URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [devs/] [can/] [loop/] [current/] [tests/] [can_overrun2.c] - Rev 786
Compare with Previous | Blame | View Log
//========================================================================== // // can_overrun2.c // // Test CAN device RX overrun events // //========================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): Uwe Kindler // Contributors: Uwe Kindler // Date: 2005-08-07 // Description: Simple read/write test of CAN driver //####DESCRIPTIONEND#### //=========================================================================== // INCLUDES //=========================================================================== #include <pkgconf/system.h> #include <cyg/infra/testcase.h> // test macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/infra/diag.h> // Package requirements #if defined(CYGPKG_IO_CAN) && defined(CYGPKG_KERNEL) #include <pkgconf/kernel.h> #include <cyg/io/io.h> #include <cyg/io/canio.h> // Package option requirements #if defined(CYGFUN_KERNEL_API_C) #include <cyg/hal/hal_arch.h> // CYGNUM_HAL_STACK_SIZE_TYPICAL #include <cyg/kernel/kapi.h> //=========================================================================== // DATA TYPES //=========================================================================== typedef struct st_thread_data { cyg_thread obj; long stack[CYGNUM_HAL_STACK_SIZE_TYPICAL]; cyg_handle_t hdl; } thread_data_t; //=========================================================================== // LOCAL DATA //=========================================================================== cyg_thread_entry_t can0_thread; thread_data_t can0_thread_data; cyg_thread_entry_t can1_thread; thread_data_t can1_thread_data; //=========================================================================== // LOCAL FUNCTIONS //=========================================================================== #include "can_test_aux.inl" // include CAN test auxiliary functions //=========================================================================== // WRITER THREAD //=========================================================================== void can0_thread(cyg_addrword_t data) { cyg_io_handle_t hCAN0; cyg_uint8 i; cyg_uint32 len; cyg_uint32 rx_bufsize; cyg_can_buf_info_t tx_buf_info; cyg_can_event rx_event; cyg_can_message tx_msg = { 0x000, // CAN identifier data : { {0x00, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7 }// 8 data bytes }, CYGNUM_CAN_ID_STD, // standard frame CYGNUM_CAN_FRAME_DATA, // data frame 2, // data length code }; if (ENOERR != cyg_io_lookup("/dev/can0", &hCAN0)) { CYG_TEST_FAIL_FINISH("Error opening /dev/can0"); } len = sizeof(tx_buf_info); if (ENOERR != cyg_io_get_config(hCAN0, CYG_IO_GET_CONFIG_CAN_BUFFER_INFO ,&tx_buf_info, &len)) { CYG_TEST_FAIL_FINISH("Error reading config of /dev/can0"); } // // Before we can write the CAN messages, we need to know the buffer size of the // receiver. The receiver will tell us this buffer size with one single CAN // message // len = sizeof(rx_event); if (ENOERR != cyg_io_read(hCAN0, &rx_event, &len)) { CYG_TEST_FAIL_FINISH("Error reading from /dev/can0"); } // // we expect a RX event here - we treat any other flag as an error // if (!(rx_event.flags & CYGNUM_CAN_EVENT_RX) || (rx_event.flags & !CYGNUM_CAN_EVENT_RX)) { CYG_TEST_FAIL_FINISH("Unexpected RX event for /dev/can0"); } rx_bufsize = *((cyg_uint32 *)rx_event.msg.data.bytes); // // now we send exactly one CAN message more than there is space in the receive buffer // this should cause an RX ovverun in receive buffer // diag_printf("/dev/can0: Sending %d CAN messages\n", rx_bufsize); for (i = 0; i <= rx_bufsize; ++i) { // // we store the message number as CAN id and in first data byte so // a receiver can check this later // CYG_CAN_MSG_SET_STD_ID(tx_msg, 0x000 + i); CYG_CAN_MSG_SET_DATA(tx_msg, 0, i); len = sizeof(tx_msg); if (ENOERR != cyg_io_write(hCAN0, &tx_msg, &len)) { CYG_TEST_FAIL_FINISH("Error writing to /dev/can0"); } else { print_can_msg(&tx_msg, ""); } } // for (i = 0; i <= rx_bufsize; ++i) cyg_thread_suspend(cyg_thread_self()); } //=========================================================================== // READER THREAD //=========================================================================== void can1_thread(cyg_addrword_t data) { cyg_io_handle_t hCAN1; cyg_uint8 i; cyg_uint32 len; cyg_can_buf_info_t rx_buf_info; cyg_can_event rx_event; cyg_can_message tx_msg; if (ENOERR != cyg_io_lookup("/dev/can1", &hCAN1)) { CYG_TEST_FAIL_FINISH("Error opening /dev/can1"); } len = sizeof(rx_buf_info); if (ENOERR != cyg_io_get_config(hCAN1, CYG_IO_GET_CONFIG_CAN_BUFFER_INFO ,&rx_buf_info, &len)) { CYG_TEST_FAIL_FINISH("Error reading config of /dev/can1"); } // // first we send the size of our receive buffer to the writer // we setup tx message now // tx_msg.id = 0x000; tx_msg.ext = CYGNUM_CAN_ID_STD; tx_msg.rtr = CYGNUM_CAN_FRAME_DATA; tx_msg.dlc = sizeof(rx_buf_info.rx_bufsize); // // we store size of rx buffer in CAN message. We do not need to care about // endianess here because this is a loopback driver test and we will receive // our own messages // *((cyg_uint32 *)tx_msg.data.bytes) = rx_buf_info.rx_bufsize; len = sizeof(tx_msg); // // as soon as we send a CAN message, thread 0 will resume because it is waiting // for a message // diag_printf("/dev/can1: Sending size of RX buffer %d\n", rx_buf_info.rx_bufsize); if (ENOERR != cyg_io_write(hCAN1, &tx_msg, &len)) { CYG_TEST_FAIL_FINISH("Error writing to /dev/can1"); } cyg_thread_delay(10); // let thread 0 run // // now we check if we received CAN messages - if receive buffer is not full // the we have an error here because we expect a full receive buffer // len = sizeof(rx_buf_info); if (ENOERR != cyg_io_get_config(hCAN1, CYG_IO_GET_CONFIG_CAN_BUFFER_INFO ,&rx_buf_info, &len)) { CYG_TEST_FAIL_FINISH("Error reading config of /dev/can1"); } if (rx_buf_info.rx_bufsize != rx_buf_info.rx_count) { CYG_TEST_FAIL_FINISH("RX buffer of /dev/can1 does not contain number of expected messages"); } // // now we wait for messages from /dev/can0 // diag_printf("/dev/can1: Receiving %d CAN messages\n", rx_buf_info.rx_count); for (i = 0; i < rx_buf_info.rx_count; ++i) { len = sizeof(rx_event); if (ENOERR != cyg_io_read(hCAN1, &rx_event, &len)) { CYG_TEST_FAIL_FINISH("Error reading from /dev/can0"); } else { if (rx_event.flags & CYGNUM_CAN_EVENT_RX) { print_can_msg(&rx_event.msg, ""); if (rx_event.msg.data.bytes[0] != (i + 1)) { CYG_TEST_FAIL_FINISH("Received /dev/can1 RX event contains invalid data"); } } else { CYG_TEST_FAIL_FINISH("Unexpected CAN event for /dev/can1"); } // // now check if any other flag is set // if (rx_event.flags & CYGNUM_CAN_EVENT_OVERRUN_RX) { diag_printf("RX queue overrun successfully indicated for /dev/can1\n"); // // if TX events are supported then we have already a TX event in receive queue because // we sent a message and the RX queue overrun will occur one message earlier // #if defined(CYGOPT_IO_CAN_TX_EVENT_SUPPORT) if (i < (rx_buf_info.rx_bufsize - 2)) #else if (i < (rx_buf_info.rx_bufsize - 1)) #endif { CYG_TEST_FAIL_FINISH("RX queue overrun occured too early for /dev/can1"); } else { CYG_TEST_PASS_FINISH("can_overrun2 test OK"); } } // if (rx_event.flags & CYGNUM_CAN_EVENT_OVERRUN_RX) } } } void cyg_start(void) { CYG_TEST_INIT(); // // create the two threads which access the CAN device driver // cyg_thread_create(4, can0_thread, (cyg_addrword_t) 0, "can0_thread", (void *) can0_thread_data.stack, 1024 * sizeof(long), &can0_thread_data.hdl, &can0_thread_data.obj); cyg_thread_create(5, can1_thread, (cyg_addrword_t) can0_thread_data.hdl, "can1_thread", (void *) can1_thread_data.stack, 1024 * sizeof(long), &can1_thread_data.hdl, &can1_thread_data.obj); cyg_thread_resume(can0_thread_data.hdl); cyg_thread_resume(can1_thread_data.hdl); cyg_scheduler_start(); } #else // CYGFUN_KERNEL_API_C #define N_A_MSG "Needs kernel C API" #endif #else // CYGPKG_IO_CAN && CYGPKG_KERNEL #define N_A_MSG "Needs IO/CAN and Kernel" #endif #ifdef N_A_MSG void cyg_start( void ) { CYG_TEST_INIT(); CYG_TEST_NA( N_A_MSG); } #endif // N_A_MSG // EOF serial4.c