URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [net/] [bsd_tcpip/] [v2_0/] [src/] [sys/] [netinet/] [ip_encap.c] - Rev 27
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // src/sys/netinet/ip_encap.c // //========================================================================== //####BSDCOPYRIGHTBEGIN#### // // ------------------------------------------- // // Portions of this software may have been derived from OpenBSD, // FreeBSD or other sources, and are covered by the appropriate // copyright disclaimers included herein. // // Portions created by Red Hat are // Copyright (C) 2002 Red Hat, Inc. All Rights Reserved. // // ------------------------------------------- // //####BSDCOPYRIGHTEND#### //========================================================================== /* $KAME: ip_encap.c,v 1.73 2001/10/02 08:30:58 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * My grandfather said that there's a devil inside tunnelling technology... * * We have surprisingly many protocols that want packets with IP protocol * #4 or #41. Here's a list of protocols that want protocol #41: * RFC1933 configured tunnel * RFC1933 automatic tunnel * RFC2401 IPsec tunnel * RFC2473 IPv6 generic packet tunnelling * RFC2529 6over4 tunnel * RFC3056 6to4 tunnel * isatap tunnel * mobile-ip6 (uses RFC2473) * Here's a list of protocol that want protocol #4: * RFC1853 IPv4-in-IPv4 tunnelling * RFC2003 IPv4 encapsulation within IPv4 * RFC2344 reverse tunnelling for mobile-ip4 * RFC2401 IPsec tunnel * Well, what can I say. They impose different en/decapsulation mechanism * from each other, so they need separate protocol handler. The only one * we can easily determine by protocol # is IPsec, which always has * AH/ESP/IPComp header right after outer IP header. * * So, clearly good old protosw does not work for protocol #4 and #41. * The code will let you match protocol via src/dst address pair. */ /* XXX is M_NETADDR correct? */ /* * With USE_RADIX the code will use radix table for tunnel lookup, for * tunnels registered with encap_attach() with a addr/mask pair. * Faster on machines with thousands of tunnel registerations (= interfaces). * * The code assumes that radix table code can handle non-continuous netmask, * as it will pass radix table memory region with (src + dst) sockaddr pair. * * FreeBSD is excluded here as they make max_keylen a static variable, and * thus forbid definition of radix table other than proper domains. */ #include <sys/param.h> #include <sys/socket.h> #include <sys/sockio.h> #include <sys/mbuf.h> #include <sys/errno.h> #include <sys/protosw.h> #include <sys/queue.h> #include <net/if.h> #include <net/route.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <netinet/ip.h> #include <netinet/ip_var.h> #include <netinet/ip_encap.h> #ifdef MROUTING #include <netinet/ip_mroute.h> #endif /* MROUTING */ #ifdef __OpenBSD__ #include <netinet/ip_ipsp.h> #endif #ifdef INET6 #include <netinet/ip6.h> #include <netinet6/ip6_var.h> #include <netinet6/ip6protosw.h> #include <netinet6/in6_var.h> #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__OpenBSD__) || (defined(__bsdi__) && _BSDI_VERSION >= 199802) #include <netinet/in_pcb.h> #else #include <netinet6/in6_pcb.h> #endif #include <netinet/icmp6.h> #endif #include <stdarg.h> #include <sys/malloc.h> /* to lookup a pair of address using radix tree */ struct sockaddr_pack { u_int8_t sp_len; u_int8_t sp_family; /* not really used */ /* followed by variable-length data */ } __attribute__((__packed__)); struct pack4 { struct sockaddr_pack p; struct sockaddr_in mine; struct sockaddr_in yours; } __attribute__((__packed__)); struct pack6 { struct sockaddr_pack p; struct sockaddr_in6 mine; struct sockaddr_in6 yours; } __attribute__((__packed__)); enum direction { INBOUND, OUTBOUND }; #ifdef INET static struct encaptab *encap4_lookup __P((struct mbuf *, int, int, enum direction)); #endif #ifdef INET6 static struct encaptab *encap6_lookup __P((struct mbuf *, int, int, enum direction)); #endif static int encap_add __P((struct encaptab *)); static int encap_remove __P((struct encaptab *)); static int encap_afcheck __P((int, const struct sockaddr *, const struct sockaddr *)); #ifdef USE_RADIX static struct radix_node_head *encap_rnh __P((int)); static int mask_matchlen __P((const struct sockaddr *)); #endif #ifndef USE_RADIX static int mask_match __P((const struct encaptab *, const struct sockaddr *, const struct sockaddr *)); #endif static void encap_fillarg __P((struct mbuf *, const struct encaptab *)); #ifndef LIST_HEAD_INITIALIZER /* rely upon BSS initialization */ LIST_HEAD(, encaptab) encaptab; #else LIST_HEAD(, encaptab) encaptab = LIST_HEAD_INITIALIZER(&encaptab); #endif #ifdef USE_RADIX extern int max_keylen; /* radix.c */ struct radix_node_head *encap_head[2]; /* 0 for AF_INET, 1 for AF_INET6 */ #endif void encap_init() { static int initialized = 0; if (initialized) return; initialized++; #if 0 /* * we cannot use LIST_INIT() here, since drivers may want to call * encap_attach(), on driver attach. encap_init() will be called * on AF_INET{,6} initialization, which happens after driver * initialization - using LIST_INIT() here can nuke encap_attach() * from drivers. */ LIST_INIT(&encaptab); #endif #ifdef USE_RADIX /* * initialize radix lookup table. * max_keylen initialization should happen before the call to rn_init(). */ rn_inithead((void **)&encap_head[0], sizeof(struct sockaddr_pack) << 3); if (sizeof(struct pack4) > max_keylen) max_keylen = sizeof(struct pack4); #ifdef INET6 rn_inithead((void **)&encap_head[1], sizeof(struct sockaddr_pack) << 3); if (sizeof(struct pack6) > max_keylen) max_keylen = sizeof(struct pack6); #endif #endif } #ifdef INET static struct encaptab * encap4_lookup(m, off, proto, dir) struct mbuf *m; int off; int proto; enum direction dir; { struct ip *ip; struct pack4 pack; struct encaptab *ep, *match; int prio, matchprio; #ifdef USE_RADIX struct radix_node_head *rnh = encap_rnh(AF_INET); struct radix_node *rn; #endif #ifdef DIAGNOSTIC if (m->m_len < sizeof(*ip)) panic("encap4_lookup"); #endif ip = mtod(m, struct ip *); bzero(&pack, sizeof(pack)); pack.p.sp_len = sizeof(pack); pack.mine.sin_family = pack.yours.sin_family = AF_INET; pack.mine.sin_len = pack.yours.sin_len = sizeof(struct sockaddr_in); if (dir == INBOUND) { pack.mine.sin_addr = ip->ip_dst; pack.yours.sin_addr = ip->ip_src; } else { pack.mine.sin_addr = ip->ip_src; pack.yours.sin_addr = ip->ip_dst; } match = NULL; matchprio = 0; #ifdef USE_RADIX rn = rnh->rnh_matchaddr((caddr_t)&pack, rnh); if (rn && (rn->rn_flags & RNF_ROOT) == 0) { match = (struct encaptab *)rn; matchprio = mask_matchlen(match->srcmask) + mask_matchlen(match->dstmask); } #endif for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { if (ep->af != AF_INET) continue; if (ep->proto >= 0 && ep->proto != proto) continue; if (ep->func) prio = (*ep->func)(m, off, proto, ep->arg); else { #ifdef USE_RADIX continue; #else prio = mask_match(ep, (struct sockaddr *)&pack.mine, (struct sockaddr *)&pack.yours); #endif } /* * We prioritize the matches by using bit length of the * matches. mask_match() and user-supplied matching function * should return the bit length of the matches (for example, * if both src/dst are matched for IPv4, 64 should be returned). * 0 or negative return value means "it did not match". * * The question is, since we have two "mask" portion, we * cannot really define total order between entries. * For example, which of these should be preferred? * mask_match() returns 48 (32 + 16) for both of them. * src=3ffe::/16, dst=3ffe:501::/32 * src=3ffe:501::/32, dst=3ffe::/16 * * We need to loop through all the possible candidates * to get the best match - the search takes O(n) for * n attachments (i.e. interfaces). * * For radix-based lookup, I guess source takes precedence. * See rn_{refines,lexobetter} for the correct answer. */ if (prio <= 0) continue; if (prio > matchprio) { matchprio = prio; match = ep; } } return match; #undef s #undef d } void #if (defined(__FreeBSD__) && __FreeBSD__ >= 4) encap4_input(struct mbuf *m, int off) #else #if __STDC__ encap4_input(struct mbuf *m, ...) #else encap4_input(m, va_alist) struct mbuf *m; va_dcl #endif #endif /* (defined(__FreeBSD__) && __FreeBSD__ >= 4) */ { #if !(defined(__FreeBSD__) && __FreeBSD__ >= 4) int off, proto; va_list ap; #else int proto; #endif /* !(defined(__FreeBSD__) && __FreeBSD__ >= 4) */ const struct protosw *psw; struct encaptab *match; #if !(defined(__FreeBSD__) && __FreeBSD__ >= 4) va_start(ap, m); off = va_arg(ap, int); #if !defined(__OpenBSD__) proto = va_arg(ap, int); #endif va_end(ap); #endif /* !(defined(__FreeBSD__) && __FreeBSD__ >= 4) */ #if defined(__OpenBSD__) || (defined(__FreeBSD__) && __FreeBSD__ >= 4) proto = mtod(m, struct ip *)->ip_p; #endif match = encap4_lookup(m, off, proto, INBOUND); if (match) { /* found a match, "match" has the best one */ psw = match->psw; if (psw && psw->pr_input) { encap_fillarg(m, match); #if defined(__FreeBSD__) && __FreeBSD__ >= 4 (*psw->pr_input)(m, off); #else (*psw->pr_input)(m, off, proto); #endif } else m_freem(m); return; } /* for backward compatibility - messy... */ #if defined(__NetBSD__) /* last resort: inject to raw socket */ rip_input(m, off, proto); #elif defined(__OpenBSD__) # if defined(MROUTING) || defined(IPSEC) if (proto == IPPROTO_IPV4) { ip4_input(m, off, proto); return; } # endif /* last resort: inject to raw socket */ rip_input(m, off, proto); #elif (defined(__FreeBSD__) && __FreeBSD__ >= 5) /* last resort: inject to raw socket */ rip_input(m, off); #elif defined(__FreeBSD__) && __FreeBSD__ >= 4 #ifdef MROUTING if (proto == IPPROTO_IPV4) { ipip_input(m, off); return; } #endif /* last resort: inject to raw socket */ rip_input(m, off); #else #ifdef MROUTING if (proto == IPPROTO_IPV4) { ipip_input(m, off, proto); return; } #endif /* last resort: inject to raw socket */ rip_input(m, off, proto); #endif } #endif #ifdef INET6 static struct encaptab * encap6_lookup(m, off, proto, dir) struct mbuf *m; int off; int proto; enum direction dir; { struct ip6_hdr *ip6; struct pack6 pack; int prio, matchprio; struct encaptab *ep, *match; #ifdef USE_RADIX struct radix_node_head *rnh = encap_rnh(AF_INET6); struct radix_node *rn; #endif #ifdef DIAGNOSTIC if (m->m_len < sizeof(*ip6)) panic("encap6_lookup"); #endif ip6 = mtod(m, struct ip6_hdr *); bzero(&pack, sizeof(pack)); pack.p.sp_len = sizeof(pack); pack.mine.sin6_family = pack.yours.sin6_family = AF_INET6; pack.mine.sin6_len = pack.yours.sin6_len = sizeof(struct sockaddr_in6); if (dir == INBOUND) { pack.mine.sin6_addr = ip6->ip6_dst; pack.yours.sin6_addr = ip6->ip6_src; } else { pack.mine.sin6_addr = ip6->ip6_src; pack.yours.sin6_addr = ip6->ip6_dst; } match = NULL; matchprio = 0; #ifdef USE_RADIX rn = rnh->rnh_matchaddr((caddr_t)&pack, rnh); if (rn && (rn->rn_flags & RNF_ROOT) == 0) { match = (struct encaptab *)rn; matchprio = mask_matchlen(match->srcmask) + mask_matchlen(match->dstmask); } #endif for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { if (ep->af != AF_INET6) continue; if (ep->proto >= 0 && ep->proto != proto) continue; if (ep->func) prio = (*ep->func)(m, off, proto, ep->arg); else { #ifdef USE_RADIX continue; #else prio = mask_match(ep, (struct sockaddr *)&pack.mine, (struct sockaddr *)&pack.yours); #endif } /* see encap4_lookup() for issues here */ if (prio <= 0) continue; if (prio > matchprio) { matchprio = prio; match = ep; } } return match; #undef s #undef d } int encap6_input(mp, offp, proto) struct mbuf **mp; int *offp; int proto; { struct mbuf *m = *mp; const struct ip6protosw *psw; struct encaptab *match; match = encap6_lookup(m, *offp, proto, INBOUND); if (match) { /* found a match */ psw = (const struct ip6protosw *)match->psw; if (psw && psw->pr_input) { encap_fillarg(m, match); return (*psw->pr_input)(mp, offp, proto); } else { m_freem(m); return IPPROTO_DONE; } } #ifdef __OpenBSD__ /* last resort */ return ip4_input6(mp, offp, 0); /* XXX last argument ignored */ #else /* last resort: inject to raw socket */ return rip6_input(mp, offp, proto); #endif } #endif static int encap_add(ep) struct encaptab *ep; { #ifdef USE_RADIX struct radix_node_head *rnh = encap_rnh(ep->af); #endif int error = 0; LIST_INSERT_HEAD(&encaptab, ep, chain); #ifdef USE_RADIX if (!ep->func && rnh) { if (!rnh->rnh_addaddr((caddr_t)ep->addrpack, (caddr_t)ep->maskpack, rnh, ep->nodes)) { error = EEXIST; goto fail; } } #endif return error; #ifdef USE_RADIX fail: LIST_REMOVE(ep, chain); return error; #endif } static int encap_remove(ep) struct encaptab *ep; { #ifdef USE_RADIX struct radix_node_head *rnh = encap_rnh(ep->af); #endif int error = 0; LIST_REMOVE(ep, chain); #ifdef USE_RADIX if (!ep->func && rnh) { if (!rnh->rnh_deladdr((caddr_t)ep->addrpack, (caddr_t)ep->maskpack, rnh)) error = ESRCH; } #endif return error; } static int encap_afcheck(af, sp, dp) int af; const struct sockaddr *sp; const struct sockaddr *dp; { if (sp && dp) { if (sp->sa_len != dp->sa_len) return EINVAL; if (af != sp->sa_family || af != dp->sa_family) return EINVAL; } else if (!sp && !dp) ; else return EINVAL; switch (af) { case AF_INET: if (sp && sp->sa_len != sizeof(struct sockaddr_in)) return EINVAL; if (dp && dp->sa_len != sizeof(struct sockaddr_in)) return EINVAL; break; #ifdef INET6 case AF_INET6: if (sp && sp->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; if (dp && dp->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; break; #endif default: return EAFNOSUPPORT; } return 0; } /* * sp (src ptr) is always my side, and dp (dst ptr) is always remote side. * length of mask (sm and dm) is assumed to be same as sp/dp. * Return value will be necessary as input (cookie) for encap_detach(). */ const struct encaptab * encap_attach(af, proto, sp, sm, dp, dm, psw, arg) int af; int proto; const struct sockaddr *sp, *sm; const struct sockaddr *dp, *dm; const struct protosw *psw; void *arg; { struct encaptab *ep; int error; int s; size_t l; struct pack4 *pack4; #ifdef INET6 struct pack6 *pack6; #endif #if defined(__NetBSD__) || defined(__OpenBSD__) s = splsoftnet(); #else s = splnet(); #endif /* sanity check on args */ error = encap_afcheck(af, sp, dp); if (error) goto fail; /* check if anyone have already attached with exactly same config */ for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { if (ep->af != af) continue; if (ep->proto != proto) continue; if (ep->func) continue; #ifdef DIAGNOSTIC if (!ep->src || !ep->dst || !ep->srcmask || !ep->dstmask) panic("null pointers in encaptab"); #endif if (ep->src->sa_len != sp->sa_len || bcmp(ep->src, sp, sp->sa_len) != 0 || bcmp(ep->srcmask, sm, sp->sa_len) != 0) continue; if (ep->dst->sa_len != dp->sa_len || bcmp(ep->dst, dp, dp->sa_len) != 0 || bcmp(ep->dstmask, dm, dp->sa_len) != 0) continue; error = EEXIST; goto fail; } switch (af) { case AF_INET: l = sizeof(*pack4); break; #ifdef INET6 case AF_INET6: l = sizeof(*pack6); break; #endif default: goto fail; } #ifdef DIAGNOSTIC /* if l exceeds the value sa_len can possibly express, it's wrong. */ if (l > (1 << (8 * sizeof(ep->addrpack->sa_len)))) { error = EINVAL; goto fail; } #endif ep = malloc(sizeof(*ep), M_NETADDR, M_NOWAIT); /* M_NETADDR ok? */ if (ep == NULL) { error = ENOBUFS; goto fail; } bzero(ep, sizeof(*ep)); ep->addrpack = malloc(l, M_NETADDR, M_NOWAIT); if (ep->addrpack == NULL) { error = ENOBUFS; goto gc; } ep->maskpack = malloc(l, M_NETADDR, M_NOWAIT); if (ep->maskpack == NULL) { error = ENOBUFS; goto gc; } ep->af = af; ep->proto = proto; ep->addrpack->sa_len = l & 0xff; ep->maskpack->sa_len = l & 0xff; switch (af) { case AF_INET: pack4 = (struct pack4 *)ep->addrpack; ep->src = (struct sockaddr *)&pack4->mine; ep->dst = (struct sockaddr *)&pack4->yours; pack4 = (struct pack4 *)ep->maskpack; ep->srcmask = (struct sockaddr *)&pack4->mine; ep->dstmask = (struct sockaddr *)&pack4->yours; break; #ifdef INET6 case AF_INET6: pack6 = (struct pack6 *)ep->addrpack; ep->src = (struct sockaddr *)&pack6->mine; ep->dst = (struct sockaddr *)&pack6->yours; pack6 = (struct pack6 *)ep->maskpack; ep->srcmask = (struct sockaddr *)&pack6->mine; ep->dstmask = (struct sockaddr *)&pack6->yours; break; #endif } bcopy(sp, ep->src, sp->sa_len); bcopy(sm, ep->srcmask, sp->sa_len); bcopy(dp, ep->dst, dp->sa_len); bcopy(dm, ep->dstmask, dp->sa_len); ep->psw = psw; ep->arg = arg; error = encap_add(ep); if (error) goto gc; error = 0; splx(s); return ep; gc: if (ep->addrpack) free(ep->addrpack, M_NETADDR); if (ep->maskpack) free(ep->maskpack, M_NETADDR); if (ep) free(ep, M_NETADDR); fail: splx(s); return NULL; } const struct encaptab * encap_attach_func(af, proto, func, psw, arg) int af; int proto; int (*func) __P((const struct mbuf *, int, int, void *)); const struct protosw *psw; void *arg; { struct encaptab *ep; int error; int s; #if defined(__NetBSD__) || defined(__OpenBSD__) s = splsoftnet(); #else s = splnet(); #endif /* sanity check on args */ if (!func) { error = EINVAL; goto fail; } error = encap_afcheck(af, NULL, NULL); if (error) goto fail; ep = malloc(sizeof(*ep), M_NETADDR, M_NOWAIT); /*XXX*/ if (ep == NULL) { error = ENOBUFS; goto fail; } bzero(ep, sizeof(*ep)); ep->af = af; ep->proto = proto; ep->func = func; ep->psw = psw; ep->arg = arg; error = encap_add(ep); if (error) goto fail; error = 0; splx(s); return ep; fail: splx(s); return NULL; } /* XXX encap4_ctlinput() is necessary if we set DF=1 on outer IPv4 header */ #ifdef INET6 #if defined(HAVE_NRL_INPCB) || (defined(__FreeBSD__) && __FreeBSD__ >= 3) #undef in6_rtchange #define in6_rtchange in_rtchange #define in6pcb inpcb #endif void encap6_ctlinput(cmd, sa, d0) int cmd; struct sockaddr *sa; void *d0; { void *d = d0; struct ip6_hdr *ip6; struct mbuf *m; int off; struct ip6ctlparam *ip6cp = NULL; const struct sockaddr_in6 *sa6_src = NULL; void *cmdarg; int nxt; struct encaptab *ep; const struct ip6protosw *psw; if (sa->sa_family != AF_INET6 || sa->sa_len != sizeof(struct sockaddr_in6)) return; if ((unsigned)cmd >= PRC_NCMDS) return; if (cmd == PRC_HOSTDEAD) d = NULL; #if defined(__NetBSD__) || defined(__OpenBSD__) else if (cmd == PRC_MSGSIZE) ; /* special code is present, see below */ #endif else if (inet6ctlerrmap[cmd] == 0) return; /* if the parameter is from icmp6, decode it. */ if (d != NULL) { ip6cp = (struct ip6ctlparam *)d; m = ip6cp->ip6c_m; ip6 = ip6cp->ip6c_ip6; off = ip6cp->ip6c_off; cmdarg = ip6cp->ip6c_cmdarg; sa6_src = ip6cp->ip6c_src; nxt = ip6cp->ip6c_nxt; } else { m = NULL; ip6 = NULL; cmdarg = NULL; sa6_src = &sa6_any; nxt = -1; } #if defined(__NetBSD__) || defined(__OpenBSD__) if (ip6 && cmd == PRC_MSGSIZE) { int valid = 0; struct encaptab *match; /* * Check to see if we have a valid encap configuration. */ match = encap6_lookup(m, off, nxt, OUTBOUND); if (match) valid++; /* * Depending on the value of "valid" and routing table * size (mtudisc_{hi,lo}wat), we will: * - recalcurate the new MTU and create the * corresponding routing entry, or * - ignore the MTU change notification. */ icmp6_mtudisc_update((struct ip6ctlparam *)d, valid); } #endif /* inform all listeners */ for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { if (ep->af != AF_INET6) continue; if (ep->proto >= 0 && ep->proto != nxt) continue; /* should optimize by looking at address pairs */ /* XXX need to pass ep->arg or ep itself to listeners */ psw = (const struct ip6protosw *)ep->psw; if (psw && psw->pr_ctlinput) (*psw->pr_ctlinput)(cmd, sa, d); } rip6_ctlinput(cmd, sa, d0); } #endif int encap_detach(cookie) const struct encaptab *cookie; { const struct encaptab *ep = cookie; struct encaptab *p; int error; for (p = LIST_FIRST(&encaptab); p; p = LIST_NEXT(p, chain)) { if (p == ep) { error = encap_remove(p); if (error) return error; if (!ep->func) { free(p->addrpack, M_NETADDR); free(p->maskpack, M_NETADDR); } free(p, M_NETADDR); /*XXX*/ return 0; } } return ENOENT; } #ifdef USE_RADIX static struct radix_node_head * encap_rnh(af) int af; { switch (af) { case AF_INET: return encap_head[0]; #ifdef INET6 case AF_INET6: return encap_head[1]; #endif default: return NULL; } } static int mask_matchlen(sa) const struct sockaddr *sa; { const char *p, *ep; int l; p = (const char *)sa; ep = p + sa->sa_len; p += 2; /* sa_len + sa_family */ l = 0; while (p < ep) { l += (*p ? 8 : 0); /* estimate */ p++; } return l; } #endif #ifndef USE_RADIX static int mask_match(ep, sp, dp) const struct encaptab *ep; const struct sockaddr *sp; const struct sockaddr *dp; { struct sockaddr_storage s; struct sockaddr_storage d; int i; const u_int8_t *p, *q; u_int8_t *r; int matchlen; #ifdef DIAGNOSTIC if (ep->func) panic("wrong encaptab passed to mask_match"); #endif if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d)) return 0; if (sp->sa_family != ep->af || dp->sa_family != ep->af) return 0; if (sp->sa_len != ep->src->sa_len || dp->sa_len != ep->dst->sa_len) return 0; matchlen = 0; p = (const u_int8_t *)sp; q = (const u_int8_t *)ep->srcmask; r = (u_int8_t *)&s; for (i = 0 ; i < sp->sa_len; i++) { r[i] = p[i] & q[i]; /* XXX estimate */ matchlen += (q[i] ? 8 : 0); } p = (const u_int8_t *)dp; q = (const u_int8_t *)ep->dstmask; r = (u_int8_t *)&d; for (i = 0 ; i < dp->sa_len; i++) { r[i] = p[i] & q[i]; /* XXX rough estimate */ matchlen += (q[i] ? 8 : 0); } /* need to overwrite len/family portion as we don't compare them */ s.ss_len = sp->sa_len; s.ss_family = sp->sa_family; d.ss_len = dp->sa_len; d.ss_family = dp->sa_family; if (bcmp(&s, ep->src, ep->src->sa_len) == 0 && bcmp(&d, ep->dst, ep->dst->sa_len) == 0) { return matchlen; } else return 0; } #endif static void encap_fillarg(m, ep) struct mbuf *m; const struct encaptab *ep; { struct mbuf *n; n = m_aux_add(m, AF_INET, IPPROTO_IPV4); if (n) { *mtod(n, void **) = ep->arg; n->m_len = sizeof(void *); } } void * encap_getarg(m) struct mbuf *m; { void *p; struct mbuf *n; p = NULL; n = m_aux_find(m, AF_INET, IPPROTO_IPV4); if (n) { if (n->m_len == sizeof(void *)) p = *mtod(n, void **); m_aux_delete(m, n); } return p; }
Go to most recent revision | Compare with Previous | Blame | View Log