URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [powerpc/] [ts1000/] [v2_0/] [src/] [ts1000.S] - Rev 531
Go to most recent revision | Compare with Previous | Blame | View Log
##=============================================================================
##
## ts1000.S
##
## TS1000 board hardware setup
##
##=============================================================================
#####ECOSGPLCOPYRIGHTBEGIN####
## -------------------------------------------
## This file is part of eCos, the Embedded Configurable Operating System.
## Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
## Copyright (C) 2002 Gary Thomas
##
## eCos is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free
## Software Foundation; either version 2 or (at your option) any later version.
##
## eCos is distributed in the hope that it will be useful, but WITHOUT ANY
## WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License along
## with eCos; if not, write to the Free Software Foundation, Inc.,
## 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
##
## As a special exception, if other files instantiate templates or use macros
## or inline functions from this file, or you compile this file and link it
## with other works to produce a work based on this file, this file does not
## by itself cause the resulting work to be covered by the GNU General Public
## License. However the source code for this file must still be made available
## in accordance with section (3) of the GNU General Public License.
##
## This exception does not invalidate any other reasons why a work based on
## this file might be covered by the GNU General Public License.
##
## Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
## at http://sources.redhat.com/ecos/ecos-license/
## -------------------------------------------
#####ECOSGPLCOPYRIGHTEND####
##=============================================================================
#######DESCRIPTIONBEGIN####
##
## Author(s): hmt
## Contributors:hmt, gthomas
## Date: 1999-06-08
## Purpose: TS1000 board hardware setup
## Description: This file contains any code needed to initialize the
## hardware on an Allied Telesyn TS1000 (PPC855T) board.
##
######DESCRIPTIONEND####
##
##=============================================================================
#include <pkgconf/hal.h>
#include <cyg/hal/arch.inc> /* register symbols et al */
#include <cyg/hal/ppc_regs.h> /* on-chip resource layout, special */
/* registers, IMM layout... */
#include <cyg/hal/quicc/ppc8xx.h> /* more of the same */
#------------------------------------------------------------------------------
# this is controlled with one define for tidiness:
# (and it is undefined by default)
//#define CYGPRI_RAM_START_PROGRAMS_UPMS
#if defined(CYG_HAL_STARTUP_ROM) \
|| defined(CYG_HAL_STARTUP_ROMRAM) \
|| defined(CYGPRI_RAM_START_PROGRAMS_UPMS)
# define CYGPRI_DO_PROGRAM_UPMS
#endif
/* The intention is that we only set up the UPMs in ROM start, be it actual
* ROM application start or Stub ROMs that we built from the same sources.
*
* The alternative approach - in which we have reliability doubts - is to
* program the UPMs with *old* timing data in StubROM start, then
* *reprogram* them with *new* timing data in RAM start - and of course
* program with *new* timing data in plain ROM application start.
* (Re-programming from new to new timing data fails - hence the suspicion
* of reprogramming _at_all_, hence this private configuration)
*
* With CYGPRI_RAM_START_PROGRAMS_UPMS left undefined, the former behaviour
* - programming the UPMs exactly once - is obtained. Define it to get the
* latter, untrusted behaviour.
*/
#------------------------------------------------------------------------------
//
// Macros to build BR/OR registers
//
#define _BR(_reg,_BA,_PS,_MS,_V) \
.long CYGARC_REG_IMM_BASE+_reg, ((_BA&0xFFFF8000)|(_PS<<10)|(_MS<<6)|_V)
// Port size
#define _PS_32 0x00 // 32 bits
#define _PS_8 0x01 // 8 bits
#define _PS_16 0x02 // 16 bits
// Machine select
#define _MS_GPCM 0x00
#define _MS_UPMA 0x02
#define _MS_UPMB 0x03
#define _OR_GPCM(_reg,_AM,_CSNT,_ACS,_BIH,_SCY,_SETA,_TRLX,_EHTR) \
.long CYGARC_REG_IMM_BASE+_reg, ((_AM&0xFFFF8000)|(_CSNT<<11)|(_ACS<<9)|(_BIH<<8)|(_SCY<<4)|(_SETA<<3)|(_TRLX<<2)|(_EHTR<<1))
// GPCM - Chip select negation time
#define _CSNT_0 0
#define _CSNT_1 1
// GPCM - Address setup time
#define _ACS_0 0x00 // !CS asserted with address lines
#define _ACS_4 0x02 // !CS asserted 1/4 clock after address lines
#define _ACS_2 0x03 // !CS asserted 1/2 clock after address lines
// Burst Inhibit
#define _BIH_0 0 // Bursting supported
#define _BIH_1 1 // Bursting disabled
// GPCM - Address setup times
#define _SCY_0 0x0 // No additional wait states
#define _SCY_1 0x1 // 1 additional wait states
#define _SCY_2 0x2 // 2 additional wait states
#define _SCY_3 0x3 // 3 additional wait states
#define _SCY_4 0x4 // 4 additional wait states
#define _SCY_5 0x5 // 5 additional wait states
#define _SCY_6 0x6 // 6 additional wait states
#define _SCY_7 0x7 // 7 additional wait states
#define _SCY_8 0x8 // 8 additional wait states
#define _SCY_9 0x9 // 9 additional wait states
#define _SCY_10 0xA // 10 additional wait states
#define _SCY_11 0xB // 11 additional wait states
#define _SCY_12 0xC // 12 additional wait states
#define _SCY_13 0xD // 13 additional wait states
#define _SCY_14 0xE // 14 additional wait states
#define _SCY_15 0xF // 15 additional wait states
// GPCM - external transfer acknowledge
#define _SETA_0 0 // No external acknowledge
#define _SETA_1 1 // External acknowledge
// GPCM - relaxed timing
#define _TRLX_0 0 // Strict timing
#define _TRLX_1 1 // Relaxed timing (wait states doubled)
// GPCM - external hold time
#define _EHTR_0 0 // Strict timing
#define _EHTR_1 1 // One wait state needed when switching banks
#define _OR_UPM(_reg,_AM,_SAM,_G5LA,_G5LS,_BIH)\
.long CYGARC_REG_IMM_BASE+_reg,((_AM&0xFFFF8000)|(_SAM<<11)|(_G5LA<<10)|(_G5LS<<9)|(_BIH<<8))
#define _SAM_0 0 // Address lines are not multiplexed
#define _SAM_1 1 // Address lines are multiplexed by controller
#define _G5LA_0 0 // Use GPLB5 for GPL5
#define _G5LA_1 1 // Use GPLA5 for GPL5
#define _G5LS_0 0 // !GPL5 asserted on low edge
#define _G5LS_1 1 // !GPL5 asserted on high edge
#------------------------------------------------------------------------------
//
// PTA field is (System Clock in MHz * Refresh rate in us) / Prescale
// e.g. ((14*3.6864)*62.5)/32 => 100.8 => 101
//
// Since the processor is clocked using the EXTCLK signal, the PLL
// should always run 1-1
//
#define PLPRCR_PTX 0x000
#define MAMR_PTA 98
//
// Special MPC8xx cache control
//
#define CACHE_UNLOCKALL 0x0a00
#define CACHE_DISABLE 0x0400
#define CACHE_INVALIDATEALL 0x0c00
#define CACHE_ENABLE 0x0200
#define CACHE_ENABLEBIT 0x8000
#define CACHE_FORCEWRITETHROUGH 0x0100
#define CACHE_NOWRITETHROUGH 0x0300
#define CACHE_CLEAR_LE_SWAP 0x0700
#------------------------------------------------------------------------------
// LED macro uses r23, r25: r4 assumed to point to IMMR
#define LED( x ) \
lhz r25,PADAT(r4) ; \
andi. r25,r25,(~0x3C&0xFFFF) ; \
ori r25,r25,(x<<2) ; \
sth r25,PADAT(r4) ; \
#------------------------------------------------------------------------------
FUNC_START( hal_hardware_init )
mflr r30 // Save original return address
# Throughout this routine, r4 is the base address of the control
# registers. r3 and r5 are scratch in general.
lwi r4,CYGARC_REG_IMM_BASE # base address of control registers
mtspr CYGARC_REG_IMMR,r4
//
// Set up GPIO port A - used to drive LEDs.
//
lhz r3,PAODR(r4) // paodr &= ~0x803C
andi. r3,r3,(~0x803C&0xFFFF)
sth r3,PAODR(r4)
lhz r3,PADIR(r4) // padir |= 0x803C -- all outputs
ori r3,r3,0x803C
sth r3,PADIR(r4)
lhz r3,PAPAR(r4) // papar &= ~0x803C
andi. r3,r3,(~0x803C&0xFFFF)
sth r3,PAPAR(r4)
#ifdef CYG_HAL_STARTUP_RAM
lhz r3,PADAT(r4) // Turn off all LEDs, preserve PHY state
ori r3,r3,0x003C
#else
lwi r3,0x803C // Turn off all LEDS, reset PHY
#endif
sth r3,PADAT(r4)
LED( 0 ) # turn all LEDs off
# DATA CACHE
mfspr r3,CYGARC_REG_DC_CST /* clear error bits */
lis r3,CACHE_UNLOCKALL
sync
mtspr CYGARC_REG_DC_CST,r3 /* unlock all lines */
lis r3,CACHE_INVALIDATEALL
sync
mtspr CYGARC_REG_DC_CST,r3 /* invalidate all lines */
lis r3,CACHE_DISABLE
sync
mtspr CYGARC_REG_DC_CST,r3 /* disable */
lis r3,CACHE_FORCEWRITETHROUGH
sync
mtspr CYGARC_REG_DC_CST,r3 /* set force-writethrough mode */
lis r3,CACHE_CLEAR_LE_SWAP
sync
mtspr CYGARC_REG_DC_CST,r3 /* clear little-endian swap mode */
# INSTRUCTION CACHE (no writeback modes)
mfspr r3,CYGARC_REG_IC_CST /* clear error bits */
lis r3,CACHE_UNLOCKALL
mtspr CYGARC_REG_IC_CST,r3 /* unlock all lines */
isync
lis r3,CACHE_INVALIDATEALL
mtspr CYGARC_REG_IC_CST,r3 /* invalidate all lines */
isync
lis r3,CACHE_DISABLE
mtspr CYGARC_REG_IC_CST,r3 /* disable */
isync
sync
LED( 0x01 )
#ifdef CYG_HAL_STARTUP_ROMRAM
// Need to set the PC into the FLASH (ROM) before the address map changes
lwi r3,10f
lwi r5,0xFE000000
or r3,r3,r5
mtctr r3
bctr
10:
#endif
/*
* SIU Initialization.
*/
lwi r3,0x00610400
stw r3,SIUMCR(r4)
/*
* Enable bus monitor. Disable Watchdog timer.
*/
lwi r3,0xffffff88
stw r3,SYPCR(r4)
/*
* Clear REFA & REFB. Enable but freeze timebase.
*/
lwi r3,0x0000 // FIXME: should this be 0x0000 or 0x00C2
sth r3,TBSCR(r4)
/*
* Unlock some RTC registers (see section 5.11.2)
*/
lwi r3,0x55ccaa33
stw r3,RTCSCK(r4)
stw r3,RTCK(r4)
stw r3,RTSECK(r4)
stw r3,RTCALK(r4)
/*
* Clear SERC & ALR. RTC runs on freeze. Enable RTC.
*/
li r3,0x0000 // FIXME: should this be 0x0000 or 0x00C3
sth r3,RTCSC(r4)
/*
* Clear periodic timer interrupt status.
* Enable periodic timer and stop it on freeze.
*/
li r3,0x0001 // FIXME: should this be 0x0001 or 0x0083
sth r3,PISCR(r4)
LED( 0x02 )
/*
* Perform UPM programming by writing to its 64 RAM locations.
* Note that UPM initialization must be done before the Bank Register
* initialization. Otherwise, system may hang when writing to Bank
* Registers in certain cases.
*/
#ifdef CYGPRI_DO_PROGRAM_UPMS
lwi r5,__upmtbl_start
lwi r6,__upmtbl_end
sub r7,r6,r5 /* size of table */
srawi r7,r7,2 /* in words */
lwi r6,0x00800000 /* Command - OP=Write, UPMB, MAD=0 */
or r7,r7,r6
1:
lwz r3,0(r5) /* get data from table */
stw r3,MDR(r4) /* store the data to MD register */
stw r6,MCR(r4) /* issue command to MCR register */
addi r5,r5,4 /* next entry in the table */
addi r6,r6,1 /* next MAD address */
cmpw r6,r7 /* done yet ? */
blt 1b
#endif // CYGPRI_DO_PROGRAM_UPMS
LED( 0x03 )
/*
* Set refresh timer prescaler to divide by 8.
*/
li r3,PTP_DIV32
sth r3,MPTPR(r4)
/*
* See Table 15-16 MPC860 User's Manual.
*
// Set the value of Machine A Mode Register (MAMR) to $5E802114.
// Field PTA (bits 0-7) = 94
// Field PTAE (bit 8) = 1
// Field AMA (bits 9-11) = 0
// Field Reserved (bit 12) = 0
// Field DSA (bits 13-14) = 0
// Field Reserved (bit 15) = 0
// Field G0CLA (bits 16-18) = 1
// Field GPL_A4DIS (bit 19) = 0
// Field RLFA (bits 20-23) = 1
// Field WLFA (bits 24-27) = 1
// Field TLFA (bits 28-31) = 4
*/
lwi r3,0x00802114|(MAMR_PTA<<24)
stw r3,MAMR(r4)
stw r3,MBMR(r4)
/*
* Base Register initialization.
*/
//
// Memory map (device addressing) layout
//
bl 10f
mc_regs:
// CS0 - FLASH - 0xFE000000..0xFE7FFFFF, 9 wait states, no bursting
_OR_GPCM(OR0, 0xFF800000, _CSNT_1, _ACS_2, \
_BIH_1, _SCY_9, _SETA_0, _TRLX_1, _EHTR_1)
_BR(BR0, 0xFE000000, _PS_16, _MS_GPCM, 1)
// CS1 - DRAM - 0x00000000..0x00FFFFFF,
_BR(BR1, 0x00000000, _PS_32, _MS_UPMB, 1)
_OR_UPM(OR1, 0xFF000000, _SAM_1, _G5LA_0, _G5LS_0, _BIH_0)
// CS2 - FPGA Loading - 0x80020000..0x80027FFF, 7 wait states, no bursting
_BR(BR2, 0x80020000, _PS_32, _MS_GPCM, 1)
_OR_GPCM(OR2, 0xFFFF8000, _CSNT_1, _ACS_2, \
_BIH_1, _SCY_7, _SETA_0, _TRLX_1, _EHTR_1)
// CS3 - FPGA - 0x80030000..0x80037FFF, 7 wait states, no bursting
_OR_GPCM(OR3, 0xFFFF8000, _CSNT_1, _ACS_2, \
_BIH_1, _SCY_7, _SETA_0, _TRLX_1, _EHTR_1)
_BR(BR3, 0x80030000, _PS_32, _MS_GPCM, 1)
// CS4 - DS3 - 0x80040000..0x80047FFF, 7 wait states, no bursting
_OR_GPCM(OR4, 0xFFFF8000, _CSNT_1, _ACS_2, \
_BIH_1, _SCY_7, _SETA_0, _TRLX_1, _EHTR_1)
_BR(BR4, 0x80040000, _PS_32, _MS_GPCM, 1)
// CS5 - DS1 - 0x80050000..0x80057FFF, 7 wait states, no bursting
_OR_GPCM(OR5, 0xFFFF8000, _CSNT_1, _ACS_2, \
_BIH_1, _SCY_7, _SETA_0, _TRLX_1, _EHTR_1)
_BR(BR5, 0x80050000, _PS_32, _MS_GPCM, 1)
.long 0 // End of table
//
// Program memory controller registers (using table above)
//
10: mflr r3 // Points to table
subi r3,r3,4
20: lwzu r5,4(r3) // Next address
cmpi 0,r5,0
beq 30f // done?
lwzu r6,4(r3) // value
lwzu r7,4(r3) // second part of address/value pair
lwzu r8,4(r3)
stw r6,0(r5) // store pair in order
stw r8,0(r7)
b 20b
30:
/*
* SYSTEM CLOCK CONTROL REGISTER
// Set the value of System Clock and Reset Control Register (SCCR) to $00400000.
// Field Reserved (bit 0) = 0
// Field COM (bits 1-2) = 0
// Field Reserved (bits 3-5) = 0
// Field TBS (bit 6) = 0
// Field RTDIV (bit 7) = 0
// Field RTSEL (bit 8) = 0
// Field CRQEN (bit 9) = 1
// Field PRQEN (bit 10) = 0
// Field Reserved (bits 11-12) = 0
// Field EBDF (bits 13-14) = 0
// Field Reserved (bits 15-16) = 0
// Field DFSYNC (bits 17-18) = 0
// Field DFBRG (bits 19-20) = 0
// Field DFNL (bits 21-23) = 0
// Field DFNH (bits 24-26) = 0
// Field Reserved (bits 27-31) = 0
*/
lwi r3,0x00400000
stw r3,SCCR(r4)
LED( 0x04 )
/*
* PLL, LOW POWER, AND RESET CONTROL REGISTER
// Set the value of PLL, Low Power and Reset Control Register (PLPRCR) to $00C04000.
// Field MF (bits 0-11) = 12
// Field Reserved (bits 12-15) = 0
// Field SPLSS (bit 16) = 0
// Field TEXPS (bit 17) = 1
// Field Reserved (bit 18) = 0
// Field TMIST (bit 19) = 0
// Field Reserved (bit 20) = 0
// Field CSRC (bit 21) = 0
// Field LPM (bits 22-23) = 0
// Field CSR (bit 24) = 0
// Field LOLRE (bit 25) = 0
// Field FIOPD (bit 26) = 0
// Field Reserved (bits 27-31) = 0
*/
lwi r3,0x04000|(PLPRCR_PTX<<20)
stw r3,PLPRCR(r4)
lwi r3,0x40000
mtctr r3
10: nop
bdnz 10b
/* SDRAM Initialization Sequence, UPMB, CS1 */
li r3,0
stw r3,MAR(r4)
lwi r3,0x80802115; /* run precharge from loc 21 (0x15) */
stw r3,MCR(r4)
lwi r3,0x80802830; /* run refresh 8 times */
stw r3,MCR(r4)
lwi r3,0x22<<2; // Mode register setting
stw r3,MAR(r4)
lwi r3,0x80802116; /* run MRS pattern from loc 22 (0x16) */
stw r3,MCR(r4)
# mask interrupt sources in the SIU
lis r2,0
lwi r3,CYGARC_REG_IMM_SIMASK
stw r2,0(r3)
# set the decrementer to maxint
lwi r2,0
not r2,r2
mtdec r2
# and enable the timebase and decrementer to make sure
li r2,1 # TBEnable and not TBFreeze
lwi r3,CYGARC_REG_IMM_TBSCR
sth r2,0(r3)
LED( 0x05 )
#ifdef CYG_HAL_STARTUP_ROM
# move return address to where the ROM is
mflr r3
lwi r4,0x00FFFFFF // CAUTION!! Assumes only low 16M for ROM
and r3,r3,r4
oris r3,r3,CYGMEM_REGION_rom>>16
mtlr r3
#endif
#ifdef CYG_HAL_STARTUP_ROMRAM
// Copy image from ROM to RAM
LED(0x06)
lwi r4,0xFE000000
lwi r5,0x01FFFFFF // ROM/FLASH base
and r3,r30,r5 // segment relative
lwi r30,_hal_hardware_init_done
sub r6,r3,r30 // Absolute address
add r6,r6,r4 // FLASH address
lwi r7,0 // where to copy to
lwi r8,__ram_data_end
10: lwz r5,0(r6)
stw r5,0(r7)
addi r6,r6,4
addi r7,r7,4
cmplw r7,r8
bne 10b
#endif
LED(0x0F)
mtlr r30 // Restore original link address
blr
FUNC_END( hal_hardware_init )
#ifdef CYGPRI_DO_PROGRAM_UPMS
# -------------------------------------------------------------------------
# this table initializes the User Programmable Machine (UPM) nastiness
# in the QUICC to control DRAM timing.
__upmtbl_start:
// UPM 0x00: single read
.long 0x0f0dfc04, 0x0ffffc04, 0x00bf7c04, 0x0ff5fc00
.long 0x1ffffc05, 0xfffffc04, 0xfffffc04, 0xfffffc04
// UPM 0x08: burst read
.long 0x0f0dfc04, 0x0ffffc04, 0x00bf7c04, 0x00fffc00
.long 0x00fffc00, 0x00fffc00, 0x0ff5fc00, 0x1ffffc05
.long 0xfffffc04, 0xfffffc04, 0xfffffc04, 0xfffffc04
.long 0xfffffc04
// UPM 0x15: initial precharge cycles
.long 0x1ff5fc35
// UPM 0x16: program mode register
.long 0xefcabc34, 0x1f357c35 // 0x1fb57c35 or 0xfffffc04
// UPM 0x18: single write
.long 0x0f0dfc04, 0x0ffffc00, 0x00b77c04, 0x0ffffc04
.long 0x0ff5fc04, 0x1ffffc05, 0xfffffc04, 0xfffffc04
// UPM 0x20: burst write
.long 0x0f0dfc04, 0x0ffffc00, 0x00b77c00, 0x00fffc00
.long 0x00fffc00, 0x00fffc04, 0x0ffffc04, 0x0ff5fc04
.long 0x1ffffc05, 0xfffffc04, 0xfffffc04, 0xfffffc04
.long 0xfffffc04, 0xfffffc04, 0xfffffc04, 0xfffffc04
// UPM 0x30: refresh
.long 0x0ff5fc00, 0x0ffffc00, 0x0ffd7c80, 0x0ffffc00
.long 0x0ffffc00, 0x0ffffc80, 0x3ffffc07, 0xfffffc04
.long 0xfffffc04, 0xfffffc04, 0xfffffc04, 0xfffffc04
// UPM 0x3C: exception
.long 0xfffffc27, 0xfffffc04, 0xfffffc04, 0xfffffc04
__upmtbl_end:
#endif // CYGPRI_DO_PROGRAM_UPMS
FUNC_START(hal_ts1000_set_led)
lwi r4,CYGARC_REG_IMM_BASE # base address of control registers
lhz r5,PADAT(r4)
andi. r5,r5,(~0x3C&0xFFFF)
andi. r3,r3,0x0F
slwi r3,r3,2
or r5,r5,r3
sth r5,PADAT(r4)
lwi r5,_hold_led
stw r3,0(r5)
blr
FUNC_END(hal_ts1000_set_led)
.data
_hold_led:
.long 0
.text
FUNC_START(hal_ts1000_get_led)
lwi r5,_hold_led
lwz r3,0(r5)
blr
FUNC_END(hal_ts1000_get_led)
#------------------------------------------------------------------------------
# end of ts1000.S
Go to most recent revision | Compare with Previous | Blame | View Log