/write lcd data #define LCD_STAT 0x08 // read lcd busy status #define LCD_CMD 0x08 // write lcd command // status register bit definitions #define LCD_STAT_BUSY 0x80 // 1 = display busy #define LCD_STAT_ADD 0x7F // bits 0-6 return current display address // command register definitions #define LCD_CMD_RST 0x01 // clear entire display and reset display address #define LCD_CMD_HOME 0x02 // reset display address and reset any shifting #define LCD_CMD_ECL 0x04 // move cursor left one position on next data write #define LCD_CMD_ESL 0x05 // shift display left one position on next data write #define LCD_CMD_ECR 0x06 // move cursor right one position on next data write #define LCD_CMD_ESR 0x07 // shift display right one position on next data write #define LCD_CMD_DOFF 0x08 // display off, cursor off, blinking off #define LCD_CMD_BL 0x09 // blink character at current cursor position #define LCD_CMD_CUR 0x0A // enable cursor on #define LCD_CMD_DON 0x0C // turn display on #define LCD_CMD_CL 0x10 // move cursor left one position #define LCD_CMD_SL 0x14 // shift display left one position #define LCD_CMD_CR 0x18 // move cursor right one position #define LCD_CMD_SR 0x1C // shift display right one position #define LCD_CMD_MODE 0x38 // sets 8 bits, 2 lines, 5x7 characters #define LCD_CMD_ACG 0x40 // bits 0-5 sets the character generator address #define LCD_CMD_ADD 0x80 // bits 0-6 sets the display data address to line 1 + // LCD status values #define LCD_OK 0x00 #define LCD_ERR 0x01 #define LCD_LINE0 0x00 #define LCD_LINE1 0x40 #define LCD_LINE_LENGTH 16 static char lcd_line0[LCD_LINE_LENGTH+1]; static char lcd_line1[LCD_LINE_LENGTH+1]; static char *lcd_line[2] = { lcd_line0, lcd_line1 }; static int lcd_curline = 0; static int lcd_linepos = 0; static void lcd_dis(int add, char *s, cyg_uint8* base); static void init_lcd_channel(cyg_uint8* base) { cyg_uint8 stat; int i; // wait for not busy // Note: It seems that the LCD isn't quite ready to process commands // when it clears the BUSY flag. Reading the status address an extra // time seems to give it enough breathing room. do { HAL_READ_UINT8(base+LCD_STAT, stat); } while (stat & LCD_STAT_BUSY); HAL_READ_UINT8(base+LCD_STAT, stat); // configure the lcd for 8 bits/char, 2 lines // and 5x7 dot matrix HAL_WRITE_UINT8(base+LCD_CMD, LCD_CMD_MODE); // wait for not busy do { HAL_READ_UINT8(base+LCD_STAT, stat); } while (stat & LCD_STAT_BUSY); HAL_READ_UINT8(base+LCD_STAT, stat); // turn the LCD display on HAL_WRITE_UINT8(base+LCD_CMD, LCD_CMD_DON); lcd_curline = 0; lcd_linepos = 0; for( i = 0; i < LCD_LINE_LENGTH; i++ ) lcd_line[0][i] = lcd_line[1][i] = ' '; lcd_line[0][LCD_LINE_LENGTH] = lcd_line[1][LCD_LINE_LENGTH] = 0; lcd_dis(LCD_LINE0, lcd_line[0], base); lcd_dis(LCD_LINE1, lcd_line[1], base); } // this routine writes the string to the LCD // display after setting the address to add static void lcd_dis(int add, char *s, cyg_uint8* base) { cyg_uint8 stat; int i; // wait for not busy (see Note in hal_diag_init above) do { HAL_READ_UINT8(base+LCD_STAT, stat); } while (stat & LCD_STAT_BUSY); HAL_READ_UINT8(base+LCD_STAT, stat); // write the address HAL_WRITE_UINT8(base+LCD_CMD, (LCD_CMD_ADD + add)); // write the string out to the display stopping when we reach 0 for (i = 0; *s != '\0'; i++) { // wait for not busy do { HAL_READ_UINT8(base+LCD_STAT, stat); } while (stat & LCD_STAT_BUSY); HAL_READ_UINT8(base+LCD_STAT, stat); // write the data HAL_WRITE_UINT8(base+LCD_DATA, *s++); } } void cyg_hal_plf_lcd_putc(void* __ch_data, cyg_uint8 c) { cyg_uint8* base = (cyg_uint8*)__ch_data; unsigned long __state; int i; CYGARC_HAL_SAVE_GP(); // ignore CR if( c == '\r' ) return; HAL_DISABLE_INTERRUPTS(__state); if( c == '\n' ) { lcd_dis(LCD_LINE0, &lcd_line[lcd_curline^1][0], base); lcd_dis(LCD_LINE1, &lcd_line[lcd_curline][0], base); // Do a line feed lcd_curline ^= 1; lcd_linepos = 0; for( i = 0; i < LCD_LINE_LENGTH; i++ ) lcd_line[lcd_curline][i] = ' '; HAL_RESTORE_INTERRUPTS(__state); return; } // Only allow to be output if there is room on the LCD line if( lcd_linepos < LCD_LINE_LENGTH ) lcd_line[lcd_curline][lcd_linepos++] = c; HAL_RESTORE_INTERRUPTS(__state); } cyg_uint8 cyg_hal_plf_lcd_getc(void* __ch_data) { return 0; } static void cyg_hal_plf_lcd_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) cyg_hal_plf_lcd_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_lcd_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) *__buf++ = cyg_hal_plf_lcd_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } static int cyg_hal_plf_lcd_control(void *__ch_data, __comm_control_cmd_t __func, ...) { // Do nothing (yet). return 0; } static void cyg_hal_plf_lcd_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Init channel init_lcd_channel((cyg_uint8*)LCD_BASE); // Setup procs in the vector table // Set channel 2 CYGACC_CALL_IF_SET_CONSOLE_COMM(2); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, LCD_BASE); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_lcd_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_lcd_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_lcd_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_lcd_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_lcd_control); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } //============================================================================= // Compatibility with older stubs //============================================================================= #ifndef CYGSEM_HAL_VIRTUAL_VECTOR_DIAG #if defined(CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) #include <cyg/hal/hal_stub.h> // CYG_HAL_GDB_ENTER_CRITICAL_IO_REGION #endif //----------------------------------------------------------------------------- // Assumption: all diagnostic output must be GDB packetized unless // this is a configuration for a stand-alone ROM system. #if defined(CYG_HAL_STARTUP_ROM) && !defined(CYGSEM_HAL_ROM_MONITOR) # define HAL_DIAG_USES_HARDWARE #endif #if (CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL == 0) # define __BASE ((cyg_uint8*)CYG_DEV_SERIAL_BASE_A) #elif (CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL == 1) # define __BASE ((cyg_uint8*)CYG_DEV_SERIAL_BASE_B) #else # error "Cannot use LCD" #endif static channel_data_t channel = { __BASE, 0, 0}; #ifdef HAL_DIAG_USES_HARDWARE void hal_diag_init(void) { init_serial_channel(&channel); } void hal_diag_write_char(char __c) { cyg_hal_plf_serial_putc(&channel, __c); } void hal_diag_read_char(char *c) { *c = cyg_hal_plf_serial_getc(&channel); } #else // ifdef HAL_DIAG_USES_HARDWARE // Initialize diag port void hal_diag_init(void) { // Init devices init_serial_channel(&channel); } void hal_diag_write_char_serial( char c ) { unsigned long __state; HAL_DISABLE_INTERRUPTS(__state); cyg_hal_plf_serial_putc(&channel, c); HAL_RESTORE_INTERRUPTS(__state); } void hal_diag_read_char(char *c) { *c = cyg_hal_plf_serial_getc(&channel); } void hal_diag_write_char(char c) { static char line[100]; static int pos = 0; // No need to send CRs if( c == '\r' ) return; line[pos++] = c; if( c == '\n' || pos == sizeof(line) ) { CYG_INTERRUPT_STATE old; // Disable interrupts. This prevents GDB trying to interrupt us // while we are in the middle of sending a packet. The serial // receive interrupt will be seen when we re-enable interrupts // later. #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_ENTER_CRITICAL_IO_REGION(old); #else HAL_DISABLE_INTERRUPTS(old); #endif while(1) { char c1; static char hex[] = "0123456789ABCDEF"; cyg_uint8 csum = 0; int i; hal_diag_write_char_serial('$'); hal_diag_write_char_serial('O'); csum += 'O'; for( i = 0; i < pos; i++ ) { char ch = line[i]; char h = hex[(ch>>4)&0xF]; char l = hex[ch&0xF]; hal_diag_write_char_serial(h); hal_diag_write_char_serial(l); csum += h; csum += l; } hal_diag_write_char_serial('#'); hal_diag_write_char_serial(hex[(csum>>4)&0xF]); hal_diag_write_char_serial(hex[csum&0xF]); // Wait for the ACK character '+' from GDB here and handle // receiving a ^C instead. hal_diag_read_char(&c1); if( c1 == '+' ) break; // a good acknowledge #ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT if( 3 == c1 ) { // Ctrl-C: breakpoint. cyg_hal_gdb_interrupt( (target_register_t)__builtin_return_address(0)); break; } #endif // otherwise, loop round again } pos = 0; // And re-enable interrupts #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_LEAVE_CRITICAL_IO_REGION(old); #else HAL_RESTORE_INTERRUPTS(old); #endif } } #endif // ifdef HAL_DIAG_USES_HARDWARE #endif // CYGSEM_HAL_VIRTUAL_VECTOR_DIAG //----------------------------------------------------------------------------- // End of hal_diag.c
Go to most recent revision | Compare with Previous | Blame | View Log