URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [arm/] [ebsa285/] [current/] [src/] [hal_diag.c] - Rev 786
Compare with Previous | Blame | View Log
/*============================================================================= // // hal_diag.c // // HAL diagnostic output code // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): nickg, gthomas // Contributors:nickg, gthomas // Date: 1998-03-02 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic output support. // //####DESCRIPTIONEND#### // //===========================================================================*/ #include <pkgconf/hal.h> #include <pkgconf/system.h> #include CYGBLD_HAL_PLATFORM_H #include <cyg/infra/cyg_type.h> // base types #include <cyg/infra/cyg_trac.h> // tracing macros #include <cyg/infra/cyg_ass.h> // assertion macros #include <cyg/hal/hal_arch.h> // basic machine info #include <cyg/hal/hal_intr.h> // interrupt macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_if.h> // calling interface API #include <cyg/hal/hal_misc.h> // helper functions #include <cyg/hal/hal_diag.h> #include <cyg/hal/hal_ebsa285.h> // Hardware definitions #include <cyg/hal/drv_api.h> // cyg_drv_interrupt_acknowledge /*---------------------------------------------------------------------------*/ struct ebsa_serial { volatile cyg_uint32 data_register; volatile cyg_uint32 rxstat; volatile cyg_uint32 h_baud_control; volatile cyg_uint32 m_baud_control; volatile cyg_uint32 l_baud_control; volatile cyg_uint32 control_register; volatile cyg_uint32 flag_register; }; /*---------------------------------------------------------------------------*/ static void init_channel(void* __ch_data) { volatile struct ebsa_serial* base = (struct ebsa_serial*)__ch_data; int dummy; /* * Make sure everything is off */ base->control_register = SA110_UART_DISABLED | SA110_SIR_DISABLED; /* * Read the RXStat to drain the fifo */ dummy = base->rxstat; /* * Set the baud rate - this also turns the uart on. * * Note that the ordering of these writes is critical, * and the writes to the H_BAUD_CONTROL and CONTROL_REGISTER * are necessary to force the UART to update its register * contents. */ base->l_baud_control = 0x13; // bp->divisor_low; base->m_baud_control = 0x00; // bp->divisor_high; base->h_baud_control = SA110_UART_BREAK_DISABLED | SA110_UART_PARITY_DISABLED | SA110_UART_STOP_BITS_ONE | SA110_UART_FIFO_ENABLED | SA110_UART_DATA_LENGTH_8_BITS; base->control_register = SA110_UART_ENABLED | SA110_SIR_DISABLED; // All done } void cyg_hal_plf_serial_putc(void *__ch_data, char c) { volatile struct ebsa_serial* base = (struct ebsa_serial*)__ch_data; CYGARC_HAL_SAVE_GP(); // Wait for Tx FIFO not full while ((base->flag_register & SA110_TX_FIFO_STATUS_MASK) == SA110_TX_FIFO_BUSY) ; base->data_register = c; CYGARC_HAL_RESTORE_GP(); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { volatile struct ebsa_serial* base = (struct ebsa_serial*)__ch_data; if ((base->flag_register & SA110_RX_FIFO_STATUS_MASK) == SA110_RX_FIFO_EMPTY) return false; *ch = (char)(base->data_register & 0xFF); return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } static cyg_int32 msec_timeout; static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; cyg_bool res; CYGARC_HAL_SAVE_GP(); delay_count = msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; int ret = 0; CYGARC_HAL_SAVE_GP(); switch (__func) { case __COMMCTL_IRQ_ENABLE: irq_state = 1; HAL_INTERRUPT_UNMASK(CYGNUM_HAL_INTERRUPT_SERIAL_RX); break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_INTERRUPT_MASK(CYGNUM_HAL_INTERRUPT_SERIAL_RX); break; case __COMMCTL_DBG_ISR_VECTOR: ret = CYGNUM_HAL_INTERRUPT_SERIAL_RX; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = msec_timeout; msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { int reg, res = 0; volatile struct ebsa_serial* base = (struct ebsa_serial*)__ch_data; char c; CYGARC_HAL_SAVE_GP(); if ( CYGNUM_HAL_INTERRUPT_SERIAL_RX == __vector ) { reg = base->flag_register; // read it anyway just in case - no harm done and we might // prevent an interrup loop c = (char)(base->data_register & 0xFF); cyg_drv_interrupt_acknowledge(CYGNUM_HAL_INTERRUPT_SERIAL_RX); *__ctrlc = 0; if ( (reg & SA110_RX_FIFO_STATUS_MASK) != SA110_RX_FIFO_EMPTY ) { if( cyg_hal_is_break( &c , 1 ) ) *__ctrlc = 1; } res = CYG_ISR_HANDLED; } CYGARC_HAL_RESTORE_GP(); return res; } static void cyg_hal_plf_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Init channels init_channel((void*)UART_BASE_0); // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, UART_BASE_0); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } void cyg_hal_plf_comms_init(void) { static int initialized = 0; if (initialized) return; initialized = 1; cyg_hal_plf_serial_init(); } //============================================================================= // Compatibility with older stubs //============================================================================= #ifndef CYGSEM_HAL_VIRTUAL_VECTOR_DIAG #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS #include <cyg/hal/hal_stub.h> // cyg_hal_gdb_interrupt #endif #ifdef CYGSEM_HAL_ROM_MONITOR #define CYG_HAL_STARTUP_ROM #undef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS #endif #if defined(CYG_HAL_STARTUP_ROM) || !defined(CYGDBG_HAL_DIAG_TO_DEBUG_CHAN) #define HAL_DIAG_USES_HARDWARE #endif /*---------------------------------------------------------------------------*/ // EBSA285 Serial Port (UARTx) for Debug void hal_diag_init(void) { init_channel((void*)UART_BASE_0); } // Actually send character down the wire static void hal_diag_write_char_serial(char c) { cyg_hal_plf_serial_putc((void*)UART_BASE_0, c); } static bool hal_diag_read_serial(char *c) { long timeout = 1000000000; // A long time... while (! cyg_hal_plf_serial_getc_nonblock((void*)UART_BASE_0, c) ) if ( --timeout == 0 ) return false; return true; } /* * Baud rate selection stuff */ #if 0 struct _baud { int baud; unsigned short divisor_high, divisor_low; }; const static struct _baud bauds[] = { #if (FCLK_MHZ == 50) { 300, 0xA, 0x2B}, /* 2603 = 0x0A2B */ { 600, 0x5, 0x15}, /* 1301 = 0x0515 */ { 1200, 0x2, 0x8A}, /* 650 = 0x028A */ { 2400, 0x1, 0x45}, /* 325 = 0x0145 */ { 4800, 0x0, 0xA2}, /* 162 = 0x00A2 */ { 9600, 0x0, 0x50}, /* 80 = 0x0050 */ { 19200, 0x0, 0x28}, /* 40 = 0x0028 */ { 38400, 0x0, 0x13}, /* 19 = 0x0013 */ #elif (FCLK_MHZ == 60) { 300, 0xC, 0x34}, /* 2603 = 0x0A2B */ { 600, 0x6, 0x19}, /* 1301 = 0x0515 */ { 1200, 0x3, 0x0C}, /* 650 = 0x028A */ { 2400, 0x1, 0x86}, /* 325 = 0x0145 */ { 4800, 0x0, 0xC2}, /* 162 = 0x00A2 */ { 9600, 0x0, 0x61}, /* 80 = 0x0050 */ { 19200, 0x0, 0x30}, /* 40 = 0x0028 */ { 38400, 0x0, 0x17}, /* 19 = 0x0013 */ #endif }; #endif #ifdef HAL_DIAG_USES_HARDWARE #ifdef DEBUG_DIAG #ifndef CYG_HAL_STARTUP_ROM #define DIAG_BUFSIZE 2048 static char diag_buffer[DIAG_BUFSIZE]; static int diag_bp = 0; #endif #endif void hal_diag_read_char(char *c) { while (!hal_diag_read_serial(c)) ; } void hal_diag_write_char(char c) { #ifdef DEBUG_DIAG #ifndef CYG_HAL_STARTUP_ROM diag_buffer[diag_bp++] = c; if (diag_bp == sizeof(diag_buffer)) diag_bp = 0; #endif #endif hal_diag_write_char_serial(c); } #else // not HAL_DIAG_USES_HARDWARE - it uses GDB protocol void hal_diag_read_char(char *c) { while (!hal_diag_read_serial(c)) ; } void hal_diag_write_char(char c) { static char line[100]; static int pos = 0; #if 0 // Do not unconditionally poke the XBUS LED location - XBUS may not be // available if external arbiter is in use. This fragment may still be // useful for debugging in the future, so left thus: { // int i; *(cyg_uint32 *)0x40012000 = 7 & (cyg_uint32)c; // LED XBUS location // for ( i = 0x1000000; i > 0; i-- ) ; } #endif // No need to send CRs if( c == '\r' ) return; line[pos++] = c; if( c == '\n' || pos == sizeof(line) ) { CYG_INTERRUPT_STATE old; // Disable interrupts. This prevents GDB trying to interrupt us // while we are in the middle of sending a packet. The serial // receive interrupt will be seen when we re-enable interrupts // later. #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_ENTER_CRITICAL_IO_REGION(old); #else HAL_DISABLE_INTERRUPTS(old); #endif while(1) { static char hex[] = "0123456789ABCDEF"; cyg_uint8 csum = 0; int i; #ifndef CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT char c1; #endif hal_diag_write_char_serial('$'); hal_diag_write_char_serial('O'); csum += 'O'; for( i = 0; i < pos; i++ ) { char ch = line[i]; char h = hex[(ch>>4)&0xF]; char l = hex[ch&0xF]; hal_diag_write_char_serial(h); hal_diag_write_char_serial(l); csum += h; csum += l; } hal_diag_write_char_serial('#'); hal_diag_write_char_serial(hex[(csum>>4)&0xF]); hal_diag_write_char_serial(hex[csum&0xF]); #ifdef CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT break; // regardless #else // not CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT Ie. usually... // Wait for the ACK character '+' from GDB here and handle // receiving a ^C instead. This is the reason for this clause // being a loop. if (!hal_diag_read_serial(&c1)) continue; // No response - try sending packet again if( c1 == '+' ) break; // a good acknowledge #ifdef CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT cyg_drv_interrupt_acknowledge(CYGNUM_HAL_INTERRUPT_SERIAL_RX); if( c1 == 3 ) { // Ctrl-C: breakpoint. cyg_hal_gdb_interrupt( (target_register_t)__builtin_return_address(0) ); break; } #endif // CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT #endif // ! CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT // otherwise, loop round again } pos = 0; // And re-enable interrupts #ifdef CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS CYG_HAL_GDB_LEAVE_CRITICAL_IO_REGION(old); #else HAL_RESTORE_INTERRUPTS(old); #endif } } #endif #endif // !CYGSEM_HAL_VIRTUAL_VECTOR_DIAG /*---------------------------------------------------------------------------*/ /* End of hal_diag.c */