URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [powerpc/] [mpc8xx/] [v2_0/] [tests/] [intr0.c] - Rev 174
Compare with Previous | Blame | View Log
//================================================================= // // intr0.c // // Interrupt test 0 // //================================================================= //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): jskov // Contributors: jskov, gthomas // Date: 1998-12-01 // Description: Simple test of MPC860 interrupt handling when the // kernel has not been configured. Uses timer interrupts. // Options: //####DESCRIPTIONEND#### // #define DEBUG_PRINTFS #ifdef DEBUG_PRINTFS #include <cyg/infra/diag.h> #endif #include <pkgconf/hal.h> #define CYGARC_HAL_COMMON_EXPORT_CPU_MACROS #include <cyg/hal/ppc_regs.h> #include <cyg/hal/hal_intr.h> #include <cyg/infra/testcase.h> #ifndef CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN #ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE #undef CHECK #define CHECK(b) CYG_TEST_CHECK(b,#b) // Can't rely on Cyg_Interrupt class being defined. #define Cyg_InterruptHANDLED 1 // This is the period between interrupts, measured in decrementer ticks. // Period must be longer than the time required for setting up all the // interrupt handlers. #define PIT_PERIOD 5000 #ifdef CYGPKG_HAL_POWERPC_MBX #define TB_PERIOD (PIT_PERIOD*384) // PTA period is 15.36 uS #else // This value is based on the relationship between the PIT clock // and the TB clock. This is set in the SCCR register and the // default value seems to be that the TB runs 128 times faster // than the PIT. Of course, this doesn't match the documentation :-( // Also, the basis for this is hardware strappable (set at reset time) // so the value chosen below is a guess which works on the 860 platforms // we have seen, other than the Motorola MBX860. #define TB_PERIOD (PIT_PERIOD*128) // assuming 512/4 divisors #endif #define PIT_IRQ_LEVEL 4 #define PIT_IRQ CYGNUM_HAL_INTERRUPT_SIU_LVL4 #define TB_IRQ_LEVEL 5 #define TB_IRQ CYGNUM_HAL_INTERRUPT_SIU_LVL5 #define ID_RTC_SEC 12345 #define ID_RTC_ALR 23451 #define ID_PIT 34512 #define ID_TBA 45123 #define ID_TBB 51234 volatile cyg_uint32 count = 0; // Time/PERIOD 0 1 2 3 4 5 6 7 8 9 10 // Interrupt PIT TBA PIT PIT TBB PIT PIT // pit_count 0 0 0 1 1 2 2 3 3 4 4 // count 0 0 1 3 4 4 5 40 41 42 static cyg_uint32 count_verify_table[] = {1, 4, 5, 41, 42}; static int pit_count = 0; // These are useful for debugging: static cyg_uint32 count_actual_table[] = { -1, -1, -1, -1, -1}; static cyg_uint32 tbr_actual_table[] = { -1, -1, -1, -1, -1}; // Periodic timer ISR. Should be executing 5 times. static cyg_uint32 isr_pit(CYG_ADDRWORD vector, CYG_ADDRWORD data) { cyg_uint32 verify_value; CYG_UNUSED_PARAM(CYG_ADDRWORD, data); CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_PIT == vector, "Wrong vector!"); CYG_ASSERT (ID_PIT == data, "Wrong data!"); HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_PIT); count++; count_actual_table[pit_count] = count; { cyg_uint32 tbl; CYGARC_MFTB (TBL_R, tbl); tbr_actual_table[pit_count] = tbl; } verify_value = count_verify_table[pit_count++]; #ifdef DEBUG_PRINTFS diag_printf( "ISR_PIT executed %d of 5\n", pit_count ); #endif CYG_ASSERT (count == verify_value, "Count wrong!"); // End of test when count is 42. Mask interrupts and print PASS text. if (42 <= count || 5 == pit_count) { HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_PIT); HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_TB_A); HAL_INTERRUPT_MASK (CYGNUM_HAL_INTERRUPT_SIU_TB_B); #ifdef DEBUG_PRINTFS diag_printf( "INFO: Actual counts: %d %d %d %d %d\n", count_actual_table[0], count_actual_table[1], count_actual_table[2], count_actual_table[3], count_actual_table[4] ); diag_printf( "INFO: Actuals tbrs: %d %d %d %d %d\n", tbr_actual_table[0], tbr_actual_table[1], tbr_actual_table[2], tbr_actual_table[3], tbr_actual_table[4] ); #endif if (5 == pit_count) { #ifndef CYGPKG_HAL_POWERPC_MBX if (42 != count) { #else if ((42 != count) && (49 != count)) { #endif CYG_TEST_INFO("TB/PIT ratio does not match"); } } #ifndef CYGPKG_HAL_POWERPC_MBX if (42 == count && 5 == pit_count) #else if (((42 == count) || (49 == count)) && (5 == pit_count)) #endif CYG_TEST_PASS_FINISH("Intr 0 OK"); else CYG_TEST_FAIL_FINISH("Intr 0 Failed."); } return Cyg_InterruptHANDLED; } // TimeBase A ISR. Should be executing once. static cyg_uint32 isr_tba(CYG_ADDRWORD vector, CYG_ADDRWORD data) { CYG_UNUSED_PARAM(CYG_ADDRWORD, data); CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_TB_A == vector, "Wrong vector!"); CYG_ASSERT (ID_TBA == data, "Wrong data!"); HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_TB_A); count = count * 3; #ifdef DEBUG_PRINTFS diag_printf( "ISR_TBA executed, count now %d\n", count ); #endif return Cyg_InterruptHANDLED; } // TimeBase B ISR. Should be executing once. static cyg_uint32 isr_tbb(CYG_ADDRWORD vector, CYG_ADDRWORD data) { CYG_UNUSED_PARAM(CYG_ADDRWORD, data); CYG_ASSERT (CYGNUM_HAL_INTERRUPT_SIU_TB_B == vector, "Wrong vector!"); CYG_ASSERT (ID_TBB == data, "Wrong data!"); HAL_INTERRUPT_ACKNOWLEDGE (CYGNUM_HAL_INTERRUPT_SIU_TB_B); count = count * 8; #ifdef DEBUG_PRINTFS diag_printf( "ISR_TBB executed, count now %d\n", count ); #endif return Cyg_InterruptHANDLED; } void intr0_main( void ) { #ifndef CYGPKG_HAL_POWERPC_MBX unsigned long sccr = *(volatile unsigned long *)CYGARC_REG_IMM_SCCR; #endif int tb_period = TB_PERIOD; CYG_TEST_INIT(); #ifndef CYGPKG_HAL_POWERPC_MBX #ifdef DEBUG_PRINTFS diag_printf("sccr = %x\n", sccr); #endif if (sccr & 0x01000000) tb_period /= 4; #endif #if 0 // The A.3 revision of the CPU I'm using at the moment generates a // machine check exception when writing to IMM_RTCSC. Smells a // bit like the "SIU4. Spurious External Bus Transaction Following // PLPRCR Write." CPU errata. Have to find out for sure. Run real // time clock interrupts on level 0 { // Still to do. } #endif // Run periodic timer interrupt on level 1 { cyg_uint16 piscr; // Attach pit arbiter. HAL_INTERRUPT_ATTACH (PIT_IRQ, &hal_arbitration_isr_pit, ID_PIT, 0); HAL_INTERRUPT_UNMASK (PIT_IRQ); // Attach pit isr. HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_PIT, &isr_pit, ID_PIT, 0); HAL_INTERRUPT_SET_LEVEL (CYGNUM_HAL_INTERRUPT_SIU_PIT, PIT_IRQ_LEVEL); HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_PIT); // Set period. HAL_WRITE_UINT32 (CYGARC_REG_IMM_PITC, (2*PIT_PERIOD) << CYGARC_REG_IMM_PITC_COUNT_SHIFT); #ifdef DEBUG_PRINTFS diag_printf( "PIT set to %d\n", 2*PIT_PERIOD ); #endif // Enable. HAL_READ_UINT16 (CYGARC_REG_IMM_PISCR, piscr); piscr |= CYGARC_REG_IMM_PISCR_PTE; HAL_WRITE_UINT16 (CYGARC_REG_IMM_PISCR, piscr); } // Run timebase interrupts on level 2 { cyg_uint16 tbscr; cyg_uint32 tbl; // Attach tb arbiter. HAL_INTERRUPT_ATTACH (TB_IRQ, &hal_arbitration_isr_tb, ID_TBA, 0); HAL_INTERRUPT_UNMASK (TB_IRQ); // Attach tb isrs. HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_TB_A, &isr_tba, ID_TBA, 0); HAL_INTERRUPT_ATTACH (CYGNUM_HAL_INTERRUPT_SIU_TB_B, &isr_tbb, ID_TBB, 0); HAL_INTERRUPT_SET_LEVEL (CYGNUM_HAL_INTERRUPT_SIU_TB_A, TB_IRQ_LEVEL); HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_TB_A); HAL_INTERRUPT_UNMASK (CYGNUM_HAL_INTERRUPT_SIU_TB_B); // Set reference A & B registers. CYGARC_MFTB (TBL_R, tbl); tbl += tb_period*3; HAL_WRITE_UINT32 (CYGARC_REG_IMM_TBREF0, tbl); tbl += tb_period*4; HAL_WRITE_UINT32 (CYGARC_REG_IMM_TBREF1, tbl); #ifdef DEBUG_PRINTFS diag_printf( "TB initial %d, !1 %d !2 %d\n", tbl - 7*tb_period, tbl - 4*tb_period, tbl - 0*tb_period ); #endif // Enable. HAL_READ_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr); tbscr |= (CYGARC_REG_IMM_TBSCR_REFA | CYGARC_REG_IMM_TBSCR_REFB | CYGARC_REG_IMM_TBSCR_TBE); HAL_WRITE_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr); tbscr |= CYGARC_REG_IMM_TBSCR_REFAE | CYGARC_REG_IMM_TBSCR_REFBE; HAL_WRITE_UINT16 (CYGARC_REG_IMM_TBSCR, tbscr); } HAL_ENABLE_INTERRUPTS(); for (;;); } externC void cyg_start( void ) { intr0_main(); } #else // ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE externC void cyg_start( void ) { CYG_TEST_INIT(); CYG_TEST_PASS_FINISH("N/A: CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE disabled"); } #endif // ifdef CYGSEM_HAL_POWERPC_MPC860_CPM_ENABLE #else externC void cyg_start( void ) { CYG_TEST_INIT(); CYG_TEST_PASS_FINISH("N/A: CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN enabled"); } #endif // ifdef CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN // EOF intr0.c