URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [devs/] [eth/] [arm/] [ebsa285/] [current/] [tests/] [test_net_realtime.h] - Rev 786
Compare with Previous | Blame | View Log
#ifndef CYGONCE_DEVS_ETH_ARM_EBSA285_TESTS_TEST_NET_REALTIME_H #define CYGONCE_DEVS_ETH_ARM_EBSA285_TESTS_TEST_NET_REALTIME_H /*========================================================================== // // test_net_realtime.h // // Auxiliary test header file // Provide a thread that runs on EBSA only, which verifies that // realtime characteristics are preserved. // //========================================================================== // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //========================================================================== //#####DESCRIPTIONBEGIN#### // // Author(s): hmt // Contributors: hmt // Date: 2000-05-03 // Description: // //####DESCRIPTIONEND#### */ // This is the API to this file: #define TNR_OFF() tnr_active = 0 #define TNR_ON() tnr_active = 1 #define TNR_INIT() tnr_init() #define TNR_PRINT_ACTIVITY() tnr_print_activity() // Tests should use these if they are defined to test that the realtime // characteristics of the world are preserved during a test. // // It is accepted that printing stuff via diag_printf() (and the test // infra) disables interrupts for a long time. So invoke TNR_OFF/ON() // either side of diagnostic prints, to prevent boguf firings of the // realtime test. // ------------------------------------------------------------------------ // This file rather assumes that the network is in use, and that therefore // there is also a kernel, and so on.... #include <cyg/infra/testcase.h> // CYG_TEST_FAIL et al #include <cyg/infra/diag.h> // diag_printf() #include <cyg/kernel/kapi.h> // Thread API #include <cyg/hal/hal_arch.h> // CYGNUM_HAL_STACK_SIZE_TYPICAL #include <cyg/hal/hal_intr.h> // Interrupt names #include <cyg/hal/hal_ebsa285.h> // Hardware definitions // The EBSA has 4 hardware timers; timer 3 is the kernel's realtime clock // because it is connected to a separate, indepenent 3.68MHz signal; timer // 4 can be used as a watchdog. So we have timers 1 and 2 to use. // Timers 1 and 2 have an input clock of 50MHz on fclk_in. // Timer 2 should be initialized for periodic interrupts per 500uS. // Timer 1 should be initialized for a one-shot interrupt after 1mS (1000uS). // // Timer 2's ISR examines the state of timer 1; if it has expired, the test // has failed. 7 out of 8 hits, timer 1 is reinitialized for the 1mS; on // the 8th event, timer1 is set for 2mS. The next timer 2 event calls its // DSR, which in turn signals a semaphore which awakens a real task, which // again checks and re-initializes timer1 in the same way. // // All this ensures that interrupts are never delayed by more than 500uS, // and that signalling a real task always takes less than 1500uS. // // This system, once activated, will run non-intrusively along with all // networking tests. // // Special care (aka a hack) may be needed to make it work with the // diagnostic channel; that disables interrupts typically for // 100[characters] * 8[bits/byte] / 38400[Baud] [Seconds] = 20mS. // Use the fclk_in divided-by 256 mode: #if 0 // Default, really 1mS, 2mS, 500uS #define TNR_TIMER1_PERIOD_1mS ((50 * 1000) >>8) #define TNR_TIMER1_PERIOD_2mS ((50 * 1000 * 2) >>8) #define TNR_TIMER2_PERIOD_500uS ((50 * 500) >>8) #else // pushing the envelope... 1/5 as much: #define FACTOR 200 // 1000 is "normal" #define TNR_TIMER1_PERIOD_1mS ((50 * FACTOR) >>8) #define TNR_TIMER1_PERIOD_2mS ((50 * FACTOR * 2) >>8) #define TNR_TIMER2_PERIOD_500uS ((50 * FACTOR / 2) >>8) #endif #define TNR_TIMER1_INIT (0x88) // Enabled, free running, fclk_in/256 #define TNR_TIMER2_INIT (0xc8) // Enabled, periodic, fclk_in/256 // This way, if timer1 is > TNR_TIMER1_PERIOD_2mS, then we know it has // wrapped; its full range is 85 seconds, one would hope to get back in // that time! static volatile int tnr_active = 0; static volatile int tnr_t2_counter = 0; static cyg_sem_t tnr_sema; static char tnr_stack[CYGNUM_HAL_STACK_SIZE_TYPICAL]; static cyg_thread tnr_thread_data; static cyg_handle_t tnr_thread_handle; static cyg_interrupt tnr_t1_intr, tnr_t2_intr; static cyg_handle_t tnr_t1_inth, tnr_t2_inth; struct { int timer1_isr; int timer2_isr; int timer2_isr_active; int timer2_dsr; int timer2_thd; int timer2_thd_active; } tnr_activity_counts = { 0,0,0,0,0,0 }; static cyg_uint32 tnr_timer1_isr(cyg_vector_t vector, cyg_addrword_t data) { tnr_activity_counts.timer1_isr++; if ( tnr_active ) CYG_TEST_FAIL_EXIT( "test_net_realtime: Timer1 fired" ); *SA110_TIMER1_CLEAR = 0; // Clear any pending interrupt (Data: don't care) HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_TIMER_1 ); return CYG_ISR_HANDLED; } static cyg_uint32 tnr_timer2_isr(cyg_vector_t vector, cyg_addrword_t data) { tnr_activity_counts.timer2_isr++; *SA110_TIMER2_CLEAR = 0; // Clear any pending interrupt (Data: don't care) HAL_INTERRUPT_ACKNOWLEDGE( CYGNUM_HAL_INTERRUPT_TIMER_2 ); if ( tnr_active ) { tnr_activity_counts.timer2_isr_active++; if ( (*SA110_TIMER1_VALUE) > (4 * TNR_TIMER1_PERIOD_1mS) ) { // Then it has wrapped around, bad bad bad CYG_TEST_FAIL_EXIT( "tnr_timer2_isr: Timer1 wrapped" ); } } tnr_t2_counter++; // We go though each of the following states in turn: switch ( tnr_t2_counter & 7 ) { case 0: // Then this is an 8th event: *SA110_TIMER1_LOAD = TNR_TIMER1_PERIOD_2mS; return CYG_ISR_HANDLED; case 1: return CYG_ISR_CALL_DSR; // See how long to call a DSR &c.. // without resetting timer1: 1500uS left now default: // Reset timer1 again. By doing this in time every time it should // never fire. *SA110_TIMER1_LOAD = TNR_TIMER1_PERIOD_1mS; } return CYG_ISR_HANDLED; } static void tnr_timer2_dsr(cyg_vector_t vector, cyg_ucount32 count, cyg_addrword_t data) { tnr_activity_counts.timer2_dsr++; if ( CYGNUM_HAL_INTERRUPT_TIMER_2 != vector ) CYG_TEST_FAIL_EXIT( "tnr_timer2_dsr: Bad vector" ); cyg_semaphore_post( &tnr_sema ); } static void tnr_timer2_service_thread( cyg_addrword_t param ) { while (1) { cyg_semaphore_wait( &tnr_sema ); tnr_activity_counts.timer2_thd++; if ( tnr_active ) { tnr_activity_counts.timer2_thd_active++; if ( (*SA110_TIMER1_VALUE) > (4 * TNR_TIMER1_PERIOD_1mS) ) { // Then it has wrapped around, bad bad bad CYG_TEST_FAIL_EXIT( "tnr_timer2_service_thread: Timer1 wrapped" ); } } // Reset timer1 again. By doing this in time every time it should // never fire. *SA110_TIMER1_LOAD = TNR_TIMER1_PERIOD_1mS; } } static void tnr_init( void ) { // init the semaphore cyg_semaphore_init( &tnr_sema, 0 ); // create and start the thread cyg_thread_create(2, // Priority - just a number tnr_timer2_service_thread, 0, // entry parameter "Test Net Realtime tnr_timer2_service_thread", &tnr_stack[0], // Stack sizeof(tnr_stack), // Size &tnr_thread_handle, // Handle &tnr_thread_data // Thread data structure ); cyg_thread_resume( tnr_thread_handle ); // set up and attach the interrupts et al... cyg_interrupt_create( CYGNUM_HAL_INTERRUPT_TIMER_2, /* Vector to attach to */ 0, /* Queue priority */ 0, /* Data pointer */ tnr_timer2_isr, /* Interrupt Service Routine */ tnr_timer2_dsr, /* Deferred Service Routine */ &tnr_t2_inth, /* returned handle */ &tnr_t2_intr /* put interrupt here */ ); cyg_interrupt_create( CYGNUM_HAL_INTERRUPT_TIMER_1, /* Vector to attach to */ 0, /* Queue priority */ 0, /* Data pointer */ tnr_timer1_isr, /* Interrupt Service Routine */ tnr_timer2_dsr, /* re-use! */ /* Deferred Service Routine */ &tnr_t1_inth, /* returned handle */ &tnr_t1_intr /* put interrupt here */ ); cyg_interrupt_attach( tnr_t1_inth ); cyg_interrupt_attach( tnr_t2_inth ); *SA110_TIMER1_CONTROL = 0; // Disable while we are setting up *SA110_TIMER1_LOAD = TNR_TIMER1_PERIOD_2mS; *SA110_TIMER1_CLEAR = 0; // Clear any pending interrupt *SA110_TIMER1_CONTROL = TNR_TIMER1_INIT; *SA110_TIMER1_CLEAR = 0; // Clear any pending interrupt again *SA110_TIMER2_CONTROL = 0; // Disable while we are setting up *SA110_TIMER2_LOAD = TNR_TIMER2_PERIOD_500uS; *SA110_TIMER2_CLEAR = 0; // Clear any pending interrupt *SA110_TIMER2_CONTROL = TNR_TIMER2_INIT; *SA110_TIMER2_CLEAR = 0; // Clear any pending interrupt again cyg_interrupt_unmask( CYGNUM_HAL_INTERRUPT_TIMER_2 ); cyg_interrupt_unmask( CYGNUM_HAL_INTERRUPT_TIMER_1 ); } static void tnr_print_activity( void ) { int tmp = tnr_active; tnr_active = 0; diag_printf( "Test-net-realtime: interrupt activity log:\n" ); diag_printf( " timer1_isr %10d\n", tnr_activity_counts.timer1_isr ); diag_printf( " timer2_isr %10d\n", tnr_activity_counts.timer2_isr ); diag_printf( " (active) %10d\n", tnr_activity_counts.timer2_isr_active ); diag_printf( " timer2_dsr %10d\n", tnr_activity_counts.timer2_dsr ); diag_printf( " timer2_thd %10d\n", tnr_activity_counts.timer2_thd ); diag_printf( " (active) %10d\n", tnr_activity_counts.timer2_thd_active ); tnr_active = tmp; } #endif /* ifndef CYGONCE_DEVS_ETH_ARM_EBSA285_TESTS_TEST_NET_REALTIME_H */ /* EOF test_net_realtime.h */