URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [net/] [bsd_tcpip/] [v2_0/] [src/] [sys/] [netinet/] [in_pcb.c] - Rev 174
Compare with Previous | Blame | View Log
//========================================================================== // // src/sys/netinet/in_pcb.c // //========================================================================== //####BSDCOPYRIGHTBEGIN#### // // ------------------------------------------- // // Portions of this software may have been derived from OpenBSD, // FreeBSD or other sources, and are covered by the appropriate // copyright disclaimers included herein. // // Portions created by Red Hat are // Copyright (C) 2002 Red Hat, Inc. All Rights Reserved. // // ------------------------------------------- // //####BSDCOPYRIGHTEND#### //========================================================================== /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ */ #include <sys/param.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/domain.h> #include <sys/protosw.h> #include <sys/socket.h> #include <sys/socketvar.h> #include <net/if.h> #include <net/if_types.h> #include <net/route.h> #include <netinet/in.h> #include <netinet/in_pcb.h> #include <netinet/in_var.h> #include <netinet/ip_var.h> #ifdef INET6 #include <netinet/ip6.h> #include <netinet6/ip6_var.h> #endif /* INET6 */ #ifdef IPSEC #include <netinet6/ipsec.h> #include <netkey/key.h> #endif /* IPSEC */ struct in_addr zeroin_addr; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called at * splnet(). XXX - There are, unfortunately, a few exceptions to this * rule that should be fixed. */ /* * Allocate a PCB and associate it with the socket. */ int in_pcballoc(so, pcbinfo, p) struct socket *so; struct inpcbinfo *pcbinfo; struct proc *p; { register struct inpcb *inp; #ifdef IPSEC int error; #endif inp = zalloci(pcbinfo->ipi_zone); if (inp == NULL) return (ENOBUFS); bzero((caddr_t)inp, sizeof(*inp)); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; #ifdef IPSEC error = ipsec_init_policy(so, &inp->inp_sp); if (error != 0) { zfreei(pcbinfo->ipi_zone, inp); return error; } #endif /*IPSEC*/ #if defined(INET6) if (INP_SOCKAF(so) == AF_INET6 && !ip6_mapped_addr_on) inp->inp_flags |= IN6P_IPV6_V6ONLY; #endif LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif return (0); } int in_pcbbind(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { register struct socket *so = inp->inp_socket; unsigned short *lastport; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) wild = 1; if (nam) { sin = (struct sockaddr_in *)nam; // HACK if (nam->sa_len == 0) nam->sa_len = sizeof(*sin); // HACK if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif lport = sin->sin_port; if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } if (lport) { struct inpcb *t; /* GROSS */ t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, wild); if (t && (reuseport & t->inp_socket->so_options) == 0) { #if defined(INET6) if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif /* defined(INET6) */ return (EADDRINUSE); } } inp->inp_laddr = sin->sin_addr; } if (lport == 0) { u_short first, last; int count; inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->lasthi; } else if (inp->inp_flags & INP_LOWPORT) { first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->lastport; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ count = first - last; do { if (count-- < 0) { /* completely used? */ inp->inp_laddr.s_addr = INADDR_ANY; return (EADDRNOTAVAIL); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } else { /* * counting up */ count = last - first; do { if (count-- < 0) { /* completely used? */ inp->inp_laddr.s_addr = INADDR_ANY; return (EADDRNOTAVAIL); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } } inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } return (0); } /* * Transform old in_pcbconnect() into an inner subroutine for new * in_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ int in_pcbladdr(inp, nam, plocal_sin) register struct inpcb *inp; struct sockaddr *nam; struct sockaddr_in **plocal_sin; { struct in_ifaddr *ia; register struct sockaddr_in *sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); if (!TAILQ_EMPTY(&in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ #define satosin(sa) ((struct sockaddr_in *)(sa)) #define sintosa(sin) ((struct sockaddr *)(sin)) #define ifatoia(ifa) ((struct in_ifaddr *)(ifa)) if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST && (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST)) sin->sin_addr = satosin(&TAILQ_FIRST(&in_ifaddrhead)->ia_broadaddr)->sin_addr; } if (inp->inp_laddr.s_addr == INADDR_ANY) { register struct route *ro; ia = (struct in_ifaddr *)0; /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. */ ro = &inp->inp_route; if (ro->ro_rt && (satosin(&ro->ro_dst)->sin_addr.s_addr != sin->sin_addr.s_addr || inp->inp_socket->so_options & SO_DONTROUTE)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)0; } if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/ (ro->ro_rt == (struct rtentry *)0 || ro->ro_rt->rt_ifp == (struct ifnet *)0)) { /* No route yet, so try to acquire one */ ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = sin->sin_addr; rtalloc(ro); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). */ if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) ia = ifatoia(ro->ro_rt->rt_ifa); if (ia == 0) { u_short fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); if (ia == 0) ia = ifatoia(ifa_ifwithnet(sintosa(sin))); sin->sin_port = fport; if (ia == 0) ia = TAILQ_FIRST(&in_ifaddrhead); if (ia == 0) return (EADDRNOTAVAIL); } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) if (ia->ia_ifp == ifp) break; if (ia == 0) return (EADDRNOTAVAIL); } } /* * Don't do pcblookup call here; return interface in plocal_sin * and exit to caller, that will do the lookup. */ *plocal_sin = &ia->ia_addr; } return(0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { struct sockaddr_in *ifaddr; struct sockaddr_in *sin = (struct sockaddr_in *)nam; int error; /* * Call inner routine, to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &ifaddr)) != 0) return(error); if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr, inp->inp_lport, 0, NULL) != NULL) { return (EADDRINUSE); } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)0, p); if (error) return (error); } inp->inp_laddr = ifaddr->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); #ifdef IPSEC if (inp->inp_socket->so_type == SOCK_STREAM) ipsec_pcbconn(inp->inp_sp); #endif return (0); } void in_pcbdisconnect(inp) struct inpcb *inp; { inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); #ifdef IPSEC ipsec_pcbdisconn(inp->inp_sp); #endif } void in_pcbdetach(inp) struct inpcb *inp; { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; struct rtentry *rt = inp->inp_route.ro_rt; #ifdef IPSEC ipsec4_delete_pcbpolicy(inp); #endif /*IPSEC*/ inp->inp_gencnt = ++ipi->ipi_gencnt; in_pcbremlists(inp); so->so_pcb = 0; sofree(so); if (inp->inp_options) (void)m_free(inp->inp_options); if (rt) { /* * route deletion requires reference count to be <= zero */ if ((rt->rt_flags & RTF_DELCLONE) && (rt->rt_flags & RTF_WASCLONED) && (rt->rt_refcnt <= 1)) { rt->rt_refcnt--; rt->rt_flags &= ~RTF_UP; rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); } else rtfree(rt); } ip_freemoptions(inp->inp_moptions); inp->inp_vflag = 0; zfreei(ipi->ipi_zone, inp); } /* * The calling convention of in_setsockaddr() and in_setpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. The socket must have a valid * (i.e., non-nil) PCB, but it should be impossible to get an invalid one * except through a kernel programming error, so it is acceptable to panic * (or in this case trap) if the PCB is invalid. (Actually, we don't trap * because there actually /is/ a programming error somewhere... XXX) */ int in_setsockaddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; register struct inpcb *inp; register struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return ECONNRESET; } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; splx(s); *nam = (struct sockaddr *)sin; return 0; } int in_setpeeraddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; struct inpcb *inp; register struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return ECONNRESET; } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; splx(s); *nam = (struct sockaddr *)sin; return 0; } void in_pcbnotifyall(head, faddr, _errno, notify) struct inpcbhead *head; struct in_addr faddr; void (*notify) __P((struct inpcb *, int)); { struct inpcb *inp, *ninp; int s; s = splnet(); for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { ninp = LIST_NEXT(inp, inp_list); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) continue; (*notify)(inp, _errno); } splx(s); } void in_pcbpurgeif0(head, ifp) struct inpcb *head; struct ifnet *ifp; { struct inpcb *inp; struct ip_moptions *imo; int i, gap; for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) { imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(inp) struct inpcb *inp; { register struct rtentry *rt; struct rt_addrinfo info; if ((rt = inp->inp_route.ro_rt)) { bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&inp->inp_route.ro_dst; info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); inp->inp_route.ro_rt = 0; rtfree(rt); /* * A new route can be allocated * the next time output is attempted. */ } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(inp, _errno) register struct inpcb *inp; int _errno; { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = 0; /* * A new route can be allocated the next time * output is attempted. */ } } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay) struct inpcbinfo *pcbinfo; struct in_addr laddr; u_int lport_arg; int wild_okay; { register struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found. */ return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, pcbinfo->porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } return (match); } } /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp) struct inpcbinfo *pcbinfo; struct in_addr faddr, laddr; u_int fport_arg, lport_arg; int wildcard; struct ifnet *ifp; { struct inpcbhead *head; register struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found. */ return (inp); } } if (wildcard) { struct inpcb *local_wild = NULL; #if defined(INET6) struct inpcb *local_wild_mapped = NULL; #endif /* defined(INET6) */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { #if defined(NFAITH) && NFAITH > 0 if (ifp && ifp->if_type == IFT_FAITH && (inp->inp_flags & INP_FAITH) == 0) continue; #endif if (inp->inp_laddr.s_addr == laddr.s_addr) return (inp); else if (inp->inp_laddr.s_addr == INADDR_ANY) { #if defined(INET6) if (INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) local_wild_mapped = inp; else #endif /* defined(INET6) */ local_wild = inp; } } } #if defined(INET6) if (local_wild == NULL) return (local_wild_mapped); #endif /* defined(INET6) */ return (local_wild); } /* * Not found. */ return (NULL); } /* * Insert PCB onto various hash lists. */ int in_pcbinshash(inp) struct inpcb *inp; { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); return (0); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash(inp) struct inpcb *inp; { struct inpcbhead *head; u_int32_t hashkey_faddr; #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } /* * Remove PCB from various lists. */ void in_pcbremlists(inp) struct inpcb *inp; { inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } } LIST_REMOVE(inp, inp_list); inp->inp_pcbinfo->ipi_count--; }