URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [devs/] [disk/] [opencores/] [sdcmsc/] [current/] [src/] [if_sdcmsc.c] - Rev 810
Go to most recent revision | Compare with Previous | Blame | View Log
//========================================================================== // // if_sdcmsc.c // // Provide a disk device driver for SDCard Mass Storage Controller // //========================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 2004, 2006 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author: Piotr Skrzypek // Date: 2012-05-01 // //####DESCRIPTIONEND#### //========================================================================== #include <pkgconf/system.h> #include <cyg/infra/cyg_type.h> #include <cyg/infra/cyg_ass.h> #include <cyg/infra/diag.h> #include <cyg/hal/hal_arch.h> #include <cyg/hal/hal_if.h> #include <cyg/hal/hal_intr.h> #include <string.h> #include <errno.h> #include <cyg/io/io.h> #include <cyg/io/devtab.h> #include <cyg/io/disk.h> // Settings exported from CDL #include <pkgconf/devs_disk_opencores_sdcmsc.h> // SDCMSC address space #define SDCMSC_BASE 0x9e000000 // Register space #define SDCMSC_ARGUMENT 0x00 #define SDCMSC_COMMAND 0x04 #define SDCMSC_CARD_STATUS 0x08 #define SDCMSC_RESPONSE 0x0C #define SDCMSC_CONTROLLER_SETTING 0x1C #define SDCMSC_BLOCK_SIZE 0x20 #define SDCMSC_POWER_CONTROL 0x24 #define SDCMSC_SOFTWARE_RESET 0x28 #define SDCMSC_TIMEOUT 0x2C #define SDCMSC_NORMAL_INT_STATUS 0x30 #define SDCMSC_ERROR_INT_STATUS 0x34 #define SDCMSC_NORMAL_INT_ENABLE 0x38 #define SDCMSC_ERROR_INT_ENABLE 0x3C #define SDCMSC_CAPABILITY 0x48 #define SDCMSC_CLOCK_DIVIDER 0x4C #define SDCMSC_BD_BUFFER_STATUS 0x50 #define SDCMSC_DAT_INT_STATUS 0x54 #define SDCMSC_DAT_INT_ENABLE 0x58 #define SDCMSC_BD_RX 0x60 #define SDCMSC_BD_TX 0x80 // SDCMSC_COMMAND bits #define SDCMSC_COMMAND_CMDI(x) (x << 8) #define SDCMSC_COMMAND_CMDW(x) (x << 6) #define SDCMSC_COMMAND_CICE 0x10 #define SDCMSC_COMMAND_CIRC 0x08 #define SDCMSC_COMMAND_RTS_48 0x02 #define SDCMSC_COMMAND_RTS_136 0x01 //SDCMSC_CARD_STATUS bits #define SDCMSC_CARD_STATUS_CICMD 0x01 // SDCMSC_NORMAL_INT_STATUS bits #define SDCMSC_NORMAL_INT_STATUS_EI 0x8000 #define SDCMSC_NORMAL_INT_STATUS_CC 0x0001 // SDCMSC_DAT_INT_STATUS #define SDCMSC_DAT_INT_STATUS_TRS 0x01 typedef struct cyg_sdcmsc_disk_info_t { int is_v20; int is_sdhc; cyg_uint32 rca; int connected; } cyg_sdcmsc_disk_info_t; static int sdcmsc_card_cmd(cyg_uint32 cmd, cyg_uint32 arg, cyg_uint32 *response) { // Send command to card HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_COMMAND, cmd); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ARGUMENT, arg); // Wait for response cyg_uint32 reg; cyg_uint32 mask = SDCMSC_NORMAL_INT_STATUS_EI | SDCMSC_NORMAL_INT_STATUS_CC; do { HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, reg); } while(!(reg & mask)); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_NORMAL_INT_STATUS, 0); // Optionally read response register if(response) { HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_RESPONSE, *response); } // Check for errors if(reg & SDCMSC_NORMAL_INT_STATUS_EI) { HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, reg); if(reg & (1 << 3)) diag_printf("Command index error\n"); if(reg & (1 << 1)) diag_printf("Command CRC error\n"); if(reg & (1 << 0)) diag_printf("Command timeout\n"); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_ERROR_INT_STATUS, 0); return 0; } else { return 1; } } // Card initialization and identification implemented according to // Physical Layer Simplified Specification Version 3.01 static int sdcmsc_card_init(cyg_sdcmsc_disk_info_t *data, char *serial, char *firmware_rev, char *model_num, cyg_uint32 *capacity) { cyg_uint32 reg; cyg_uint32 cmd; cyg_uint32 arg; // Send CMD0 to switch the card to idle state cmd = SDCMSC_COMMAND_CMDI(0); if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0; // Send CMD8 offering 2.7V to 3.6V range // If the card doesn't responde it means either: // 1. Card supports v2.0 but can't communicate using // current voltage levels // 2. Card does not support v2.0 cmd = SDCMSC_COMMAND_CMDI(8) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; data->is_v20 = sdcmsc_card_cmd(cmd, 0x1AA, NULL); do { HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_CARD_STATUS, reg); } while(reg & SDCMSC_CARD_STATUS_CICMD); // Repeat ACMD41 until card set the busy bit to 1 // Since ACMD is an extended command, it must be preceded // by CMD55 do { cmd = SDCMSC_COMMAND_CMDI(55) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0; cmd = SDCMSC_COMMAND_CMDI(41) | SDCMSC_COMMAND_RTS_48; arg = data->is_v20 ? 0x40FF8000 : 0x00FF8000; if(!sdcmsc_card_cmd(cmd, arg, ®)) return 0; } while(!(reg & 0x80000000)); data->is_sdhc = !!(reg & 0x40000000); // Issue CMD2 to switch from ready state to ident. Unfortunately, it is // not possible to read whole CID because the command can be issued only // once, and the peripheral can store only 32bit of the command at once. cmd = SDCMSC_COMMAND_CMDI(2) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, 0, NULL)) return 0; // Issue CMD3 to get RCA and switch from ident state to stby. cmd = SDCMSC_COMMAND_CMDI(3) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, 0, ®)) return 0; data->rca = reg & 0xFFFF0000; // Calculate card capacity. Use information stored in CSD register. cyg_uint32 card_capacity; if(data->is_sdhc) { cmd = SDCMSC_COMMAND_CMDI(9) | SDCMSC_COMMAND_CMDW(1) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; card_capacity = reg & 0x3F; card_capacity <<= 16; cmd = SDCMSC_COMMAND_CMDI(9) | SDCMSC_COMMAND_CMDW(2) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; reg >>= 16; card_capacity |= reg; card_capacity += 1; card_capacity *= 1000; } else { cmd = SDCMSC_COMMAND_CMDI(9) | SDCMSC_COMMAND_CMDW(1) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; cyg_uint32 read_bl_len = (reg >> 16) & 0x0F; cyg_uint32 c_size = reg & 0x3FF; c_size <<= 2; cmd = SDCMSC_COMMAND_CMDI(9) | SDCMSC_COMMAND_CMDW(2) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; c_size |= (reg >> 30) & 0x03; cyg_uint32 c_size_mult = (reg >> 15) & 0x07; card_capacity = c_size + 1; card_capacity *= 1 << (c_size_mult + 2); card_capacity *= 1 << (read_bl_len); card_capacity >>= 9; } // Fill disk identification struct using information in CID register // use OEM/APPlication ID field to fill model_num, // Product revision field to fill firmware_rev, // and Product serial number to field to fill serial cmd = SDCMSC_COMMAND_CMDI(10) | SDCMSC_COMMAND_CMDW(0) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; model_num[0] = (reg >> 16) & 0xFF; model_num[1] = (reg >> 8) & 0xFF; model_num[2] = 0; cmd = SDCMSC_COMMAND_CMDI(10) | SDCMSC_COMMAND_CMDW(2) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; firmware_rev[0] = (reg >> 24) & 0xFF; firmware_rev[1] = 0; serial[0] = (reg >> 16) & 0xFF; serial[1] = (reg >> 8) & 0xFF; serial[2] = reg & 0xFF; cmd = SDCMSC_COMMAND_CMDI(10) | SDCMSC_COMMAND_CMDW(3) | SDCMSC_COMMAND_RTS_136; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; serial[3] = (reg >> 24) & 0xFF; // Put card in transfer state cmd = SDCMSC_COMMAND_CMDI(7) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, data->rca, ®)) return 0; if(reg != 0x700) return 0; // Set block size to 512 cmd = SDCMSC_COMMAND_CMDI(16) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, 512, NULL)) return 0; // Set 4-bits bus mode cmd = SDCMSC_COMMAND_CMDI(55) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, data->rca, NULL)) return 0; cmd = SDCMSC_COMMAND_CMDI(6) | SDCMSC_COMMAND_CICE | SDCMSC_COMMAND_CIRC | SDCMSC_COMMAND_RTS_48; if(!sdcmsc_card_cmd(cmd, 0x02, NULL)) return 0; return 1; } static int sdcmsc_card_queue(cyg_sdcmsc_disk_info_t *data, int direction_transmit, int block_addr, cyg_uint32 buffer_addr) { // SDSC cards use byte addressing, while SDHC use block addressing. // It is therefore required to multiply the address by 512 if // we are dealing with SDSC card, to remain compatible with the API. if(!data->is_sdhc) { block_addr <<= 9; } if(direction_transmit) { HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, buffer_addr); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_TX, block_addr); } else { HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, buffer_addr); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_BD_RX, block_addr); } // Now wait for the response cyg_uint32 reg; do { HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, reg); } while(!reg); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_DAT_INT_STATUS, 0); // Check for errors if(reg == SDCMSC_DAT_INT_STATUS_TRS) { return 1; } else { if(reg & (1 << 5)) diag_printf("Transmission error\n"); if(reg & (1 << 4)) diag_printf("Command error\n"); if(reg & (1 << 2)) diag_printf("FIFO error\n"); if(reg & (1 << 1)) diag_printf("Retry error\n"); return 0; } } // This is an API function. Is is called once, in the beginning static cyg_bool sdcmsc_disk_init(struct cyg_devtab_entry* tab) { // Set highest possible timeout HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_TIMEOUT, 0xFFFE); // Reset the peripheral HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 1); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_CLOCK_DIVIDER, 2); HAL_WRITE_UINT32(SDCMSC_BASE + SDCMSC_SOFTWARE_RESET, 0); // Call upper level disk_channel* ch = (disk_channel*) tab->priv; return (*ch->callbacks->disk_init)(tab); } // This function is called when user mounts the disk static Cyg_ErrNo sdcmsc_disk_lookup(struct cyg_devtab_entry** tab, struct cyg_devtab_entry *sub_tab, const char* name) { disk_channel *ch = (disk_channel*) (*tab)->priv; cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv; // If the card was not initialized yet, it's time to do it // and call disk_connected callback if(!data->connected) { cyg_disk_identify_t id; // Pass dummy CHS geometry and hope the upper level // will use LBA mode. To guess CHS we would need to // analyze partition table and confront LBA and CHS // addresses. And it would work only if proper LBA // field is stored in MBR. Is is definitely something // that should be done by upper level. id.cylinders_num = 1; id.heads_num = 1; id.sectors_num = 1; id.phys_block_size = 1; id.max_transfer = 512; // Initialize the card data->connected = sdcmsc_card_init(data, id.serial, id.firmware_rev, id.model_num, &id.lba_sectors_num); if(data->connected) { // Let upper level know there is a new disk (*ch->callbacks->disk_connected)(*tab, &id); } } // Call upper level return (*ch->callbacks->disk_lookup)(tab, sub_tab, name); } // API function to read block from the disk static Cyg_ErrNo sdcmsc_disk_read(disk_channel* ch, void* buf, cyg_uint32 blocks, cyg_uint32 first_block) { cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv; int i; int result; cyg_uint32 reg; for(i = 0; i < blocks; i++) { // Check for free receive buffers HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg); reg >>= 8; reg &= 0xFF; if(reg == 0) { return -EIO; } result = sdcmsc_card_queue(data, 0, first_block, (cyg_uint32) buf); if(!result) { return -EIO; } } return ENOERR; } // API function to write block to disk static Cyg_ErrNo sdcmsc_disk_write(disk_channel* ch, const void* buf, cyg_uint32 blocks, cyg_uint32 first_block) { cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv; int i; int result; cyg_uint32 reg; for(i = 0; i < blocks; i++) { // Check for free transmit buffers HAL_READ_UINT32(SDCMSC_BASE + SDCMSC_BD_BUFFER_STATUS, reg); reg &= 0xFF; if(reg == 0) { return -EIO; } result = sdcmsc_card_queue(data, 1, first_block, (cyg_uint32) buf); if(!result) { return -EIO; } } return ENOERR; } // API function to fetch driver configuration and disk info. static Cyg_ErrNo sdcmsc_disk_get_config(disk_channel* ch, cyg_uint32 key, const void* buf, cyg_uint32* len) { CYG_UNUSED_PARAM(disk_channel*, ch); CYG_UNUSED_PARAM(cyg_uint32, key); CYG_UNUSED_PARAM(const void*, buf); CYG_UNUSED_PARAM(cyg_uint32*, len); return -EINVAL; } // API function to update driver status information. static Cyg_ErrNo sdcmsc_disk_set_config(disk_channel* ch, cyg_uint32 key, const void* buf, cyg_uint32* len) { cyg_sdcmsc_disk_info_t *data = (cyg_sdcmsc_disk_info_t*) ch->dev_priv; if(key == CYG_IO_SET_CONFIG_DISK_UMOUNT) { if(ch->info->mounts == 0) { data->connected = false; return (ch->callbacks->disk_disconnected)(ch); } else { return ENOERR; } } else { return -EINVAL; } } // Register the driver in the system static cyg_sdcmsc_disk_info_t cyg_sdcmsc_disk0_hwinfo = { .connected = 0 }; DISK_FUNS(cyg_sdcmsc_disk_funs, sdcmsc_disk_read, sdcmsc_disk_write, sdcmsc_disk_get_config, sdcmsc_disk_set_config ); DISK_CONTROLLER(cyg_sdcmsc_disk_controller_0, cyg_sdcmsc_disk0_hwinfo); DISK_CHANNEL(cyg_sdcmsc_disk0_channel, cyg_sdcmsc_disk_funs, cyg_sdcmsc_disk0_hwinfo, cyg_sdcmsc_disk_controller_0, true, //mbr supported 4 //partitions ); BLOCK_DEVTAB_ENTRY(cyg_sdcmsc_disk0_devtab_entry, CYGDAT_DEVS_DISK_OPENCORES_SDCMSC_DISK0_NAME, 0, &cyg_io_disk_devio, &sdcmsc_disk_init, &sdcmsc_disk_lookup, &cyg_sdcmsc_disk0_channel); // EOF if_sdcmsc.c
Go to most recent revision | Compare with Previous | Blame | View Log