URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [kernel/] [v2_0/] [include/] [thread.inl] - Rev 369
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef CYGONCE_KERNEL_THREAD_INL
#define CYGONCE_KERNEL_THREAD_INL
//==========================================================================
//
// thread.inl
//
// Thread class inlines
//
//==========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
// Copyright (C) 2003 Gary Thomas
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): nickg
// Contributors: nickg
// Date: 1997-09-09
// Purpose: Define inlines for thread classes
// Description: Inline implementations of various member functions defined
// in various Thread classes.
// Usage:
// #include <cyg/kernel/thread.hxx>
// ...
// #include <cyg/kernel/thread.inl>
// ...
//
//####DESCRIPTIONEND####
//
//==========================================================================
#include <cyg/kernel/thread.hxx>
#include <cyg/hal/hal_arch.h>
#include <cyg/kernel/clock.inl>
#include <cyg/infra/diag.h>
#ifndef CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE
#define CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE (0)
#endif
//==========================================================================
// Inlines for Cyg_HardwareThread
// -------------------------------------------------------------------------
// get the size/base of this thread's stack
inline CYG_ADDRESS
Cyg_HardwareThread::get_stack_base()
{
return stack_base - CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE;
}
inline cyg_uint32
Cyg_HardwareThread::get_stack_size()
{
return stack_size + 2 * CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE;
}
// -------------------------------------------------------------------------
// Check the stack bounds of this thread:
#ifdef CYGFUN_KERNEL_THREADS_STACK_CHECKING
inline void Cyg_HardwareThread::check_stack(void)
{
cyg_uint32 sig = (cyg_uint32)this;
cyg_uint32 *base = (cyg_uint32 *)get_stack_base();
cyg_uint32 *top = (cyg_uint32 *)(stack_base + stack_size);
cyg_ucount32 i;
CYG_INSTRUMENT_THREAD(CHECK_STACK, base, top );
CYG_ASSERT( 0 == ((sizeof(CYG_WORD)-1) & (cyg_uint32)base), "stack base not word aligned" );
CYG_ASSERT( 0 == ((sizeof(CYG_WORD)-1) & (cyg_uint32)top), "stack top not word aligned" );
CYG_ASSERT( (cyg_uint32)stack_ptr > (cyg_uint32)stack_base,
"Stack_ptr below base" );
CYG_ASSERT( (cyg_uint32)stack_ptr <= ((cyg_uint32)stack_base + stack_size),
"Stack_ptr above top" );
for ( i = 0;
i < CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE/sizeof(cyg_uint32);
i++ ) {
if ((sig ^ (i * 0x01010101)) != base[i]) {
char *reason = "Stack base corrupt";
diag_printf("%s - i: %d\n", reason, i);
diag_dump_buf(base, CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE);
CYG_FAIL(reason);
}
if ((sig ^ (i * 0x10101010)) != top[i]) {
char *reason = "Stack top corrupt";
diag_printf("%s - i: %d\n", reason, i);
diag_dump_buf(top, CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE);
CYG_FAIL(reason);
}
}
#ifdef CYGFUN_KERNEL_THREADS_STACK_LIMIT
// we won't have added check data above the stack limit if it hasn't
// been incremented
if (stack_limit != stack_base) {
CYG_ADDRESS limit = stack_limit;
// the limit will be off by the check data size, so lets correct it
limit -= CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE;
// determine base of check data by rounding up to nearest word aligned
// address if not already aligned
cyg_uint32 *p = (cyg_uint32 *)((limit + 3) & ~3);
// i.e. + sizeof(cyg_uint32)-1) & ~(sizeof(cyg_uint32)-1);
for ( i = 0;
i < CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE/sizeof(cyg_uint32);
i++ ) {
if ((sig ^ (i * 0x01010101)) != p[i]) {
char *reason = "Gap between stack limit and base corrupt";
diag_printf("%s - i: %d\n", reason, i);
diag_dump_buf(p, CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE);
CYG_FAIL(reason);
}
}
}
#endif
}
#endif
// -------------------------------------------------------------------------
// Measure the stack usage of the thread
#ifdef CYGFUN_KERNEL_THREADS_STACK_MEASUREMENT
inline cyg_uint32 Cyg_HardwareThread::measure_stack_usage(void)
{
#ifdef CYGFUN_KERNEL_THREADS_STACK_LIMIT
CYG_WORD *base = (CYG_WORD *)stack_limit;
cyg_uint32 size = (stack_size - (stack_limit-stack_base))/sizeof(CYG_WORD);
#else
CYG_WORD *base = (CYG_WORD *)stack_base;
cyg_uint32 size = stack_size/sizeof(CYG_WORD);
#endif
cyg_ucount32 i;
// Work up the stack comparing with the preset value
// We assume the stack grows downwards, hmm...
for (i=0; i<size; i++) {
if (base[i] != 0xDEADBEEF)
break;
}
return (size - i)*sizeof(CYG_WORD);
}
#endif
// -------------------------------------------------------------------------
// Attach a stack to this thread. If there is a HAL defined macro to
// do this, then we use that, otherwise assume a falling stack.
inline void Cyg_HardwareThread::attach_stack(CYG_ADDRESS s_base, cyg_uint32 s_size)
{
#ifdef CYGNUM_HAL_STACK_SIZE_MINIMUM
CYG_ASSERT( s_size >= CYGNUM_HAL_STACK_SIZE_MINIMUM,
"Stack size too small");
#endif
#ifdef CYGFUN_KERNEL_THREADS_STACK_CHECKING
{
cyg_uint32 sig = (cyg_uint32)this;
cyg_uint32 *base = (cyg_uint32 *)s_base;
cyg_uint32 *top = (cyg_uint32 *)(s_base + s_size -
CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE);
unsigned int i;
CYG_INSTRUMENT_THREAD(ATTACH_STACK, base, top );
CYG_ASSERT( NULL != base, "stack base non-NULL" );
CYG_ASSERT( 0 == ((sizeof(CYG_WORD)-1) & (cyg_uint32)base), "stack base alignment" );
CYG_ASSERT( 0 == ((sizeof(CYG_WORD)-1) & (cyg_uint32)top), "stack top alignment" );
for ( i = 0;
i < CYGNUM_KERNEL_THREADS_STACK_CHECK_DATA_SIZE/sizeof(cyg_uint32);
i++ ) {
base[i] = (sig ^ (i * 0x01010101));
top[i] = (sig ^ (i * 0x10101010));
}
// This check for overlap of the two signature areas also detects
// wrap round zero of the size in the unsigned subtraction below.
CYG_ASSERT( &base[i] < &top[0], "Stack is so small size wrapped" );
// Use this 'i' expression to round correctly to whole words.
s_base += i * sizeof(cyg_uint32);
s_size -= i * sizeof(cyg_uint32) * 2;
// This is a complete guess, the 256; the point is to assert early that
// this might go badly wrong. It would not detect wrap of unsigned size.
CYG_ASSERT( s_size >= 256,
"Stack size too small after allocating checking buffer");
}
#endif
#ifdef CYGFUN_KERNEL_THREADS_STACK_MEASUREMENT
{
CYG_WORD *base = (CYG_WORD *)s_base;
cyg_uint32 size = s_size/sizeof(CYG_WORD);
cyg_ucount32 i;
// initialize all of stack with known value - don't choose 0
// could do with pseudo value as above, but this way, checking
// is faster
for (i=0; i<size; i++) {
base[i] = 0xDEADBEEF;
}
// Don't bother about the case when the stack isn't a multiple of
// CYG_WORD in size. Since it's at the top of the stack, it will
// almost certainly be overwritten the instant the thread starts
// anyway.
}
#endif
stack_base = s_base;
stack_size = s_size;
#ifdef CYGFUN_KERNEL_THREADS_STACK_LIMIT
stack_limit = s_base;
#endif
#ifdef HAL_THREAD_ATTACH_STACK
HAL_THREAD_ATTACH_STACK(stack_ptr, stack_base, stack_size);
#else
stack_ptr = stack_base + stack_size;
#endif
#ifdef CYGFUN_KERNEL_THREADS_STACK_CHECKING
check_stack();
#endif
}
// -------------------------------------------------------------------------
inline Cyg_HardwareThread::Cyg_HardwareThread(
cyg_thread_entry *e_point, // entry point function
CYG_ADDRWORD e_data, // entry data
cyg_ucount32 s_size, // stack size, 0 = use default
CYG_ADDRESS s_base // stack base, NULL = allocate
)
{
entry_point = e_point;
entry_data = e_data;
#ifdef CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
saved_context = 0;
#endif
attach_stack( s_base, s_size );
};
// -------------------------------------------------------------------------
#ifdef CYGDBG_KERNEL_DEBUG_GDB_THREAD_SUPPORT
// Return the current saved state for this thread.
inline HAL_SavedRegisters *Cyg_HardwareThread::get_saved_context()
{
HAL_SavedRegisters *regs;
if( saved_context != 0 ) regs = saved_context;
else HAL_THREAD_GET_SAVED_REGISTERS( stack_ptr, regs );
return regs;
}
inline void Cyg_HardwareThread::set_saved_context(HAL_SavedRegisters *ctx)
{
saved_context = ctx;
}
#endif
// -------------------------------------------------------------------------
// (declare this inline before its first use)
inline cyg_uint16 Cyg_Thread::get_unique_id()
{
return unique_id;
}
// -------------------------------------------------------------------------
// Initialize the context of this thread.
inline void Cyg_HardwareThread::init_context(Cyg_Thread *thread)
{
#ifdef CYGPKG_INFRA_DEBUG
cyg_uint32 threadid = thread->get_unique_id()*0x01010000;
#else
cyg_uint32 threadid = 0x11110000;
#endif
HAL_THREAD_INIT_CONTEXT( stack_ptr, thread, thread_entry, threadid );
}
// -------------------------------------------------------------------------
// Save current thread's context and load that of the given next thread.
// This function is only really here for completeness, the
// kernel generally calls the HAL macros directly.
inline void Cyg_HardwareThread::switch_context(Cyg_HardwareThread *next)
{
HAL_THREAD_SWITCH_CONTEXT( &stack_ptr, &next->stack_ptr );
}
// -------------------------------------------------------------------------
// Get and set entry_data.
inline void Cyg_HardwareThread::set_entry_data( CYG_ADDRWORD data )
{
entry_data = data;
}
inline CYG_ADDRWORD Cyg_HardwareThread::get_entry_data()
{
return entry_data;
}
// -------------------------------------------------------------------------
// Allocate some memory at the lower end of the stack
// by moving the stack limit pointer.
#ifdef CYGFUN_KERNEL_THREADS_STACK_LIMIT
#ifndef CYGFUN_KERNEL_THREADS_STACK_CHECKING
// if stack checking, implementation is in thread.cxx
inline void *Cyg_HardwareThread::increment_stack_limit( cyg_ucount32 size )
{
void *ret = (void *)stack_limit;
stack_limit += size;
return ret;
}
#endif
inline CYG_ADDRESS
Cyg_HardwareThread::get_stack_limit()
{
return stack_limit;
}
#endif
//==========================================================================
// Inlines for Cyg_Thread class
inline Cyg_Thread *Cyg_Thread::self()
{
return Cyg_Scheduler::get_current_thread();
}
// -------------------------------------------------------------------------
inline void Cyg_Thread::yield()
{
self()->Cyg_SchedThread::yield();
}
// -------------------------------------------------------------------------
inline void
Cyg_Thread::rotate_queue( cyg_priority pri )
{
self()->Cyg_SchedThread::rotate_queue( pri );
}
// -------------------------------------------------------------------------
inline void
Cyg_Thread::to_queue_head( void )
{
this->Cyg_SchedThread::to_queue_head();
}
// -------------------------------------------------------------------------
#ifdef CYGIMP_THREAD_PRIORITY
inline cyg_priority Cyg_Thread::get_priority()
{
#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_SIMPLE
// If we have an inherited priority, return our original
// priority rather than the current one.
if( priority_inherited ) return original_priority;
#endif
return priority;
}
// Return the actual dispatching priority of the thread
// regardless of inheritance or scheduling concerns.
inline cyg_priority Cyg_Thread::get_current_priority()
{
return priority;
}
#endif
// -------------------------------------------------------------------------
inline void Cyg_Thread::set_sleep_reason( cyg_reason reason)
{
self()->sleep_reason = reason;
self()->wake_reason = NONE;
}
// -------------------------------------------------------------------------
inline Cyg_Thread::cyg_reason Cyg_Thread::get_sleep_reason()
{
return sleep_reason;
}
// -------------------------------------------------------------------------
inline void Cyg_Thread::set_wake_reason( cyg_reason reason )
{
sleep_reason = NONE;
wake_reason = reason;
}
// -------------------------------------------------------------------------
inline Cyg_Thread::cyg_reason Cyg_Thread::get_wake_reason()
{
return wake_reason;
}
// -------------------------------------------------------------------------
inline void Cyg_Thread::set_timer(
cyg_tick_count trigger,
cyg_reason reason
)
{
#ifdef CYGFUN_KERNEL_THREADS_TIMER
self()->sleep_reason = reason;
self()->wake_reason = NONE;
self()->timer.initialize( trigger);
#endif
}
// -------------------------------------------------------------------------
inline void Cyg_Thread::clear_timer()
{
#ifdef CYGFUN_KERNEL_THREADS_TIMER
self()->timer.disable();
#endif
}
// -------------------------------------------------------------------------
#ifdef CYGVAR_KERNEL_THREADS_DATA
inline CYG_ADDRWORD Cyg_Thread::get_data( Cyg_Thread::cyg_data_index index )
{
CYG_ASSERT( index < CYGNUM_KERNEL_THREADS_DATA_MAX,
"Per thread data index out of bounds");
CYG_ASSERT( (thread_data_map & (1<<index)) == 0,
"Unallocated index used");
return self()->thread_data[index];
}
inline CYG_ADDRWORD *Cyg_Thread::get_data_ptr( Cyg_Thread::cyg_data_index index )
{
CYG_ASSERT( index < CYGNUM_KERNEL_THREADS_DATA_MAX,
"Per thread data index out of bounds");
CYG_ASSERT( (thread_data_map & (1<<index)) == 0,
"Unallocated index used");
return &(self()->thread_data[index]);
}
inline void Cyg_Thread::set_data( Cyg_Thread::cyg_data_index index,
CYG_ADDRWORD data )
{
CYG_ASSERT( index < CYGNUM_KERNEL_THREADS_DATA_MAX,
"Per thread data index out of bounds");
CYG_ASSERT( (thread_data_map & (1<<index)) == 0,
"Unallocated index used");
thread_data[index] = data;
}
#endif
// -------------------------------------------------------------------------
#ifdef CYGPKG_KERNEL_THREADS_DESTRUCTORS
// Add and remove destructors. Returns true on success, false on failure.
inline cyg_bool
Cyg_Thread::add_destructor( destructor_fn fn, CYG_ADDRWORD data )
{
cyg_ucount16 i;
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::lock();
#endif
for (i=0; i<CYGNUM_KERNEL_THREADS_DESTRUCTORS; i++) {
if (NULL == destructors[i].fn) {
destructors[i].data = data;
destructors[i].fn = fn;
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::unlock();
#endif
return true;
}
}
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::unlock();
#endif
return false;
}
inline cyg_bool
Cyg_Thread::rem_destructor( destructor_fn fn, CYG_ADDRWORD data )
{
cyg_ucount16 i;
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::lock();
#endif
for (i=0; i<CYGNUM_KERNEL_THREADS_DESTRUCTORS; i++) {
if (destructors[i].fn == fn && destructors[i].data == data) {
destructors[i].fn = NULL;
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::unlock();
#endif
return true;
}
}
#ifndef CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD
Cyg_Scheduler::unlock();
#endif
return false;
}
#endif
// -------------------------------------------------------------------------
#ifdef CYGVAR_KERNEL_THREADS_NAME
inline char *Cyg_Thread::get_name()
{
return name;
}
#endif
// -------------------------------------------------------------------------
#ifdef CYGVAR_KERNEL_THREADS_LIST
inline Cyg_Thread *Cyg_Thread::get_list_head()
{
return thread_list?thread_list->list_next:0;
}
inline Cyg_Thread *Cyg_Thread::get_list_next()
{
return (this==thread_list)?0:list_next;
}
#endif
// -------------------------------------------------------------------------
#ifdef CYGPKG_KERNEL_EXCEPTIONS
inline void Cyg_Thread::register_exception(
cyg_code exception_number, // exception number
cyg_exception_handler handler, // handler function
CYG_ADDRWORD data, // data argument
cyg_exception_handler **old_handler, // handler function
CYG_ADDRWORD *old_data // data argument
)
{
self()->exception_control.register_exception(
exception_number,
handler,
data,
old_handler,
old_data
);
}
inline void Cyg_Thread::deregister_exception(
cyg_code exception_number // exception number
)
{
self()->exception_control.deregister_exception(
exception_number
);
}
#endif
//==========================================================================
// Inlines for Cyg_ThreadTimer class
// -------------------------------------------------------------------------
#if defined(CYGFUN_KERNEL_THREADS_TIMER) && defined(CYGVAR_KERNEL_COUNTERS_CLOCK)
inline Cyg_ThreadTimer::Cyg_ThreadTimer(
Cyg_Thread *th
)
: Cyg_Alarm(Cyg_Clock::real_time_clock,
&alarm,
CYG_ADDRWORD(this)
)
{
thread = th;
}
#endif
//==========================================================================
// Inlines for Cyg_ThreadQueue class
inline void Cyg_ThreadQueue::enqueue(Cyg_Thread *thread)
{
Cyg_ThreadQueue_Implementation::enqueue(thread);
}
// -------------------------------------------------------------------------
inline Cyg_Thread *Cyg_ThreadQueue::highpri()
{
return Cyg_ThreadQueue_Implementation::highpri();
}
// -------------------------------------------------------------------------
inline Cyg_Thread *Cyg_ThreadQueue::dequeue()
{
return Cyg_ThreadQueue_Implementation::dequeue();
}
// -------------------------------------------------------------------------
inline void Cyg_ThreadQueue::remove(Cyg_Thread *thread)
{
Cyg_ThreadQueue_Implementation::remove(thread);
}
// -------------------------------------------------------------------------
inline cyg_bool Cyg_ThreadQueue::empty()
{
return Cyg_ThreadQueue_Implementation::empty();
}
// -------------------------------------------------------------------------
#endif // ifndef CYGONCE_KERNEL_THREAD_INL
// EOF thread.inl
Go to most recent revision | Compare with Previous | Blame | View Log