URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [devs/] [flash/] [intel/] [28fxxx/] [current/] [include/] [flash_28fxxx.inl] - Rev 857
Go to most recent revision | Compare with Previous | Blame | View Log
#ifndef CYGONCE_DEVS_FLASH_INTEL_28FXXX_INL
#define CYGONCE_DEVS_FLASH_INTEL_28FXXX_INL
//==========================================================================
//
// flash_28fxxx.inl
//
// Intel 28Fxxx series flash driver
//
//==========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later
// version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eCos; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, if other files instantiate templates or use
// macros or inline functions from this file, or you compile this file
// and link it with other works to produce a work based on this file,
// this file does not by itself cause the resulting work to be covered by
// the GNU General Public License. However the source code for this file
// must still be made available in accordance with section (3) of the GNU
// General Public License v2.
//
// This exception does not invalidate any other reasons why a work based
// on this file might be covered by the GNU General Public License.
// -------------------------------------------
// ####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): jskov
// Contributors: jskov
// Date: 2001-03-21
// Purpose:
// Description:
//
// Notes: Device table could use unions of flags to save some space
//
//####DESCRIPTIONEND####
//
//==========================================================================
#include <pkgconf/hal.h>
#include <pkgconf/io_flash.h>
#include <pkgconf/devs_flash_intel_28fxxx.h>
#include <cyg/hal/hal_arch.h>
#include <cyg/hal/hal_cache.h>
#include CYGHWR_MEMORY_LAYOUT_H
#include <cyg/hal/hal_io.h>
#define _FLASH_PRIVATE_
#include <cyg/io/flash.h>
#define nDEBUG
#ifdef DEBUG
typedef void (*call_t)(char* str, ...);
extern void diag_printf(char* str, ...);
call_t d_print = &diag_printf;
#endif
//----------------------------------------------------------------------------
// Common device details.
#define FLASH_Read_ID FLASHWORD( 0x90 )
#define FLASH_Reset FLASHWORD( 0xFF )
#define FLASH_Program FLASHWORD( 0x40 )
#define FLASH_Write_Buffer FLASHWORD( 0xe8 )
#define FLASH_Block_Erase FLASHWORD( 0x20 )
#define FLASH_Confirm FLASHWORD( 0xD0 )
#define FLASH_Resume FLASHWORD( 0xD0 )
#define FLASH_Set_Lock FLASHWORD( 0x60 )
#define FLASH_Set_Lock_Confirm FLASHWORD( 0x01 )
#define FLASH_Clear_Lock FLASHWORD( 0x60 )
#define FLASH_Clear_Lock_Confirm FLASHWORD( 0xd0 )
#define FLASH_Read_Status FLASHWORD( 0x70 )
#define FLASH_Clear_Status FLASHWORD( 0x50 )
#define FLASH_Status_Ready FLASHWORD( 0x80 )
// Status that we read back:
#define FLASH_ErrorMask FLASHWORD( 0x7E )
#define FLASH_ErrorProgram FLASHWORD( 0x10 )
#define FLASH_ErrorErase FLASHWORD( 0x20 )
#define FLASH_ErrorLock FLASHWORD( 0x30 )
#define FLASH_ErrorLowVoltage FLASHWORD( 0x08 )
#define FLASH_ErrorLocked FLASHWORD( 0x02 )
// Platform code must define the below
// #define CYGNUM_FLASH_INTERLEAVE : Number of interleaved devices (in parallel)
// #define CYGNUM_FLASH_SERIES : Number of devices in series
// #define CYGNUM_FLASH_WIDTH : Width of devices on platform
// #define CYGNUM_FLASH_BASE : Address of first device
#define CYGNUM_FLASH_BLANK (1)
#define CYGNUM_FLASH_DEVICES (CYGNUM_FLASH_INTERLEAVE*CYGNUM_FLASH_SERIES)
#ifndef FLASH_P2V
# define FLASH_P2V( _a_ ) ((volatile flash_data_t *)((CYG_ADDRWORD)(_a_)))
#endif
#ifndef CYGHWR_FLASH_28FXXX_PLF_INIT
# define CYGHWR_FLASH_28FXXX_PLF_INIT()
#endif
#ifndef CYGHWR_FLASH_WRITE_ENABLE
#define CYGHWR_FLASH_WRITE_ENABLE()
#endif
#ifndef CYGHWR_FLASH_WRITE_DISABLE
#define CYGHWR_FLASH_WRITE_DISABLE()
#endif
//----------------------------------------------------------------------------
// Now that device properties are defined, include magic for defining
// accessor type and constants.
#include <cyg/io/flash_dev.h>
//----------------------------------------------------------------------------
// Information about supported devices
typedef struct flash_dev_info {
flash_data_t device_id;
cyg_uint32 block_size;
cyg_int32 block_count;
cyg_uint32 base_mask;
cyg_uint32 device_size;
cyg_bool locking; // supports locking
cyg_bool buffered_w; // supports buffered writes
cyg_uint32 buffer_size;
cyg_bool bootblock;
cyg_uint32 bootblocks[12]; // 0 is bootblock offset, 1-11 sub-sector sizes (or 0)
cyg_bool banked;
cyg_uint32 banks[2]; // bank offets, highest to lowest (lowest should be 0)
// (only one entry for now, increase to support devices
// with more banks).
} flash_dev_info_t;
static const flash_dev_info_t* flash_dev_info;
static const flash_dev_info_t supported_devices[] = {
#include <cyg/io/flash_28fxxx_parts.inl>
};
#define NUM_DEVICES (sizeof(supported_devices)/sizeof(flash_dev_info_t))
//----------------------------------------------------------------------------
// Functions that put the flash device into non-read mode must reside
// in RAM.
void flash_query(void* data) __attribute__ ((section (".2ram.flash_query")));
int flash_erase_block(void* block, unsigned int size)
__attribute__ ((section (".2ram.flash_erase_block")));
int flash_program_buf(void* addr, void* data, int len,
unsigned long block_mask, int buffer_size)
__attribute__ ((section (".2ram.flash_program_buf")));
int flash_lock_block(void* addr)
__attribute__ ((section (".2ram.flash_lock_block")));
int flash_unlock_block(void* block, int block_size, int blocks)
__attribute__ ((section (".2ram.flash_unlock_block")));
//----------------------------------------------------------------------------
// Initialize driver details
int
flash_hwr_init(void)
{
int i;
flash_data_t id[2];
CYGHWR_FLASH_28FXXX_PLF_INIT();
flash_dev_query(id);
// Look through table for device data
flash_dev_info = supported_devices;
for (i = 0; i < NUM_DEVICES; i++) {
if (flash_dev_info->device_id == id[1])
break;
flash_dev_info++;
}
// Did we find the device? If not, return error.
if (NUM_DEVICES == i)
return FLASH_ERR_DRV_WRONG_PART;
// Hard wired for now
flash_info.block_size = flash_dev_info->block_size;
flash_info.blocks = flash_dev_info->block_count * CYGNUM_FLASH_SERIES;
flash_info.start = (void *)CYGNUM_FLASH_BASE;
flash_info.end = (void *)(CYGNUM_FLASH_BASE+ (flash_dev_info->device_size * CYGNUM_FLASH_SERIES));
flash_info.buffer_size = flash_dev_info->buffer_size;
return FLASH_ERR_OK;
}
//----------------------------------------------------------------------------
// Map a hardware status to a package error
int
flash_hwr_map_error(int e)
{
return e;
}
//----------------------------------------------------------------------------
// See if a range of FLASH addresses overlaps currently running code
bool
flash_code_overlaps(void *start, void *end)
{
extern unsigned char _stext[], _etext[];
return ((((unsigned long)&_stext >= (unsigned long)start) &&
((unsigned long)&_stext < (unsigned long)end)) ||
(((unsigned long)&_etext >= (unsigned long)start) &&
((unsigned long)&_etext < (unsigned long)end)));
}
//----------------------------------------------------------------------------
// Flash Query
//
// Only reads the manufacturer and part number codes for the first
// device(s) in series. It is assumed that any devices in series
// will be of the same type.
void
flash_query(void* data)
{
volatile flash_data_t *ROM;
flash_data_t* id = (flash_data_t*) data;
flash_data_t w;
ROM = (volatile flash_data_t*) CYGNUM_FLASH_BASE;
w = ROM[0];
CYGHWR_FLASH_WRITE_ENABLE();
ROM[0] = FLASH_Read_ID;
// Manufacturers' code
id[0] = ROM[0];
// Part number
id[1] = ROM[1];
ROM[0] = FLASH_Reset;
CYGHWR_FLASH_WRITE_DISABLE();
// Stall, waiting for flash to return to read mode.
while (w != ROM[0]);
}
//----------------------------------------------------------------------------
// Erase Block
int
flash_erase_block(void* block, unsigned int block_size)
{
int res = FLASH_ERR_OK;
int timeout;
unsigned long len;
int len_ix = 1;
flash_data_t stat;
volatile flash_data_t *ROM;
volatile flash_data_t *b_p = (flash_data_t*) block;
volatile flash_data_t *b_v;
cyg_bool bootblock;
ROM = FLASH_P2V((unsigned long)block & flash_dev_info->base_mask);
// Is this the boot sector?
bootblock = (flash_dev_info->bootblock &&
(flash_dev_info->bootblocks[0] == ((unsigned long)block - (unsigned long)ROM)));
if (bootblock) {
len = flash_dev_info->bootblocks[len_ix++];
} else {
len = flash_dev_info->block_size;
}
CYGHWR_FLASH_WRITE_ENABLE();
while (len > 0) {
b_v = FLASH_P2V(b_p);
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
// Erase block
ROM[0] = FLASH_Block_Erase;
*b_v = FLASH_Confirm;
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT ;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) break;
}
// Restore ROM to "normal" mode
ROM[0] = FLASH_Reset;
if (stat & FLASH_ErrorMask) {
if (!(stat & FLASH_ErrorErase)) {
res = FLASH_ERR_HWR; // Unknown error
} else {
if (stat & FLASH_ErrorLowVoltage)
res = FLASH_ERR_LOW_VOLTAGE;
else if (stat & FLASH_ErrorLocked)
res = FLASH_ERR_PROTECT;
else
res = FLASH_ERR_ERASE;
}
}
// Check if block got erased
while (len > 0) {
b_v = FLASH_P2V(b_p++);
if (*b_v != FLASH_BlankValue ) {
// Only update return value if erase operation was OK
if (FLASH_ERR_OK == res) res = FLASH_ERR_DRV_VERIFY;
return res;
}
len -= sizeof(*b_p);
}
if (bootblock)
len = flash_dev_info->bootblocks[len_ix++];
}
CYGHWR_FLASH_WRITE_DISABLE();
return res;
}
//----------------------------------------------------------------------------
// Program Buffer
int
flash_program_buf(void* addr, void* data, int len,
unsigned long block_mask, int buffer_size)
{
flash_data_t stat = 0;
int timeout;
volatile flash_data_t* ROM;
volatile flash_data_t* BA;
volatile flash_data_t* addr_v;
volatile flash_data_t* addr_p = (flash_data_t*) addr;
volatile flash_data_t* data_p = (flash_data_t*) data;
int res = FLASH_ERR_OK;
// Base address of device(s) being programmed.
ROM = FLASH_P2V((unsigned long)addr & flash_dev_info->base_mask);
BA = FLASH_P2V((unsigned long)addr & ~(flash_dev_info->block_size - 1));
CYGHWR_FLASH_WRITE_ENABLE();
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
#ifdef CYGHWR_DEVS_FLASH_INTEL_BUFFERED_WRITES
// FIXME: This code has not been adjusted to handle bootblock
// parts yet.
// If the buffer size has not been initialised, buffered write will
// be skipped.
if (flash_dev_info->buffered_w && buffer_size) {
int i, wc;
// Write any big chunks first
while (len >= buffer_size) {
wc = buffer_size;
if (wc > len) wc = len;
len -= wc;
wc = wc / ((CYGNUM_FLASH_WIDTH/8)*CYGNUM_FLASH_INTERLEAVE); // Word count
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
*BA = FLASH_Write_Buffer;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) {
res = FLASH_ERR_DRV_TIMEOUT;
goto bad;
}
*BA = FLASH_Write_Buffer;
}
*BA = FLASHWORD(wc-1); // Count is 0..N-1
for (i = 0; i < wc; i++) {
addr_v = FLASH_P2V(addr_p++);
*addr_v = *data_p++;
}
*BA = FLASH_Confirm;
ROM[0] = FLASH_Read_Status;
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) {
res = FLASH_ERR_DRV_TIMEOUT;
goto bad;
}
}
}
}
#endif // CYGHWR_DEVS_FLASH_INTEL_BUFFERED_WRITES
while (len > 0) {
addr_v = FLASH_P2V(addr_p++);
ROM[0] = FLASH_Program;
*addr_v = *data_p;
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) {
res = FLASH_ERR_DRV_TIMEOUT;
goto bad;
}
}
if (stat & FLASH_ErrorMask) {
if (!(stat & FLASH_ErrorProgram))
res = FLASH_ERR_HWR; // Unknown error
else {
if (stat & FLASH_ErrorLowVoltage)
res = FLASH_ERR_LOW_VOLTAGE;
else if (stat & FLASH_ErrorLocked)
res = FLASH_ERR_PROTECT;
else
res = FLASH_ERR_PROGRAM;
}
break;
}
ROM[0] = FLASH_Clear_Status;
ROM[0] = FLASH_Reset;
if (*addr_v != *data_p++) {
res = FLASH_ERR_DRV_VERIFY;
break;
}
len -= sizeof( flash_data_t );
}
// Restore ROM to "normal" mode
bad:
ROM[0] = FLASH_Reset;
CYGHWR_FLASH_WRITE_DISABLE();
// Ideally, we'd want to return not only the failure code, but also
// the address/device that reported the error.
return res;
}
#ifdef CYGHWR_IO_FLASH_BLOCK_LOCKING
//----------------------------------------------------------------------------
// Lock block
int
flash_lock_block(void* block)
{
volatile flash_data_t *ROM;
int res = FLASH_ERR_OK;
flash_data_t state;
int timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
volatile flash_data_t* b_p = (flash_data_t*) block;
volatile flash_data_t *b_v;
cyg_bool bootblock;
int len, len_ix = 1;
if (!flash_dev_info->locking)
return res;
#ifdef DEBUG
d_print("flash_lock_block %08x\n", block);
#endif
ROM = (volatile flash_data_t*)((unsigned long)block & flash_dev_info->base_mask);
// Is this the boot sector?
bootblock = (flash_dev_info->bootblock &&
(flash_dev_info->bootblocks[0] == ((unsigned long)block - (unsigned long)ROM)));
if (bootblock) {
len = flash_dev_info->bootblocks[len_ix++];
} else {
len = flash_dev_info->block_size;
}
CYGHWR_FLASH_WRITE_ENABLE();
while (len > 0) {
b_v = FLASH_P2V(b_p);
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
// Set lock bit
*b_v = FLASH_Set_Lock;
*b_v = FLASH_Set_Lock_Confirm; // Confirmation
while(((state = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) {
res = FLASH_ERR_DRV_TIMEOUT;
break;
}
}
// Restore ROM to "normal" mode
ROM[0] = FLASH_Reset;
// Go to next block
b_p += len / sizeof( flash_data_t );
len = 0;
if (FLASH_ErrorLock == (state & FLASH_ErrorLock))
res = FLASH_ERR_LOCK;
if (res != FLASH_ERR_OK)
break;
if (bootblock)
len = flash_dev_info->bootblocks[len_ix++];
}
CYGHWR_FLASH_WRITE_DISABLE();
return res;
}
//----------------------------------------------------------------------------
// Unlock block
int
flash_unlock_block(void* block, int block_size, int blocks)
{
volatile flash_data_t *ROM;
int res = FLASH_ERR_OK;
flash_data_t state;
int timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
volatile flash_data_t* b_p = (flash_data_t*) block;
volatile flash_data_t *b_v;
#if (defined(CYGHWR_DEVS_FLASH_SHARP_LH28F016SCT_Z4) || defined(CYGHWR_DEVS_FLASH_SHARP_LH28F016SCT_95) )
// The Sharp device follows all the same rules as the Intel 28x part,
// except that the unlocking mechanism unlocks all blocks at once. This
// is the way the Strata part seems to work. I will replace the
// flash_unlock_block function with one similar to the Strata function.
// As the Sharp part does not have the bootlock characteristics, I
// will ignore them.
//
// The difficulty with this operation is that the hardware does not support
// unlocking single blocks. However, the logical layer would like this to
// be the case, so this routine emulates it. The hardware can clear all of
// the locks in the device at once. This routine will use that approach and
// then reset the regions which are known to be locked.
//
#define MAX_FLASH_BLOCKS (flash_dev_info->block_count * CYGNUM_FLASH_SERIES)
unsigned char is_locked[MAX_FLASH_BLOCKS];
int i;
// Get base address and map addresses to virtual addresses
#ifdef DEBUG
d_print("\nNow inside low level driver\n");
#endif
ROM = (volatile flash_data_t*) CYGNUM_FLASH_BASE;
block = FLASH_P2V(block);
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
// Get current block lock state. This needs to access each block on
// the device so currently locked blocks can be re-locked.
b_p = ROM;
for (i = 0; i < blocks; i++) {
b_v = FLASH_P2V( b_p );
*b_v = FLASH_Read_ID;
if (b_v == block) {
is_locked[i] = 0;
} else {
if(b_v[2]){ /* it is possible that one of the interleaved devices
* is locked, but others are not. Coming out of this
* function, if one was locked, all will be locked.
*/
is_locked[i] = 1;
}else{
is_locked[i] = 0;
}
}
#ifdef DEBUG
#endif
b_p += block_size / sizeof(*b_p);
}
ROM[0] = FLASH_Reset;
#ifdef DEBUG
for (i = 0; i < blocks; i++) {
d_print("\nblock %d %s", i,
is_locked[i] ? "LOCKED" : "UNLOCKED");
}
d_print("\n");
#endif
// Clears all lock bits
ROM[0] = FLASH_Clear_Lock;
ROM[0] = FLASH_Clear_Lock_Confirm; // Confirmation
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((state = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) break;
}
// Restore the lock state
b_p = ROM;
for (i = 0; i < blocks; i++) {
b_v = FLASH_P2V( b_p );
if (is_locked[i]) {
*b_v = FLASH_Set_Lock;
*b_v = FLASH_Set_Lock_Confirm; // Confirmation
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((state = ROM[0]) & FLASH_Status_Ready)
!= FLASH_Status_Ready) {
if (--timeout == 0){
res = FLASH_ERR_DRV_TIMEOUT;
break;
}
}
if (FLASH_ErrorLock == (state & FLASH_ErrorLock))
res = FLASH_ERR_LOCK;
if (res != FLASH_ERR_OK)
break;
}
b_p += block_size / sizeof(*b_p);
}
// Restore ROM to "normal" mode
ROM[0] = FLASH_Reset;
return res;
#else // not CYGHWR_DEVS_FLASH_SHARP_LH28F016SCT_Z4
cyg_bool bootblock;
int len, len_ix = 1;
if (!flash_dev_info->locking)
return res;
ROM = (volatile flash_data_t*)((unsigned long)block & flash_dev_info->base_mask);
#ifdef DEBUG
d_print("flash_unlock_block dev %08x block %08x size %08x count %08x\n", ROM, block, block_size, blocks);
#endif
// Is this the boot sector?
bootblock = (flash_dev_info->bootblock &&
(flash_dev_info->bootblocks[0] == ((unsigned long)block - (unsigned long)ROM)));
if (bootblock) {
len = flash_dev_info->bootblocks[len_ix++];
} else {
len = flash_dev_info->block_size;
}
CYGHWR_FLASH_WRITE_ENABLE();
while (len > 0) {
b_v = FLASH_P2V(b_p);
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
// Clear lock bit
*b_v = FLASH_Clear_Lock;
*b_v = FLASH_Clear_Lock_Confirm; // Confirmation
while(((state = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) {
res = FLASH_ERR_DRV_TIMEOUT;
break;
}
}
// Restore ROM to "normal" mode
ROM[0] = FLASH_Reset;
// Go to next block
b_p += len / sizeof( flash_data_t );
len = 0;
if (FLASH_ErrorLock == (state & FLASH_ErrorLock))
res = FLASH_ERR_LOCK;
if (res != FLASH_ERR_OK)
break;
if (bootblock)
len = flash_dev_info->bootblocks[len_ix++];
}
CYGHWR_FLASH_WRITE_DISABLE();
return res;
// FIXME: Unlocking need to support some other parts in the future
// as well which take a little more diddling.
#if 0
//
// The difficulty with this operation is that the hardware does not support
// unlocking single blocks. However, the logical layer would like this to
// be the case, so this routine emulates it. The hardware can clear all of
// the locks in the device at once. This routine will use that approach and
// then reset the regions which are known to be locked.
//
#define MAX_FLASH_BLOCKS (flash_dev_info->block_count * CYGNUM_FLASH_SERIES)
unsigned char is_locked[MAX_FLASH_BLOCKS];
// Get base address and map addresses to virtual addresses
ROM = FLASH_P2V( CYGNUM_FLASH_BASE_MASK & (unsigned int)block );
block = FLASH_P2V(block);
// Clear any error conditions
ROM[0] = FLASH_Clear_Status;
// Get current block lock state. This needs to access each block on
// the device so currently locked blocks can be re-locked.
bp = ROM;
for (i = 0; i < blocks; i++) {
bpv = FLASH_P2V( bp );
*bpv = FLASH_Read_Query;
if (bpv == block) {
is_locked[i] = 0;
} else {
is_locked[i] = bpv[2];
}
bp += block_size / sizeof(*bp);
}
// Clears all lock bits
ROM[0] = FLASH_Clear_Locks;
ROM[0] = FLASH_Clear_Locks_Confirm; // Confirmation
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) break;
}
// Restore the lock state
bp = ROM;
for (i = 0; i < blocks; i++) {
bpv = FLASH_P2V( bp );
if (is_locked[i]) {
*bpv = FLASH_Set_Lock;
*bpv = FLASH_Set_Lock_Confirm; // Confirmation
timeout = CYGNUM_DEVS_FLASH_INTEL_28FXXX_TIMEOUT;
while(((stat = ROM[0]) & FLASH_Status_Ready) != FLASH_Status_Ready) {
if (--timeout == 0) break;
}
}
bp += block_size / sizeof(*bp);
}
// Restore ROM to "normal" mode
ROM[0] = FLASH_Reset;
#endif
#endif // #CYGHWR_DEVS_FLASH_SHARP_LH28F016SCT_Z4
}
#endif // CYGHWR_IO_FLASH_BLOCK_LOCKING
#endif // CYGONCE_DEVS_FLASH_INTEL_28FXXX_INL
Go to most recent revision | Compare with Previous | Blame | View Log