OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [hal/] [sparclite/] [sleb/] [v2_0/] [include/] [halboot.si] - Rev 454

Go to most recent revision | Compare with Previous | Blame | View Log

#ifndef CYGONCE_HAL_HALBOOT_SI /* -*-asm-*- */
#define CYGONCE_HAL_HALBOOT_SI
// ====================================================================
//
//      <platform>/halboot.si
//
//      HAL bootup platform-oriented code (assembler)
//
// ====================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
// ====================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):           hmt
// Contributors:        hmt
// Date:                1999-02-01
// Purpose:             Bootup code, platform oriented.
// Description:
//
//####DESCRIPTIONEND####
//
// ====================================================================

// External Platform Initial Setup
//
// This should set up RAM and caches, and calm down any external
// interrupt sources.
//
// It is just plain included in vectors.S
//
// RAM has not yet been touched at all; in fact all you have is a
// register window selected.

        
#ifdef CYG_HAL_STARTUP_RAM
        ! Hit the entry point instructions in situ
#ifndef CYGIMP_HAL_SPARCLITE_COPY_VECTORS_TO_RAM
        ! *unless* we are going to copy into a different RAM area anyway:
        ! copy the real instructions into the vector:   
        rd      %tbr, %g1
        andn    %g1, 0xfff, %g1         ! clear non-address bits
        set     real_vector_instructions, %l0
        ld      [ %l0 ], %l1
        st      %l1, [ %g1 ]            ! into the vector
        ld      [ %l0 + 4 ], %l1
        st      %l1, [ %g1 + 4 ]        ! into the vector
        ! then invalidate the instruction cache:
        set     3, %l0
        set     0x00001000, %l1
        set     0x80001000, %l2
        sta     %l0, [ %l1 ] 0x0c
        sta     %l0, [ %l2 ] 0x0c
        ! and the data cache
        sta     %l0, [ %l1 ] 0x0e
        sta     %l0, [ %l2 ] 0x0e
        nop
        nop
        nop
        nop                             ! should be enough
#endif // !CYGIMP_HAL_SPARCLITE_COPY_VECTORS_TO_RAM
#endif // CYG_HAL_STARTUP_RAM
        

#include <cyg/hal/hal_cpu.h>            // a copy of CygMon~s cpu.h
        

/* Address of clock switch */
#define CLKSW_ADDR  0x01000003

/* Address of SW1 */
#define SW1_ADDR  0x02000003

/* Address of LED bank */
#define LED_ADDR  0x02000003

#define SRAM_BASE 0x30000000
#define SRAM_END  0x30080000


#define DRAM_BASE      0x04000000       /* base of system DRAM */
#define CS3_BASE       0x00000000       /* base of internal resource regs */
#define CS3_ASI        7                /* ASI of internal resource regs  */

// DRAM_BASE2 is defined so that we run the same RAM-sizing code in both
// RAM and ROM startup versions; but the RAM startup one starts RAM sizing
// at 0x043ff000 ie. 4k down from the top of the 4M available.
        
#ifdef CYG_HAL_STARTUP_RAM
#define DRAM_BASE2 DRAM_BASE + 0x00400000 - 0x1000
#else
#define DRAM_BASE2 DRAM_BASE
#endif
        
        .macro led val
        sethi   %hi(LED_ADDR),%l7
        set     \val,%l6
        not     %l6, %l6
        stb     %l6,[%l7 + %lo(LED_ADDR)]
        .endm

        /*
         * First, setup chip selects.
         *
         * NB: The AMR_VAL macro actually inverts the mask bits. For me, it is
         *     more natural to write a 1 bit where I want the address compared.
         *     The sparc registers use 0 bits, instead.
         */
        
        /* -CS0 ADDR_MASK:0xfc000000 ASI_MASK:0xfc */
        set     AMR_VAL(0xfc,0xfc000000),%l0
        mov     AMR0,%l1
        sta     %l0,[%l1] 1
        
        /* -CS1 BASE:0x10000000 ASI:4 */
        set     ARSR_VAL(4,0x10000000),%l0
        mov     ARSR1,%l1
        sta     %l0,[%l1] 1
        /* -CS1 ADDR MASK:0xf0000000 ASI MASK:0x7 */
        set     AMR_VAL(7,0xf0000000),%l0
        mov     AMR1,%l1
        sta     %l0,[%l1] 1
        
        /* -CS2 BASE:0x20000000 ASI:4 */
        set     ARSR_VAL(4,0x20000000), %l0
        mov     ARSR2,%l1
        sta     %l0,[%l1] 1
        /* -CS2 ADDR MASK:0xf0000000 ASI MASK:0x7 */
        set     AMR_VAL(7,0xf0000000),%l0
        mov     AMR2,%l1
        sta     %l0,[%l1] 1
        
        /* -CS3 BASE:CS3_BASE ASI:CS3_ASI */
        set     ARSR_VAL(CS3_ASI,CS3_BASE),%l0
        mov     ARSR3,%l1
        sta     %l0,[%l1] 1
        /* -CS3 ADDR MASK:0xffff0000 ASI MASK:0x7 */
        set     AMR_VAL(7,0xffff0000),%l0
        mov     AMR3,%l1
        sta     %l0,[%l1] 1
        
        /* -CS4 BASE: DRAM_BASE ASI:0xb */
        set     ARSR_VAL(0xb,DRAM_BASE),%l0
        mov     ARSR4,%l1
        sta     %l0,[%l1] 1
        /* -CS4 ADDR MASK:0xfc000000 ASI MASK:0xfc */
        set     AMR_VAL(0xfc,0xfc000000),%l0
        mov     AMR4,%l1
        sta     %l0,[%l1] 1
        
        /* -CS5 BASE:0x30000000 ASI:0xb */
        set     ARSR_VAL(0xb,0x30000000),%l0
        mov     ARSR5,%l1
        sta     %l0,[%l1] 1
        /* -CS5 ADDR MASK:0xfff80000 ASI MASK:0xfc */
        set     AMR_VAL(0xfc,0xfff80000),%l0
        mov     AMR5,%l1
        sta     %l0,[%l1] 1

        
        /*
         * Setup wait states. Each wait state register sets the wait states for
         * a pair of chip selects. The lower bits hold the wait state info for
         * the lower numbered chip select.
         */

        /* -CS0: 5 wait states,  -CS1: 7 wait states */
//      set     WSSR_VAL(7,7,WSSR_WAITEN,5,5,WSSR_WAITEN),%l0
//      set     WSSR_VAL(4,4,WSSR_WAITEN,5,5,WSSR_WAITEN),%l0 // FOUR -> CS1
        set     WSSR_VAL(10,10,WSSR_WAITEN,5,5,WSSR_WAITEN),%l0 // TEN -> CS1
        mov     WSSR0,%l1
        sta     %l0,[%l1] 1

        /* -CS2: wait states disabled,  -CS3: wait states disabled */
        set     WSSR_VAL(0,0,0,0,0,0),%l0
        mov     WSSR1,%l1
        sta     %l0,[%l1] 1

        /* -CS4: wait states disabled,  -CS5: 0 wait states */
        set     WSSR_VAL(0,0,WSSR_WAITEN|WSSR_OVERRIDE,0,0,0),%l0
        mov     WSSR2,%l1
        sta     %l0,[%l1] 1

        led     0x10

        /* clear cache/BIU control register */
        mov     CBIR,%l1
        sta     %g0,[%l1] 1

        /* Read clock switch to determine the value of the refresh timer */
        sethi   %hi(CLKSW_ADDR),%l1
        ldub    [%l1 + %lo(CLKSW_ADDR)],%l0
        btst    0x80,%l0
        bne,a   1f
        mov     10,%l0          /* force to 10MHz if CLKSW-8 is ON */
    1:
        umul    %l0,15,%l0
        mov     DRLD,%l1
        sta     %l0,[%l1] 1
        mov     REFTMR,%l1
        sta     %l0,[%l1] 1

        /* read SW1 to get DRAM page size */
        sethi   %hi(SW1_ADDR),%l1
        ldub    [%l1 + %lo(SW1_ADDR)],%l0
        btst    0x10,%l0
        be,a    1f
         mov    0x0e,%l0        /* 1K page if branch taken (SW1-5 is OFF) */
        mov     0x06,%l0        /* 2K page (SW1-5 is OFF) */
    1:
        mov     SPGMR,%l1
        sta     %l0,[%l1] 1

        led     0x20

#ifdef CYG_HAL_STARTUP_ROM
        /* Turn on all system services */       
        mov     SSCR_TIMER|SSCR_WAIT|SSCR_CS|SSCR_SAMEPG,%l0
        mov     SSCR,%l1
        sta     %l0,[%l1] 1
        nop
        nop
        nop
        nop
        
#endif

        led     0x30
        
        /*
         * Initialize caches.
         */
        sethi   %hi(0x1000),%l0         /* bank 1 invalidate */
        sethi   %hi(0x80000000),%l1     /* bank 2 invalidate */
        mov     3,%l2                   /* clear lock, lru, and valid bits */ 
        sta     %l2,[%l0] 0xc           /* do it - icache bank 1 */
        sta     %l2,[%l0] 0xe           /* do it - dcache bank 1 */
        sta     %l2,[%l0 + %l1] 0xc     /* do it - icache bank 2 */
        sta     %l2,[%l0 + %l1] 0xe     /* do it - dcache bank 2 */
        
        /* now, enable caches and buffers */
        mov     CBIR_ICEN|CBIR_DCEN|CBIR_PBEN|CBIR_WBEN,%l0
        mov     CBIR,%l1
        sta     %l0,[%l1] 1
        nop 
        nop 
        nop 
        nop
        
        /* enable data and insn bursts */
        mov     BCR_IBE|BCR_DBE,%l0
        mov     BCR,%l1
        sta     %l0,[%l1] 1
        nop 
        nop 
        nop 
        nop

        /*
         * DRAM setup/test.
         */
        led 0x40

        /*
         * Test SW1-7 to determine normal or EDO mode.
         *   SW1-7 ON  = EDO
         *   SW1-7 OFF = Normal.
         */
        sethi   %hi(SW1_ADDR),%l1
        ldub    [%l1 + %lo(SW1_ADDR)],%l7
        mov     DBANKR_SA04,%l0         /* DRAM starts at 0x04000000 */
        btst    0x40,%l7
        bne     1f                      /* branch if SW1-7 is OFF */
         mov    SSCR_DRAM,%l1
        /* EDO DRAM, enable burst in SSCR and EDO in DBANKR */
        or      %l1,SSCR_BURST,%l1
        or      %l0,DBANKR_EDO,%l0
    1:
        /*
         * Now, test SW1 to get DRAM page and bank size.
         *   SW1-5 ON  = 2k page, 16MB bank. (up to 64MB total)
         *   SW1-5 OFF = 1k page, 4MB bank.  (up to 16MB total)
         */
        btst    0x10,%l7
        bne,a   1f                              /* branch if OFF */
        or      %l0,DBANKR_4M|DBANKR_CA10,%l0  /* 1K page */
        or      %l0,DBANKR_16M|DBANKR_CA11,%l0 /* 2K page */
    1:
        mov     CS3_BASE+DBANKR,%l2
        sta     %l0,[%l2] CS3_ASI
        
        mov     DTIMR_RPS2|DTIMR_CBR3|DTIMR_CAS2|DTIMR_RP2,%l0
        mov     CS3_BASE+DTIMR,%l2
        sta     %l0,[%l2] CS3_ASI
        
        mov     SSCR,%l2
        lda     [%l2] 1, %l0
        or      %l0,%l1,%l0
        sta     %l0,[%l2] 1

        /*
         * Test SW1 to get potential DRAM limit.
         *   SW1-5 ON  = 2k page, up to 64MB total
         *   SW1-5 OFF = 1k page, up to 16MB total
         */
        btst    0x10,%l7
        bne,a   1f                              /* branch if OFF */
         sethi  %hi(DRAM_BASE + 16*1024*1024),%l0
        sethi   %hi(DRAM_BASE + 64*1024*1024),%l0
    1:

        /* subtract 4 to get last valid DRAM address */
        add     %l0,-4,%l0
                
        /* Assume maximim memory and fill with pattern */       
        set     DRAM_BASE2,%l2
        set     0xaaaaaaaa,%l3
    1:
        st      %l3,[%l2]
        cmp     %l2,%l0
        blt     1b
         add    %l2,4,%l2

        /*
         * Go back, read data and compare with written data.
         * Fill in with zero as we go along.
         */
        set     DRAM_BASE2,%l2
    1:
        ld      [%l2],%l4
        cmp     %l4,%l3
        bne     2f
         st     %g0,[%l2]
        cmp     %l2,%l0
        blt,a   1b
         add    %l2,4,%l2
    2:
        led     0x50
        
        sub     %l2,64,%i6
        sethi   %hi(DRAM_BASE),%l1
        sub     %l2,%l1,%l0
        st      %l0,[%i6]

// NOTE that here, the frame pointer is set up to the top of RAM minus a
// little bit with the size of RAM at %fp (%i6)
#ifdef CYGIMP_HAL_SPARCLITE_COPY_VECTORS_TO_RAM

        led     0x58
        
        ! copy the trampoline code into the base of RAM (__ram_vectors_start)
        ! including the two ~rogue~ instructions...

        .extern __ram_vectors_start
        ! Using the true address here for the copy makes a badly-aligned
        ! __ram_vectors less likely to hide as an obscure failure:
        set     __ram_vectors_start, %l0 ! get the start of RAM
        set     rom_vectors, %l1        ! get the start of the trampoline
        set     rom_vectors_end, %l2    ! ...and its end.
33:
        ldd     [ %l1 ], %l4            ! also uses %l5
        std     %l4, [ %l0 ]
        inc     8, %l1
        inc     8, %l0
        cmp     %l1, %l2
        bl      33b
         nop

        led     0x59

        sethi   %hi(__ram_vectors_start), %g1   ! get the start of RAM
        andn    %g1, 0xfff, %g1
        set     real_vector_instructions, %l0
        ld      [ %l0 ], %l1
        st      %l1, [ %g1 ]            ! into the vector
        ld      [ %l0 + 4 ], %l1
        st      %l1, [ %g1 + 4 ]        ! into the vector

        led     0x5a

        ! then invalidate the instruction cache:
        set     3, %l0
        set     0x00001000, %l1
        set     0x80001000, %l2
        sta     %l0, [ %l1 ] 0x0c
        sta     %l0, [ %l2 ] 0x0c

        led     0x5b    
        
        ! and the data cache
        sta     %l0, [ %l1 ] 0x0e
        sta     %l0, [ %l2 ] 0x0e
        nop
        nop
        nop
        nop                             ! should be enough

        led     0x5c
        
        ! and (re)set the tbr, finally.
        sethi   %hi(__ram_vectors_start), %g1
        andn    %g1, 0xfff, %g1
        wr      %g1, %tbr               ! Traps are at RAM start
        nop                             ! (__ram_vectors_start)
        nop
        nop
        
        led     0x5d

#else   

        led     0x5f

#endif // CYGIMP_HAL_SPARCLITE_COPY_VECTORS_TO_RAM (was CYG_HAL_STARTUP_ROM)

        ! turn on caches - copied from the book 
#define set_size        64
#define ini_tag         0
#define adr1            0x00000000
#define adr2            0x80000000
#define step            16
#define CTL_BITS        0x35

        set     set_size, %l7
        set     adr1, %o1
        set     adr2, %o2
        set     ini_tag, %l0
10:
        sta     %l0, [ %o1 ] 0x0c
        sta     %l0, [ %o1 ] 0x0e
        sta     %l0, [ %o2 ] 0x0c
        sta     %l0, [ %o2 ] 0x0e
        add     %o1, step, %o1
        subcc   %l7, 1, %l7
        bne     10b
        add     %o2, step, %o2

        set     0, %l1
        set     CTL_BITS, %l2
        sta     %l2, [ %l1 ] 0x01
        nop
        nop
        nop
        nop     ! delay to let caches stabilize
        
        led     0x60

        // Now set up the 86940
        
#define TRGM0   0
#define TRGM1   4           
#define REQSNS  8
#define REQCLR 12
#define IMASK  16
#define IRLAT  20
#define IMODE  24
        
        sethi   %hi( 0x10000000 ), %l1  ! base address of the 86940 companion

        set     0xfffe0000, %l4         ! mask all intrs
        add     %l1, IMASK, %l3
        sta     %l4, [ %l3 ] 4
        
        set     0x11400000, %l6         ! Channels 14,12,11 into Active Low
        add     %l1, TRGM0, %l3
        sta     %l6, [ %l3 ] 4
        
        set     0x05100000, %l6         ! Channels 5,4,2 into Active Low
        add     %l1, TRGM1, %l3
        sta     %l6, [ %l3 ] 4

        add     %l1, REQCLR, %l3        ! clear all pending intrs
        sta     %l4, [ %l3 ] 4

        set     0x00100000, %l6         ! clear the latch
        add     %l1, IRLAT, %l3
        sta     %l6, [ %l3 ] 4

        nop
        nop
        nop

        led     0x70
        
#endif  /* CYGONCE_HAL_HALBOOT_SI */
/* EOF halboot.si */

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.