URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [sh/] [se7751/] [v2_0/] [src/] [ser16c550c.c] - Rev 322
Go to most recent revision | Compare with Previous | Blame | View Log
//============================================================================= // // ser16c550c.c // // Simple driver for the 16c550c serial controllers on the HS7729PCI board // //============================================================================= //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): dmoseley // Contributors:dmoseley, jskov // Date: 2001-03-20 // Description: Simple driver for the 16c550c serial controller // //####DESCRIPTIONEND#### // //============================================================================= #include <pkgconf/hal.h> #include <pkgconf/system.h> #include CYGBLD_HAL_PLATFORM_H #include <cyg/hal/hal_arch.h> // SAVE/RESTORE GP macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_if.h> // interface API #include <cyg/hal/hal_intr.h> // HAL_ENABLE/MASK/UNMASK_INTERRUPTS #include <cyg/hal/hal_misc.h> // Helper functions #include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED //----------------------------------------------------------------------------- // Define the serial registers. The Malta board is equipped with a 16550C // serial chip. #define SE77X9_SER_CLOCK 1846200 #define SE77X9_SER_16550_BASE_A 0x3f8 #define SER_16550_RBR 0x00 // receiver buffer register, read, dlab = 0 #define SER_16550_THR 0x00 // transmitter holding register, write, dlab = 0 #define SER_16550_DLL 0x00 // divisor latch (LS), read/write, dlab = 1 #define SER_16550_IER 0x01 // interrupt enable register, read/write, dlab = 0 #define SER_16550_DLM 0x01 // divisor latch (MS), read/write, dlab = 1 #define SER_16550_IIR 0x02 // interrupt identification reg, read, dlab = 0 #define SER_16550_FCR 0x02 // fifo control register, write, dlab = 0 #define SER_16550_AFR 0x02 // alternate function reg, read/write, dlab = 1 #define SER_16550_LCR 0x03 // line control register, read/write #define SER_16550_MCR 0x04 // modem control register, read/write #define SER_16550_LSR 0x05 // line status register, read #define SER_16550_MSR 0x06 // modem status register, read #define SER_16550_SCR 0x07 // scratch pad register // The interrupt enable register bits. #define SIO_IER_ERDAI 0x01 // enable received data available irq #define SIO_IER_ETHREI 0x02 // enable THR empty interrupt #define SIO_IER_ELSI 0x04 // enable receiver line status irq #define SIO_IER_EMSI 0x08 // enable modem status interrupt // The interrupt identification register bits. #define SIO_IIR_IP 0x01 // 0 if interrupt pending #define SIO_IIR_ID_MASK 0x0e // mask for interrupt ID bits // The line status register bits. #define SIO_LSR_DR 0x01 // data ready #define SIO_LSR_OE 0x02 // overrun error #define SIO_LSR_PE 0x04 // parity error #define SIO_LSR_FE 0x08 // framing error #define SIO_LSR_BI 0x10 // break interrupt #define SIO_LSR_THRE 0x20 // transmitter holding register empty #define SIO_LSR_TEMT 0x40 // transmitter register empty #define SIO_LSR_ERR 0x80 // any error condition // The modem status register bits. #define SIO_MSR_DCTS 0x01 // delta clear to send #define SIO_MSR_DDSR 0x02 // delta data set ready #define SIO_MSR_TERI 0x04 // trailing edge ring indicator #define SIO_MSR_DDCD 0x08 // delta data carrier detect #define SIO_MSR_CTS 0x10 // clear to send #define SIO_MSR_DSR 0x20 // data set ready #define SIO_MSR_RI 0x40 // ring indicator #define SIO_MSR_DCD 0x80 // data carrier detect // The line control register bits. #define SIO_LCR_WLS0 0x01 // word length select bit 0 #define SIO_LCR_WLS1 0x02 // word length select bit 1 #define SIO_LCR_STB 0x04 // number of stop bits #define SIO_LCR_PEN 0x08 // parity enable #define SIO_LCR_EPS 0x10 // even parity select #define SIO_LCR_SP 0x20 // stick parity #define SIO_LCR_SB 0x40 // set break #define SIO_LCR_DLAB 0x80 // divisor latch access bit // The FIFO control register #define SIO_FCR_FCR0 0x01 // enable xmit and rcvr fifos #define SIO_FCR_FCR1 0x02 // clear RCVR FIFO #define SIO_FCR_FCR2 0x04 // clear XMIT FIFO ///////////////////////////////////////// // Interrupt Enable Register #define IER_RCV 0x01 #define IER_XMT 0x02 #define IER_LS 0x04 #define IER_MS 0x08 // Line Control Register #define LCR_WL5 0x00 // Word length #define LCR_WL6 0x01 #define LCR_WL7 0x02 #define LCR_WL8 0x03 #define LCR_SB1 0x00 // Number of stop bits #define LCR_SB1_5 0x04 // 1.5 -> only valid with 5 bit words #define LCR_SB2 0x04 #define LCR_PN 0x00 // Parity mode - none #define LCR_PE 0x0C // Parity mode - even #define LCR_PO 0x08 // Parity mode - odd #define LCR_PM 0x28 // Forced "mark" parity #define LCR_PS 0x38 // Forced "space" parity #define LCR_DL 0x80 // Enable baud rate latch // Line Status Register #define LSR_RSR 0x01 #define LSR_THE 0x20 // Modem Control Register #define MCR_DTR 0x01 #define MCR_RTS 0x02 #define MCR_INT 0x08 // Enable interrupts #define MCR_AFE 0x20 // Interrupt status register #define ISR_None 0x01 #define ISR_Rx_Line_Status 0x06 #define ISR_Rx_Avail 0x04 #define ISR_Rx_Char_Timeout 0x0C #define ISR_Tx_Empty 0x02 #define IRS_Modem_Status 0x00 // FIFO control register #define FCR_ENABLE 0x01 #define FCR_CLEAR_RCVR 0x02 #define FCR_CLEAR_XMIT 0x04 #define CYG_DEV_SERIAL_BAUD_DIVISOR (SE77X9_SER_CLOCK/16/CYGNUM_HAL_VIRTUAL_VECTOR_CHANNELS_DEFAULT_BAUD) //----------------------------------------------------------------------------- #define UART_READ_UINT8(_a_, _d_) \ CYG_MACRO_START \ cyg_uint16 t; \ HAL_READ_UINT16((_a_), t); \ (_d_) = (t >> 8) & 0xff; \ CYG_MACRO_END #define UART_WRITE_UINT8(_a_, _d_) \ CYG_MACRO_START \ HAL_WRITE_UINT16((_a_), (_d_)<<8); \ CYG_MACRO_END //----------------------------------------------------------------------------- typedef struct { cyg_uint8* base; cyg_int32 msec_timeout; int isr_vector; } channel_data_t; static channel_data_t channels[1] = { { (cyg_uint8*)SE77X9_SER_16550_BASE_A, 1000, CYGNUM_HAL_INTERRUPT_PC_SIRQ4 }, }; //----------------------------------------------------------------------------- // Set the baud rate static void cyg_hal_plf_serial_set_baud(cyg_uint8* port, cyg_uint16 baud_divisor) { cyg_uint8 _lcr; UART_READ_UINT8(port+SER_16550_LCR, _lcr); _lcr |= LCR_DL; UART_WRITE_UINT8(port+SER_16550_LCR, _lcr); UART_WRITE_UINT8(port+SER_16550_DLM, baud_divisor >> 8); UART_WRITE_UINT8(port+SER_16550_DLL, baud_divisor & 0xff); _lcr &= ~LCR_DL; UART_WRITE_UINT8(port+SER_16550_LCR, _lcr); } //----------------------------------------------------------------------------- // The minimal init, get and put functions. All by polling. void cyg_hal_plf_serial_init_channel(void* __ch_data) { cyg_uint8* port; cyg_uint8 _lcr; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; port = ((channel_data_t*)__ch_data)->base; // Disable port interrupts while changing hardware UART_WRITE_UINT8(port+SER_16550_IER, 0); // Set databits, stopbits and parity. _lcr = LCR_WL8 | LCR_SB1 | LCR_PN; UART_WRITE_UINT8(port+SER_16550_LCR, _lcr); // Set baud rate. cyg_hal_plf_serial_set_baud(port, CYG_DEV_SERIAL_BAUD_DIVISOR); // Enable and clear FIFO UART_WRITE_UINT8(port+SER_16550_FCR, (FCR_ENABLE | FCR_CLEAR_RCVR | FCR_CLEAR_XMIT)); // enable RTS to keep host side happy. Also allow interrupts UART_WRITE_UINT8( port+SER_16550_MCR, MCR_DTR | MCR_RTS | MCR_INT); // Don't allow interrupts. UART_WRITE_UINT8(port+SER_16550_IER, 0); } void cyg_hal_plf_serial_putc(void* __ch_data, cyg_uint8 __ch) { cyg_uint8* port; cyg_uint8 _lsr; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; port = ((channel_data_t*)__ch_data)->base; CYGARC_HAL_SAVE_GP(); do { UART_READ_UINT8(port+SER_16550_LSR, _lsr); } while ((_lsr & SIO_LSR_THRE) == 0); // Now, the transmit buffer is empty UART_WRITE_UINT8(port+SER_16550_THR, __ch); // Hang around until the character has been safely sent. do { UART_READ_UINT8(port+SER_16550_LSR, _lsr); } while ((_lsr & SIO_LSR_THRE) == 0); CYGARC_HAL_RESTORE_GP(); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { cyg_uint8* port; cyg_uint8 _lsr; // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; port = ((channel_data_t*)__ch_data)->base; UART_READ_UINT8(port+SER_16550_LSR, _lsr); if ((_lsr & SIO_LSR_DR) == 0) return false; UART_READ_UINT8(port+SER_16550_RBR, *ch); return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan; cyg_bool res; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan; cyg_uint8 ier; int ret = 0; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; switch (__func) { case __COMMCTL_IRQ_ENABLE: irq_state = 1; UART_READ_UINT8(chan->base + SER_16550_IER, ier); ier |= SIO_IER_ERDAI; UART_WRITE_UINT8(chan->base + SER_16550_IER, ier); HAL_INTERRUPT_SET_LEVEL(chan->isr_vector, 1); HAL_INTERRUPT_UNMASK(chan->isr_vector); break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; UART_READ_UINT8(chan->base + SER_16550_IER, ier); ier &= ~SIO_IER_ERDAI; UART_WRITE_UINT8(chan->base + SER_16550_IER, ier); HAL_INTERRUPT_MASK(chan->isr_vector); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } break; case __COMMCTL_SETBAUD: { cyg_uint32 baud_rate; cyg_uint16 baud_divisor; cyg_uint8* port = chan->base; va_list ap; va_start(ap, __func); baud_rate = va_arg(ap, cyg_uint32); va_end(ap); baud_divisor = (SE77X9_SER_CLOCK / 16 / baud_rate); // Disable port interrupts while changing hardware UART_READ_UINT8(port+SER_16550_IER, ier); UART_WRITE_UINT8(port+SER_16550_IER, 0); // Set baud rate. cyg_hal_plf_serial_set_baud(port, baud_divisor); // Reenable interrupts if necessary UART_WRITE_UINT8(port+SER_16550_IER, ier); } break; case __COMMCTL_GETBAUD: break; default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { int res = 0; cyg_uint8 _iir, c; channel_data_t* chan; CYGARC_HAL_SAVE_GP(); // Some of the diagnostic print code calls through here with no idea what the ch_data is. // Go ahead and assume it is channels[0]. if (__ch_data == 0) __ch_data = (void*)&channels[0]; chan = (channel_data_t*)__ch_data; HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector); UART_READ_UINT8(chan->base + SER_16550_IIR, _iir); _iir &= SIO_IIR_ID_MASK; *__ctrlc = 0; if ((_iir == ISR_Rx_Avail) || (_iir == ISR_Rx_Char_Timeout)) { UART_READ_UINT8(chan->base + SER_16550_RBR, c); if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; res = CYG_ISR_HANDLED; } CYGARC_HAL_RESTORE_GP(); return res; } void cyg_hal_plf_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Disable interrupts. HAL_INTERRUPT_MASK(channels[0].isr_vector); // Init channels cyg_hal_plf_serial_init_channel((void*)&channels[0]); // Setup procs in the vector table // Set channel 1 CYGACC_CALL_IF_SET_CONSOLE_COMM(1); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } //----------------------------------------------------------------------------- // end of ser16c550c.c
Go to most recent revision | Compare with Previous | Blame | View Log