URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [language/] [c/] [libm/] [v2_0/] [src/] [double/] [portable-api/] [s_tan.c] - Rev 315
Go to most recent revision | Compare with Previous | Blame | View Log
//=========================================================================== // // s_tan.c // // Part of the standard mathematical function library // //=========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //=========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): jlarmour // Contributors: jlarmour // Date: 1998-02-13 // Purpose: // Description: // Usage: // //####DESCRIPTIONEND#### // //=========================================================================== // CONFIGURATION #include <pkgconf/libm.h> // Configuration header // Include the Math library? #ifdef CYGPKG_LIBM // Derived from code with the following copyright /* @(#)s_tan.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* tan(x) * Return tangent function of x. * * kernel function: * __kernel_tan ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ #include "mathincl/fdlibm.h" double tan(double x) { double y[2],z=0.0; int n, ix; /* High word of x. */ ix = CYG_LIBM_HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* NaN */ /* argument reduction needed */ else { n = __ieee754_rem_pio2(x,y); return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } #endif // ifdef CYGPKG_LIBM // EOF s_tan.c
Go to most recent revision | Compare with Previous | Blame | View Log