URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-2.0/] [packages/] [net/] [snmp/] [agent/] [v2_0/] [src/] [agent_registry.c] - Rev 600
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // ./agent/current/src/agent_registry.c // // //========================================================================== //####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later version. // // eCos is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with eCos; if not, write to the Free Software Foundation, Inc., // 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. // // As a special exception, if other files instantiate templates or use macros // or inline functions from this file, or you compile this file and link it // with other works to produce a work based on this file, this file does not // by itself cause the resulting work to be covered by the GNU General Public // License. However the source code for this file must still be made available // in accordance with section (3) of the GNU General Public License. // // This exception does not invalidate any other reasons why a work based on // this file might be covered by the GNU General Public License. // // Alternative licenses for eCos may be arranged by contacting Red Hat, Inc. // at http://sources.redhat.com/ecos/ecos-license/ // ------------------------------------------- //####ECOSGPLCOPYRIGHTEND#### //####UCDSNMPCOPYRIGHTBEGIN#### // // ------------------------------------------- // // Portions of this software may have been derived from the UCD-SNMP // project, <http://ucd-snmp.ucdavis.edu/> from the University of // California at Davis, which was originally based on the Carnegie Mellon // University SNMP implementation. Portions of this software are therefore // covered by the appropriate copyright disclaimers included herein. // // The release used was version 4.1.2 of May 2000. "ucd-snmp-4.1.2" // ------------------------------------------- // //####UCDSNMPCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): hmt // Contributors: hmt // Date: 2000-05-30 // Purpose: Port of UCD-SNMP distribution to eCos. // Description: // // //####DESCRIPTIONEND#### // //========================================================================== /******************************************************************** Copyright 1989, 1991, 1992 by Carnegie Mellon University Derivative Work - Copyright 1996, 1998, 1999, 2000 The Regents of the University of California All Rights Reserved Permission to use, copy, modify and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of CMU and The Regents of the University of California not be used in advertising or publicity pertaining to distribution of the software without specific written permission. CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *********************************************************************/ /* * agent_registry.c * * Maintain a registry of MIB subtrees, together * with related information regarding mibmodule, sessions, etc */ #define IN_SNMP_VARS_C #include <config.h> #if HAVE_STRING_H #include <string.h> #endif #if HAVE_STDLIB_H #include <stdlib.h> #endif #include <sys/types.h> #include <stdio.h> #if HAVE_FCNTL_H #include <fcntl.h> #endif #if HAVE_WINSOCK_H #include <winsock.h> #endif #if TIME_WITH_SYS_TIME # ifdef WIN32 # include <sys/timeb.h> # else # include <sys/time.h> # endif # include <time.h> #else # if HAVE_SYS_TIME_H # include <sys/time.h> # else # include <time.h> # endif #endif #if HAVE_DMALLOC_H #include <dmalloc.h> #endif #include "mibincl.h" #include "snmp_client.h" #include "default_store.h" #include "ds_agent.h" #include "callback.h" #include "agent_callbacks.h" #include "agent_registry.h" #include "snmp_alarm.h" #include "snmpd.h" #include "mibgroup/struct.h" #include "mib_module_includes.h" #ifdef USING_AGENTX_SUBAGENT_MODULE #include "agentx/subagent.h" #include "agentx/client.h" #endif struct snmp_index { struct variable_list varbind; /* or pointer to var_list ? */ struct snmp_session *session; /* NULL implies unused ? */ struct snmp_index *next_oid; struct snmp_index *prev_oid; struct snmp_index *next_idx; } *snmp_index_head = NULL; struct subtree *subtrees; int tree_compare(const struct subtree *ap, const struct subtree *bp) { return snmp_oid_compare(ap->name,ap->namelen,bp->name,bp->namelen); } /* * Split the subtree into two at the specified point, * returning the new (second) subtree */ struct subtree * split_subtree(struct subtree *current, oid name[], int name_len ) { struct subtree *new_sub, *ptr; int i; char *cp; if ( snmp_oid_compare(name, name_len, current->end, current->end_len) > 0 ) return NULL; /* Split comes after the end of this subtree */ new_sub = (struct subtree *)malloc(sizeof(struct subtree)); if ( new_sub == NULL ) return NULL; memcpy(new_sub, current, sizeof(struct subtree)); /* Set up the point of division */ memcpy(current->end, name, name_len*sizeof(oid)); memcpy(new_sub->start, name, name_len*sizeof(oid)); current->end_len = name_len; new_sub->start_len = name_len; /* * Split the variables between the two new subtrees */ i = current->variables_len; current->variables_len = 0; for ( ; i > 0 ; i-- ) { /* Note that the variable "name" field omits the prefix common to the whole registration, hence the strange comparison here */ if ( snmp_oid_compare( new_sub->variables[0].name, new_sub->variables[0].namelen, name + current->namelen, name_len - current->namelen ) >= 0 ) break; /* All following variables belong to the second subtree */ current->variables_len++; new_sub->variables_len--; cp = (char *)new_sub->variables; new_sub->variables = (struct variable *)(cp + new_sub->variables_width); } /* Delegated trees should retain their variables regardless */ if ( current->variables_len > 0 && IS_DELEGATED((u_char)current->variables[0].type)) { new_sub->variables_len = 1; new_sub->variables = current->variables; } /* Propogate this split down through any children */ if ( current->children ) new_sub->children = split_subtree(current->children, name, name_len); /* Retain the correct linking of the list */ for ( ptr = current ; ptr != NULL ; ptr=ptr->children ) ptr->next = new_sub; for ( ptr = new_sub ; ptr != NULL ; ptr=ptr->children ) ptr->prev = current; for ( ptr = new_sub->next ; ptr != NULL ; ptr=ptr->children ) ptr->prev = new_sub; return new_sub; } int load_subtree( struct subtree *new_sub ) { struct subtree *tree1, *tree2, *new2; struct subtree *prev, *next; int res; if ( new_sub == NULL ) return MIB_REGISTERED_OK; /* Degenerate case */ /* * Find the subtree that contains the start of * the new subtree (if any)... */ tree1 = find_subtree( new_sub->start, new_sub->start_len, NULL ); /* * ...and the subtree that follows the new one * (NULL implies this is the final region covered) */ if ( tree1 == NULL ) tree2 = find_subtree_next( new_sub->start, new_sub->start_len, NULL ); else tree2 = tree1->next; /* * Handle new subtrees that start in virgin territory. */ if ( tree1 == NULL ) { new2 = NULL; /* Is there any overlap with later subtrees ? */ if ( tree2 && snmp_oid_compare( new_sub->end, new_sub->end_len, tree2->start, tree2->start_len ) > 0 ) new2 = split_subtree( new_sub, tree2->start, tree2->start_len ); /* * Link the new subtree (less any overlapping region) * with the list of existing registrations */ if ( tree2 ) { new_sub->prev = tree2->prev; tree2->prev = new_sub; } else new_sub->prev = find_subtree_previous( new_sub->start, new_sub->start_len, NULL ); if ( new_sub->prev ) new_sub->prev->next = new_sub; else subtrees = new_sub; new_sub->next = tree2; /* * If there was any overlap, * recurse to merge in the overlapping region * (including anything that may follow the overlap) */ if ( new2 ) return load_subtree( new2 ); } else { /* * If the new subtree starts *within* an existing registration * (rather than at the same point as it), then split the * existing subtree at this point. */ if ( snmp_oid_compare( new_sub->start, new_sub->start_len, tree1->start, tree1->start_len) != 0 ) tree1 = split_subtree( tree1, new_sub->start, new_sub->start_len); if ( tree1 == NULL ) return MIB_REGISTRATION_FAILED; /* Now consider the end of this existing subtree: * If it matches the new subtree precisely, * simply merge the new one into the list of children * If it includes the whole of the new subtree, * split it at the appropriate point, and merge again * * If the new subtree extends beyond this existing region, * split it, and recurse to merge the two parts. */ switch ( snmp_oid_compare( new_sub->end, new_sub->end_len, tree1->end, tree1->end_len)) { case -1: /* Existing subtree contains new one */ (void) split_subtree( tree1, new_sub->end, new_sub->end_len); /* Fall Through */ case 0: /* The two trees match precisely */ /* * Note: This is the only point where the original * registration OID ("name") is used */ prev = NULL; next = tree1; while ( next && next->namelen > new_sub->namelen ) { prev = next; next = next->children; } while ( next && next->namelen == new_sub->namelen && next->priority < new_sub->priority ) { prev = next; next = next->children; } if ( next && next->namelen == new_sub->namelen && next->priority == new_sub->priority ) return MIB_DUPLICATE_REGISTRATION; if ( prev ) { new_sub->children = next; prev->children = new_sub; new_sub->prev = prev->prev; new_sub->next = prev->next; } else { new_sub->children = next; new_sub->prev = next->prev; new_sub->next = next->next; for ( next = new_sub->next ; next != NULL ; next = next->children ) next->prev = new_sub; for ( prev = new_sub->prev ; prev != NULL ; prev = prev->children ) prev->next = new_sub; } break; case 1: /* New subtree contains the existing one */ new2 = split_subtree( new_sub, tree1->end, tree1->end_len); res = load_subtree( new_sub ); if ( res != MIB_REGISTERED_OK ) return res; return load_subtree( new2 ); } } return 0; } int register_mib_range(const char *moduleName, struct variable *var, size_t varsize, size_t numvars, oid *mibloc, size_t mibloclen, int priority, int range_subid, oid range_ubound, struct snmp_session *ss) { struct subtree *subtree, *sub2; int res, i; struct register_parameters reg_parms; subtree = (struct subtree *) malloc(sizeof(struct subtree)); if ( subtree == NULL ) return MIB_REGISTRATION_FAILED; memset(subtree, 0, sizeof(struct subtree)); DEBUGMSGTL(("register_mib", "registering \"%s\" at ", moduleName)); DEBUGMSGOID(("register_mib", mibloc, mibloclen)); DEBUGMSG(("register_mib","\n")); /* * Create the new subtree node being registered */ memcpy(subtree->name, mibloc, mibloclen*sizeof(oid)); subtree->namelen = (u_char) mibloclen; memcpy(subtree->start, mibloc, mibloclen*sizeof(oid)); subtree->start_len = (u_char) mibloclen; memcpy(subtree->end, mibloc, mibloclen*sizeof(oid)); subtree->end[ mibloclen-1 ]++; /* XXX - or use 'variables' info ? */ subtree->end_len = (u_char) mibloclen; memcpy(subtree->label, moduleName, strlen(moduleName)+1); if ( var ) { subtree->variables = (struct variable *) malloc(varsize*numvars); memcpy(subtree->variables, var, numvars*varsize); subtree->variables_len = numvars; subtree->variables_width = varsize; } subtree->priority = priority; subtree->session = ss; res = load_subtree(subtree); /* * If registering a range, * use the first subtree as a template * for the rest of the range */ if (( res == MIB_REGISTERED_OK ) && ( range_subid != 0 )) { for ( i = mibloc[range_subid-1] +1 ; i < (int)range_ubound ; i++ ) { sub2 = (struct subtree *) malloc(sizeof(struct subtree)); if ( sub2 == NULL ) { unregister_mib_range( mibloc, mibloclen, priority, range_subid, range_ubound); return MIB_REGISTRATION_FAILED; } memcpy( sub2, subtree, sizeof(struct subtree)); sub2->start[range_subid-1] = i; sub2->end[ range_subid-1] = i; /* XXX - ???? */ res = load_subtree(sub2); if ( res != MIB_REGISTERED_OK ) { unregister_mib_range( mibloc, mibloclen, priority, range_subid, range_ubound); return MIB_REGISTRATION_FAILED; } } } reg_parms.name = mibloc; reg_parms.namelen = mibloclen; reg_parms.priority = priority; reg_parms.range_subid = range_subid; reg_parms.range_ubound = range_ubound; snmp_call_callbacks(SNMP_CALLBACK_APPLICATION, SNMPD_CALLBACK_REGISTER_OID, ®_parms); return res; } int register_mib_priority(const char *moduleName, struct variable *var, size_t varsize, size_t numvars, oid *mibloc, size_t mibloclen, int priority) { return register_mib_range( moduleName, var, varsize, numvars, mibloc, mibloclen, priority, 0, 0, NULL ); } int register_mib(const char *moduleName, struct variable *var, size_t varsize, size_t numvars, oid *mibloc, size_t mibloclen) { return register_mib_priority( moduleName, var, varsize, numvars, mibloc, mibloclen, DEFAULT_MIB_PRIORITY ); } void unload_subtree( struct subtree *sub, struct subtree *prev) { struct subtree *ptr; if ( prev != NULL ) { /* non-leading entries are easy */ prev->children = sub->children; return; } /* otherwise, we need to amend our neighbours as well */ if ( sub->children == NULL) { /* just remove this node completely */ for (ptr = sub->prev ; ptr ; ptr=ptr->children ) ptr->next = sub->next; for (ptr = sub->next ; ptr ; ptr=ptr->children ) ptr->prev = sub->prev; return; } else { for (ptr = sub->prev ; ptr ; ptr=ptr->children ) ptr->next = sub->children; for (ptr = sub->next ; ptr ; ptr=ptr->children ) ptr->prev = sub->children; return; } } int unregister_mib_range( oid *name, size_t len, int priority, int range_subid, oid range_ubound) { struct subtree *list, *myptr; struct subtree *prev, *child; /* loop through children */ struct register_parameters reg_parms; list = find_subtree( name, len, subtrees ); if ( list == NULL ) return MIB_NO_SUCH_REGISTRATION; for ( child=list, prev=NULL; child != NULL; prev=child, child=child->children ) { if (( snmp_oid_compare( child->name, child->namelen, name, len) == 0 ) && ( child->priority == priority )) break; /* found it */ } if ( child == NULL ) return MIB_NO_SUCH_REGISTRATION; unload_subtree( child, prev ); myptr = child; /* remember this for later */ /* * Now handle any occurances in the following subtrees, * as a result of splitting this range. Due to the * nature of the way such splits work, the first * subtree 'slice' that doesn't refer to the given * name marks the end of the original region. * * This should also serve to register ranges. */ for ( list = myptr->next ; list != NULL ; list=list->next ) { for ( child=list, prev=NULL; child != NULL; prev=child, child=child->children ) { if (( snmp_oid_compare( child->name, child->namelen, name, len) == 0 ) && ( child->priority == priority )) { unload_subtree( child, prev ); free_subtree( child ); break; } } if ( child == NULL ) /* Didn't find the given name */ break; } free_subtree( myptr ); reg_parms.name = name; reg_parms.namelen = len; reg_parms.priority = priority; reg_parms.range_subid = range_subid; reg_parms.range_ubound = range_ubound; snmp_call_callbacks(SNMP_CALLBACK_APPLICATION, SNMPD_CALLBACK_UNREGISTER_OID, ®_parms); return MIB_UNREGISTERED_OK; } int unregister_mib_priority(oid *name, size_t len, int priority) { return unregister_mib_range( name, len, priority, 0, 0 ); } int unregister_mib(oid *name, size_t len) { return unregister_mib_priority( name, len, DEFAULT_MIB_PRIORITY ); } void unregister_mibs_by_session (struct snmp_session *ss) { struct subtree *list, *list2; struct subtree *child, *prev, *next_child; for( list = subtrees; list != NULL; list = list2) { list2 = list->next; for ( child=list, prev=NULL; child != NULL; child=next_child ) { next_child = child->children; if (( (ss->flags & SNMP_FLAGS_SUBSESSION) && child->session == ss ) || (!(ss->flags & SNMP_FLAGS_SUBSESSION) && child->session->subsession == ss )) { unload_subtree( child, prev ); free_subtree( child ); } else prev = child; } } } struct subtree * free_subtree(struct subtree *st) { struct subtree *ret = NULL; if ((snmp_oid_compare(st->name, st->namelen, st->start, st->start_len) == 0) && (st->variables != NULL)) free(st->variables); if (st->next != NULL) ret = st->next; free(st); return ret; } /* in_a_view: determines if a given snmp_pdu is allowed to see a given name/namelen OID pointer name IN - name of var, OUT - name matched nameLen IN -number of sub-ids in name, OUT - subid-is in matched name pi IN - relevant auth info re PDU cvp IN - relevant auth info re mib module */ int in_a_view(oid *name, /* IN - name of var, OUT - name matched */ size_t *namelen, /* IN -number of sub-ids in name*/ struct snmp_pdu *pdu, /* IN - relevant auth info re PDU */ int type) /* IN - variable type being checked */ { struct view_parameters view_parms; view_parms.pdu = pdu; view_parms.name = name; if (namelen) view_parms.namelen = *namelen; else view_parms.namelen = 0; view_parms.errorcode = 0; if (pdu->flags & UCD_MSG_FLAG_ALWAYS_IN_VIEW) return 0; /* Enable bypassing of view-based access control */ /* check for v1 and counter64s, since snmpv1 doesn't support it */ if (pdu->version == SNMP_VERSION_1 && type == ASN_COUNTER64) return 5; switch (pdu->version) { case SNMP_VERSION_1: case SNMP_VERSION_2c: #ifdef CYGPKG_SNMPAGENT_V3_SUPPORT case SNMP_VERSION_3: #endif snmp_call_callbacks(SNMP_CALLBACK_APPLICATION, SNMPD_CALLBACK_ACM_CHECK, &view_parms); return view_parms.errorcode; } return 1; } /* in_a_view: determines if a given snmp_pdu is ever going to be allowed to do anynthing or if it's not going to ever be authenticated. */ int check_access(struct snmp_pdu *pdu) /* IN - pdu being checked */ { struct view_parameters view_parms; view_parms.pdu = pdu; view_parms.name = 0; view_parms.namelen = 0; view_parms.errorcode = 0; if (pdu->flags & UCD_MSG_FLAG_ALWAYS_IN_VIEW) return 0; /* Enable bypassing of view-based access control */ switch (pdu->version) { case SNMP_VERSION_1: case SNMP_VERSION_2c: #ifdef CYGPKG_SNMPAGENT_V3_SUPPORT case SNMP_VERSION_3: #endif snmp_call_callbacks(SNMP_CALLBACK_APPLICATION, SNMPD_CALLBACK_ACM_CHECK_INITIAL, &view_parms); return view_parms.errorcode; } return 1; } /* lexicographical compare two object identifiers. * Returns -1 if name1 < name2, * 0 if name1 = name2, or name1 matches name2 for length of name2 * 1 if name1 > name2 * * Note: snmp_oid_compare checks len2 before last return. */ int compare_tree(const oid *in_name1, size_t len1, const oid *in_name2, size_t len2) { register int len, res; register const oid * name1 = in_name1; register const oid * name2 = in_name2; /* len = minimum of len1 and len2 */ if (len1 < len2) len = len1; else len = len2; /* find first non-matching OID */ while(len-- > 0){ res = *(name1++) - *(name2++); if (res < 0) return -1; if (res > 0) return 1; } /* both OIDs equal up to length of shorter OID */ if (len1 < len2) return -1; /* name1 matches name2 for length of name2, or they are equal */ return 0; } struct subtree *find_subtree_previous(oid *name, size_t len, struct subtree *subtree) { struct subtree *myptr, *previous = NULL; if ( subtree ) myptr = subtree; else myptr = subtrees; /* look through everything */ for( ; myptr != NULL; previous = myptr, myptr = myptr->next) { if (snmp_oid_compare(name, len, myptr->start, myptr->start_len) < 0) return previous; } return previous; } struct subtree *find_subtree_next(oid *name, size_t len, struct subtree *subtree) { struct subtree *myptr = NULL; myptr = find_subtree_previous(name, len, subtree); if ( myptr != NULL ) { myptr = myptr->next; while ( myptr && (myptr->variables == NULL || myptr->variables_len == 0) ) myptr = myptr->next; return myptr; } else if (subtree && snmp_oid_compare(name, len, subtree->start, subtree->start_len) < 0) return subtree; else return NULL; } struct subtree *find_subtree(oid *name, size_t len, struct subtree *subtree) { struct subtree *myptr; myptr = find_subtree_previous(name, len, subtree); if (myptr && snmp_oid_compare(name, len, myptr->end, myptr->end_len) < 0) return myptr; return NULL; } struct snmp_session *get_session_for_oid( oid *name, size_t len) { struct subtree *myptr; myptr = find_subtree_previous(name, len, subtrees); while ( myptr && myptr->variables == NULL ) myptr = myptr->next; if ( myptr == NULL ) return NULL; else return myptr->session; } static struct subtree root_subtrees[] = { { { 0 }, 1 }, /* ccitt */ { { 1 }, 1 }, /* iso */ { { 2 }, 1 } /* joint-ccitt-iso */ }; void setup_tree (void) { #ifdef USING_AGENTX_SUBAGENT_MODULE int role; role = ds_get_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE); ds_set_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE, MASTER_AGENT); #endif register_mib("", NULL, 0, 0, root_subtrees[0].name, root_subtrees[0].namelen); register_mib("", NULL, 0, 0, root_subtrees[1].name, root_subtrees[1].namelen); register_mib("", NULL, 0, 0, root_subtrees[2].name, root_subtrees[2].namelen); /* Support for 'static' subtrees (subtrees_old) has now been dropped */ /* No longer necessary to sort the mib tree - this is inherent in the construction of the subtree structure */ #ifdef USING_AGENTX_SUBAGENT_MODULE ds_set_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE, role); #endif } /* * Initial support for index allocation */ extern struct snmp_session *main_session; char * register_string_index( oid *name, size_t name_len, char *cp ) { struct variable_list varbind, *res; memset( &varbind, 0, sizeof(struct variable_list)); varbind.type = ASN_OCTET_STR; snmp_set_var_objid( &varbind, name, name_len ); if ( cp != ANY_STRING_INDEX ) { snmp_set_var_value( &varbind, (u_char *)cp, strlen(cp) ); res = register_index( &varbind, ALLOCATE_THIS_INDEX, main_session ); } else res = register_index( &varbind, ALLOCATE_ANY_INDEX, main_session ); if ( res == NULL ) return NULL; else return (char *)res->val.string; } int register_int_index( oid *name, size_t name_len, int val ) { struct variable_list varbind, *res; memset( &varbind, 0, sizeof(struct variable_list)); varbind.type = ASN_INTEGER; snmp_set_var_objid( &varbind, name, name_len ); varbind.val.string = varbind.buf; if ( val != ANY_INTEGER_INDEX ) { varbind.val_len = sizeof(long); *varbind.val.integer = val; res = register_index( &varbind, ALLOCATE_THIS_INDEX, main_session ); } else res = register_index( &varbind, ALLOCATE_ANY_INDEX, main_session ); if ( res == NULL ) return -1; else return *res->val.integer; } struct variable_list * register_oid_index( oid *name, size_t name_len, oid *value, size_t value_len ) { struct variable_list varbind; memset( &varbind, 0, sizeof(struct variable_list)); varbind.type = ASN_OBJECT_ID; snmp_set_var_objid( &varbind, name, name_len ); if ( value != ANY_OID_INDEX ) { snmp_set_var_value( &varbind, (u_char*)value, value_len*sizeof(oid) ); return( register_index( &varbind, ALLOCATE_THIS_INDEX, main_session )); } else return( register_index( &varbind, ALLOCATE_ANY_INDEX, main_session )); } struct variable_list* register_index(struct variable_list *varbind, int flags, struct snmp_session *ss ) { struct snmp_index *new_index, *idxptr, *idxptr2; struct snmp_index *prev_oid_ptr, *prev_idx_ptr; int res, res2, i; #if defined(USING_AGENTX_SUBAGENT_MODULE) && !defined(TESTING) if (ds_get_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE) == SUB_AGENT ) return( agentx_register_index( ss, varbind, flags )); #endif /* Look for the requested OID entry */ prev_oid_ptr = NULL; prev_idx_ptr = NULL; res = 1; res2 = 1; for( idxptr = snmp_index_head ; idxptr != NULL; prev_oid_ptr = idxptr, idxptr = idxptr->next_oid) { if ((res = snmp_oid_compare(varbind->name, varbind->name_length, idxptr->varbind.name, idxptr->varbind.name_length)) <= 0 ) break; } /* Found the OID - now look at the registered indices */ if ( res == 0 && idxptr ) { if ( varbind->type != idxptr->varbind.type ) return NULL; /* wrong type */ /* * If we've been asked for an arbitrary new value, * then find the end of the list. * If we've been asked for any arbitrary value, * then look for an unused entry, and use that. * If there aren't any, continue as for new. * Otherwise, locate the given value in the (sorted) * list of already allocated values */ if ( flags & ALLOCATE_ANY_INDEX ) { for(idxptr2 = idxptr ; idxptr2 != NULL; prev_idx_ptr = idxptr2, idxptr2 = idxptr2->next_idx) { if ( flags == ALLOCATE_ANY_INDEX && idxptr2->session == NULL ) { idxptr2->session = ss ; return &idxptr2->varbind; } } } else { for(idxptr2 = idxptr ; idxptr2 != NULL; prev_idx_ptr = idxptr2, idxptr2 = idxptr2->next_idx) { switch ( varbind->type ) { case ASN_INTEGER: res2 = (*varbind->val.integer - *idxptr2->varbind.val.integer); break; case ASN_OCTET_STR: i = SNMP_MIN(varbind->val_len, idxptr2->varbind.val_len); res2 = memcmp(varbind->val.string, idxptr2->varbind.val.string, i); break; case ASN_OBJECT_ID: res2 = snmp_oid_compare(varbind->val.objid, varbind->val_len/sizeof(oid), idxptr2->varbind.val.objid, idxptr2->varbind.val_len/sizeof(oid)); break; default: return NULL; /* wrong type */ } if ( res2 <= 0 ) break; } if ( res2 == 0 ) return NULL; /* duplicate value */ } } /* * OK - we've now located where the new entry needs to * be fitted into the index registry tree * To recap: * 'prev_oid_ptr' points to the head of the OID index * list prior to this one. If this is null, then * it means that this is the first OID in the list. * 'idxptr' points either to the head of this OID list, * or the next OID (if this is a new OID request) * These can be distinguished by the value of 'res'. * * 'prev_idx_ptr' points to the index entry that sorts * immediately prior to the requested value (if any). * If an arbitrary value is required, then this will * point to the last allocated index. * If this pointer is null, then either this is a new * OID request, or the requested value is the first * in the list. * 'idxptr2' points to the next sorted index (if any) * but is not actually needed any more. * * Clear? Good! * I hope you've been paying attention. * There'll be a test later :-) */ /* * We proceed by creating the new entry * (by copying the entry provided) */ new_index = (struct snmp_index *)malloc( sizeof( struct snmp_index )); if (new_index == NULL) return NULL; if (snmp_clone_var( varbind, &new_index->varbind ) != 0 ) { free( new_index ); return NULL; } new_index->session = ss; if ( varbind->type == ASN_OCTET_STR && flags == ALLOCATE_THIS_INDEX ) new_index->varbind.val.string[new_index->varbind.val_len] = 0; /* * If we've been given a value, then we can use that, but * otherwise, we need to create a new value for this entry. * Note that ANY_INDEX and NEW_INDEX are both covered by this * test (since NEW_INDEX & ANY_INDEX = ANY_INDEX, remember?) */ if ( flags & ALLOCATE_ANY_INDEX ) { if ( prev_idx_ptr ) { if ( snmp_clone_var( &prev_idx_ptr->varbind, &new_index->varbind ) != 0 ) { free( new_index ); return NULL; } } else new_index->varbind.val.string = new_index->varbind.buf; switch ( varbind->type ) { case ASN_INTEGER: if ( prev_idx_ptr ) { (*new_index->varbind.val.integer)++; } else *(new_index->varbind.val.integer) = 1; new_index->varbind.val_len = sizeof(long); break; case ASN_OCTET_STR: if ( prev_idx_ptr ) { i = new_index->varbind.val_len-1; while ( new_index->varbind.buf[ i ] == 'z' ) { new_index->varbind.buf[ i ] = 'a'; i--; if ( i < 0 ) { i = new_index->varbind.val_len; new_index->varbind.buf[ i ] = 'a'; new_index->varbind.buf[ i+1 ] = 0; } } new_index->varbind.buf[ i ]++; } else strcpy((char *)new_index->varbind.buf, "aaaa"); new_index->varbind.val_len = strlen((char *)new_index->varbind.buf); break; case ASN_OBJECT_ID: if ( prev_idx_ptr ) { i = prev_idx_ptr->varbind.val_len/sizeof(oid) -1; while ( new_index->varbind.val.objid[ i ] == 255 ) { new_index->varbind.val.objid[ i ] = 1; i--; if ( i == 0 && new_index->varbind.val.objid[0] == 2 ) { new_index->varbind.val.objid[ 0 ] = 1; i = new_index->varbind.val_len/sizeof(oid); new_index->varbind.val.objid[ i ] = 0; new_index->varbind.val_len += sizeof(oid); } } new_index->varbind.val.objid[ i ]++; } else { /* If the requested OID name is small enough, * append another OID (1) and use this as the * default starting value for new indexes. */ if ( (varbind->name_length+1) * sizeof(oid) <= 40 ) { for ( i = 0 ; i < (int)varbind->name_length ; i++ ) new_index->varbind.val.objid[i] = varbind->name[i]; new_index->varbind.val.objid[varbind->name_length] = 1; new_index->varbind.val_len = (varbind->name_length+1) * sizeof(oid); } else { /* Otherwise use '.1.1.1.1...' */ i = 40/sizeof(oid); if ( i > 4 ) i = 4; new_index->varbind.val_len = i * (sizeof(oid)); for (i-- ; i>=0 ; i-- ) new_index->varbind.val.objid[i] = 1; } } break; default: free( new_index ); return NULL; /* Index type not supported */ } } /* * Right - we've set up the new entry. * All that remains is to link it into the tree. * There are a number of possible cases here, * so watch carefully. */ if ( prev_idx_ptr ) { new_index->next_idx = prev_idx_ptr->next_idx; new_index->next_oid = prev_idx_ptr->next_oid; prev_idx_ptr->next_idx = new_index; } else { if ( res == 0 && idxptr ) { new_index->next_idx = idxptr; new_index->next_oid = idxptr->next_oid; } else { new_index->next_idx = NULL; new_index->next_oid = idxptr; } if ( prev_oid_ptr ) { while ( prev_oid_ptr ) { prev_oid_ptr->next_oid = new_index; prev_oid_ptr = prev_oid_ptr->next_idx; } } else snmp_index_head = new_index; } return &new_index->varbind; } /* * Release an allocated index, * to allow it to be used elsewhere */ int release_index(struct variable_list *varbind) { return( unregister_index( varbind, TRUE, NULL )); } /* * Completely remove an allocated index, * due to errors in the registration process. */ int remove_index(struct variable_list *varbind, struct snmp_session *ss) { return( unregister_index( varbind, FALSE, ss )); } void unregister_index_by_session(struct snmp_session *ss) { struct snmp_index *idxptr, *idxptr2; for(idxptr = snmp_index_head ; idxptr != NULL; idxptr = idxptr->next_oid) for(idxptr2 = idxptr ; idxptr2 != NULL; idxptr2 = idxptr2->next_idx) if ( idxptr2->session == ss ) idxptr2->session = NULL; } int unregister_index(struct variable_list *varbind, int remember, struct snmp_session *ss) { struct snmp_index *idxptr, *idxptr2; struct snmp_index *prev_oid_ptr, *prev_idx_ptr; int res, res2, i; #if defined(USING_AGENTX_SUBAGENT_MODULE) && !defined(TESTING) if (ds_get_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE) == SUB_AGENT ) return( agentx_unregister_index( ss, varbind )); #endif /* Look for the requested OID entry */ prev_oid_ptr = NULL; prev_idx_ptr = NULL; res = 1; res2 = 1; for( idxptr = snmp_index_head ; idxptr != NULL; prev_oid_ptr = idxptr, idxptr = idxptr->next_oid) { if ((res = snmp_oid_compare(varbind->name, varbind->name_length, idxptr->varbind.name, idxptr->varbind.name_length)) <= 0 ) break; } if ( res != 0 ) return INDEX_ERR_NOT_ALLOCATED; if ( varbind->type != idxptr->varbind.type ) return INDEX_ERR_WRONG_TYPE; for(idxptr2 = idxptr ; idxptr2 != NULL; prev_idx_ptr = idxptr2, idxptr2 = idxptr2->next_idx) { i = SNMP_MIN(varbind->val_len, idxptr2->varbind.val_len); res2 = memcmp(varbind->val.string, idxptr2->varbind.val.string, i); if ( res2 <= 0 ) break; } if ( res2 != 0 ) return INDEX_ERR_NOT_ALLOCATED; if ( ss != idxptr2->session ) return INDEX_ERR_WRONG_SESSION; /* * If this is a "normal" index unregistration, * mark the index entry as unused, but leave * it in situ. This allows differentiation * between ANY_INDEX and NEW_INDEX */ if ( remember ) { idxptr2->session = NULL; /* Unused index */ return SNMP_ERR_NOERROR; } /* * If this is a failed attempt to register a * number of indexes, the successful ones * must be removed completely. */ if ( prev_idx_ptr ) { prev_idx_ptr->next_idx = idxptr2->next_idx; } else if ( prev_oid_ptr ) { if ( idxptr2->next_idx ) /* Use p_idx_ptr as a temp variable */ prev_idx_ptr = idxptr2->next_idx; else prev_idx_ptr = idxptr2->next_oid; while ( prev_oid_ptr ) { prev_oid_ptr->next_oid = prev_idx_ptr; prev_oid_ptr = prev_oid_ptr->next_idx; } } else { if ( idxptr2->next_idx ) snmp_index_head = idxptr2->next_idx; else snmp_index_head = idxptr2->next_oid; } snmp_free_var( (struct variable_list *)idxptr2 ); return SNMP_ERR_NOERROR; } void dump_registry( void ) { struct subtree *myptr, *myptr2; struct snmp_index *idxptr, *idxptr2; char start_oid[SPRINT_MAX_LEN]; char end_oid[SPRINT_MAX_LEN]; for( myptr = subtrees ; myptr != NULL; myptr = myptr->next) { sprint_objid(start_oid, myptr->start, myptr->start_len); sprint_objid(end_oid, myptr->end, myptr->end_len); printf("%c %s - %s %c\n", ( myptr->variables ? ' ' : '(' ), start_oid, end_oid, ( myptr->variables ? ' ' : ')' )); for( myptr2 = myptr ; myptr2 != NULL; myptr2 = myptr2->children) { if ( myptr2->label && myptr2->label[0] ) printf("\t%s\n", myptr2->label); } } if ( snmp_index_head ) printf("\nIndex Allocations:\n"); for( idxptr = snmp_index_head ; idxptr != NULL; idxptr = idxptr->next_oid) { sprint_objid(start_oid, idxptr->varbind.name, idxptr->varbind.name_length); printf("%s indexes:\n", start_oid); for( idxptr2 = idxptr ; idxptr2 != NULL; idxptr2 = idxptr2->next_idx) { switch( idxptr2->varbind.type ) { case ASN_INTEGER: printf(" %c %ld %c\n", ( idxptr2->session ? ' ' : '(' ), *idxptr2->varbind.val.integer, ( idxptr2->session ? ' ' : ')' )); break; case ASN_OCTET_STR: printf(" %c %s %c\n", ( idxptr2->session ? ' ' : '(' ), idxptr2->varbind.val.string, ( idxptr2->session ? ' ' : ')' )); break; case ASN_OBJECT_ID: sprint_objid(end_oid, idxptr2->varbind.val.objid, idxptr2->varbind.val_len/sizeof(oid)); printf(" %c %s %c\n", ( idxptr2->session ? ' ' : '(' ), end_oid, ( idxptr2->session ? ' ' : ')' )); break; default: printf("unsupported type (%d)\n", idxptr2->varbind.type); } } } } #ifdef TESTING struct variable_list varbind; struct snmp_session main_sess, *main_session=&main_sess; void test_string_register( int n, char *cp ) { varbind.name[4] = n; if (register_string_index(varbind.name, varbind.name_length, cp) == NULL) printf("allocating %s failed\n", cp); } void test_int_register( int n, int val ) { varbind.name[4] = n; if (register_int_index( varbind.name, varbind.name_length, val ) == -1 ) printf("allocating %d/%d failed\n", n, val); } void test_oid_register( int n, int subid ) { struct variable_list *res; varbind.name[4] = n; if ( subid != -1 ) { varbind.val.objid[5] = subid; res = register_oid_index(varbind.name, varbind.name_length, varbind.val.objid, varbind.val_len/sizeof(oid) ); } else res = register_oid_index(varbind.name, varbind.name_length, NULL, 0); if (res == NULL ) printf("allocating %d/%d failed\n", n, subid); } void main( int argc, char argv[] ) { oid name[] = { 1, 2, 3, 4, 0 }; int i; memset( &varbind, 0, sizeof(struct variable_list)); snmp_set_var_objid( &varbind, name, 5 ); varbind.type = ASN_OCTET_STR; /* * Test index structure linking: * a) sorted by OID */ test_string_register( 20, "empty OID" ); test_string_register( 10, "first OID" ); test_string_register( 40, "last OID" ); test_string_register( 30, "middle OID" ); /* * b) sorted by index value */ test_string_register( 25, "eee: empty IDX" ); test_string_register( 25, "aaa: first IDX" ); test_string_register( 25, "zzz: last IDX" ); test_string_register( 25, "mmm: middle IDX" ); printf("This next one should fail....\n"); test_string_register( 25, "eee: empty IDX" ); /* duplicate */ printf("done\n"); /* * c) test initial index linking */ test_string_register( 5, "eee: empty initial IDX" ); test_string_register( 5, "aaa: replace initial IDX" ); /* * Did it all work? */ dump_registry(); unregister_index_by_session( main_session ); /* * Now test index allocation * a) integer values */ test_int_register( 110, -1 ); /* empty */ test_int_register( 110, -1 ); /* append */ test_int_register( 110, 10 ); /* append exact */ printf("This next one should fail....\n"); test_int_register( 110, 10 ); /* exact duplicate */ printf("done\n"); test_int_register( 110, -1 ); /* append */ test_int_register( 110, 5 ); /* insert exact */ /* * b) string values */ test_string_register( 120, NULL ); /* empty */ test_string_register( 120, NULL ); /* append */ test_string_register( 120, "aaaz" ); test_string_register( 120, NULL ); /* minor rollover */ test_string_register( 120, "zzzz" ); test_string_register( 120, NULL ); /* major rollover */ /* * c) OID values */ test_oid_register( 130, -1 ); /* empty */ test_oid_register( 130, -1 ); /* append */ varbind.val_len = varbind.name_length*sizeof(oid); memcpy( varbind.buf, varbind.name, varbind.val_len); varbind.val.objid = (oid*) varbind.buf; varbind.val_len += sizeof(oid); test_oid_register( 130, 255 ); /* append exact */ test_oid_register( 130, -1 ); /* minor rollover */ test_oid_register( 130, 100 ); /* insert exact */ printf("This next one should fail....\n"); test_oid_register( 130, 100 ); /* exact duplicate */ printf("done\n"); varbind.val.objid = (oid*)varbind.buf; for ( i=0; i<6; i++ ) varbind.val.objid[i]=255; varbind.val.objid[0]=1; test_oid_register( 130, 255 ); /* set up rollover */ test_oid_register( 130, -1 ); /* medium rollover */ for ( i=0; i<6; i++ ) varbind.val.objid[i]=255; varbind.val.objid[0]=2; test_oid_register( 130, 255 ); /* set up rollover */ test_oid_register( 130, -1 ); /* major rollover */ /* * Did it all work? */ dump_registry(); /* * Test the various "invalid" requests * (unsupported types, mis-matched types, etc) */ printf("The rest of these should fail....\n"); test_oid_register( 110, -1 ); test_oid_register( 110, 100 ); test_oid_register( 120, -1 ); test_oid_register( 120, 100 ); test_string_register( 110, NULL ); test_string_register( 110, "aaaa" ); test_string_register( 130, NULL ); test_string_register( 130, "aaaa" ); test_int_register( 120, -1 ); test_int_register( 120, 1 ); test_int_register( 130, -1 ); test_int_register( 130, 1 ); printf("done - this dump should be the same as before\n"); dump_registry(); } #endif
Go to most recent revision | Compare with Previous | Blame | View Log