URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [rtos/] [ecos-3.0/] [packages/] [hal/] [arm/] [snds/] [current/] [src/] [hal_diag.c] - Rev 786
Compare with Previous | Blame | View Log
/*============================================================================= // // hal_diag.c // // HAL diagnostic output code // //============================================================================= // ####ECOSGPLCOPYRIGHTBEGIN#### // ------------------------------------------- // This file is part of eCos, the Embedded Configurable Operating System. // Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. // // eCos is free software; you can redistribute it and/or modify it under // the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 or (at your option) any later // version. // // eCos is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License // along with eCos; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // As a special exception, if other files instantiate templates or use // macros or inline functions from this file, or you compile this file // and link it with other works to produce a work based on this file, // this file does not by itself cause the resulting work to be covered by // the GNU General Public License. However the source code for this file // must still be made available in accordance with section (3) of the GNU // General Public License v2. // // This exception does not invalidate any other reasons why a work based // on this file might be covered by the GNU General Public License. // ------------------------------------------- // ####ECOSGPLCOPYRIGHTEND#### //============================================================================= //#####DESCRIPTIONBEGIN#### // // Author(s): jskov // Contributors:jskov // Date: 2001-03-16 // Purpose: HAL diagnostic output // Description: Implementations of HAL diagnostic output support. // //####DESCRIPTIONEND#### // //===========================================================================*/ #include <pkgconf/hal.h> #include CYGBLD_HAL_PLATFORM_H #include <cyg/infra/cyg_type.h> // base types #include <cyg/hal/hal_arch.h> // SAVE/RESTORE GP macros #include <cyg/hal/hal_io.h> // IO macros #include <cyg/hal/hal_if.h> // interface API #include <cyg/hal/hal_intr.h> // HAL_ENABLE/MASK/UNMASK_INTERRUPTS #include <cyg/hal/hal_misc.h> // Helper functions #include <cyg/hal/drv_api.h> // CYG_ISR_HANDLED #include <cyg/hal/plf_io.h> // SIO registers #define SIO_BRDDIV (((CYGNUM_HAL_CPUCLOCK/2/16/CYGNUM_HAL_VIRTUAL_VECTOR_CHANNELS_DEFAULT_BAUD)<<4)) //----------------------------------------------------------------------------- typedef struct { cyg_uint8* base; cyg_int32 msec_timeout; int isr_vector_rx; int isr_vector_tx; } channel_data_t; //----------------------------------------------------------------------------- char hextab[] = "0123456789ABCDEF"; void putc_ser(int c) { cyg_uint8* base = (cyg_uint8*)KS32C_UART1_BASE; cyg_uint32 status; do { HAL_READ_UINT32(base+KS32C_UART_STAT, status); } while ((status & KS32C_UART_STAT_TXE) == 0); HAL_WRITE_UINT32(base+KS32C_UART_TXBUF, c); } void putint(int a) { int i; putc_ser('0'); putc_ser('x'); for (i = 0; i < 8; i++) { putc_ser(hextab[(a>>(28-(4*i))) & 0x0f]); } putc_ser('\r'); putc_ser('\n'); } void init_ser(void) { cyg_uint8* base = (cyg_uint8*)KS32C_UART1_BASE; // 8-1-no parity. HAL_WRITE_UINT32(base+KS32C_UART_LCON, KS32C_UART_LCON_8_DBITS|KS32C_UART_LCON_1_SBITS|KS32C_UART_LCON_NO_PARITY); // Mask interrupts. HAL_INTERRUPT_MASK(CYGNUM_HAL_INTERRUPT_UART0_RX); HAL_INTERRUPT_MASK(CYGNUM_HAL_INTERRUPT_UART0_TX); HAL_WRITE_UINT32(base+KS32C_UART_BRDIV, SIO_BRDDIV); } //----------------------------------------------------------------------------- static void cyg_hal_plf_serial_init_channel(void* __ch_data) { cyg_uint8* base = ((channel_data_t*)__ch_data)->base; // 8-1-no parity. HAL_WRITE_UINT32(base+KS32C_UART_LCON, KS32C_UART_LCON_8_DBITS|KS32C_UART_LCON_1_SBITS|KS32C_UART_LCON_NO_PARITY); HAL_WRITE_UINT32(base+KS32C_UART_BRDIV, SIO_BRDDIV); // Mask interrupts HAL_INTERRUPT_MASK(((channel_data_t*)__ch_data)->isr_vector_rx); HAL_INTERRUPT_MASK(((channel_data_t*)__ch_data)->isr_vector_tx); // Enable RX and TX HAL_WRITE_UINT32(base+KS32C_UART_CON, KS32C_UART_CON_RXM_INT|KS32C_UART_CON_TXM_INT); } void cyg_hal_plf_serial_putc(void *__ch_data, char c) { cyg_uint8* base = ((channel_data_t*)__ch_data)->base; cyg_uint32 status, ch; CYGARC_HAL_SAVE_GP(); do { HAL_READ_UINT32(base+KS32C_UART_STAT, status); } while ((status & KS32C_UART_STAT_TXE) == 0); ch = (cyg_uint32)c; HAL_WRITE_UINT32(base+KS32C_UART_TXBUF, ch); CYGARC_HAL_RESTORE_GP(); } static cyg_bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch) { channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint8* base = chan->base; cyg_uint32 stat; cyg_uint32 c; HAL_READ_UINT32(base+KS32C_UART_STAT, stat); if ((stat & KS32C_UART_STAT_RDR) == 0) return false; HAL_READ_UINT32(base+KS32C_UART_RXBUF, c); *ch = (cyg_uint8)(c & 0xff); HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector_rx); return true; } cyg_uint8 cyg_hal_plf_serial_getc(void* __ch_data) { cyg_uint8 ch; CYGARC_HAL_SAVE_GP(); while(!cyg_hal_plf_serial_getc_nonblock(__ch_data, &ch)); CYGARC_HAL_RESTORE_GP(); return ch; } static void cyg_hal_plf_serial_write(void* __ch_data, const cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) cyg_hal_plf_serial_putc(__ch_data, *__buf++); CYGARC_HAL_RESTORE_GP(); } static void cyg_hal_plf_serial_read(void* __ch_data, cyg_uint8* __buf, cyg_uint32 __len) { CYGARC_HAL_SAVE_GP(); while(__len-- > 0) *__buf++ = cyg_hal_plf_serial_getc(__ch_data); CYGARC_HAL_RESTORE_GP(); } cyg_bool cyg_hal_plf_serial_getc_timeout(void* __ch_data, cyg_uint8* ch) { int delay_count; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_bool res; CYGARC_HAL_SAVE_GP(); delay_count = chan->msec_timeout * 10; // delay in .1 ms steps for(;;) { res = cyg_hal_plf_serial_getc_nonblock(__ch_data, ch); if (res || 0 == delay_count--) break; CYGACC_CALL_IF_DELAY_US(100); } CYGARC_HAL_RESTORE_GP(); return res; } static int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...) { static int irq_state = 0; channel_data_t* chan = (channel_data_t*)__ch_data; int ret = 0; CYGARC_HAL_SAVE_GP(); switch (__func) { case __COMMCTL_IRQ_ENABLE: irq_state = 1; HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector_rx); HAL_INTERRUPT_UNMASK(chan->isr_vector_rx); break; case __COMMCTL_IRQ_DISABLE: ret = irq_state; irq_state = 0; HAL_INTERRUPT_MASK(chan->isr_vector_rx); break; case __COMMCTL_DBG_ISR_VECTOR: ret = chan->isr_vector_rx; break; case __COMMCTL_SET_TIMEOUT: { va_list ap; va_start(ap, __func); ret = chan->msec_timeout; chan->msec_timeout = va_arg(ap, cyg_uint32); va_end(ap); } default: break; } CYGARC_HAL_RESTORE_GP(); return ret; } static int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector, CYG_ADDRWORD __data) { int res = 0; channel_data_t* chan = (channel_data_t*)__ch_data; cyg_uint32 c; cyg_uint8 ch; cyg_uint32 stat; CYGARC_HAL_SAVE_GP(); *__ctrlc = 0; HAL_READ_UINT32(chan->base+KS32C_UART_STAT, stat); if ( (stat & KS32C_UART_STAT_RDR) != 0 ) { HAL_READ_UINT32(chan->base+KS32C_UART_RXBUF, c); ch = (cyg_uint8)(c & 0xff); if( cyg_hal_is_break( &ch , 1 ) ) *__ctrlc = 1; res = CYG_ISR_HANDLED; } HAL_INTERRUPT_ACKNOWLEDGE(chan->isr_vector_rx); CYGARC_HAL_RESTORE_GP(); return res; } static channel_data_t ks32c_ser_channels[2] = { { (cyg_uint8*)KS32C_UART0_BASE, 1000, CYGNUM_HAL_INTERRUPT_UART0_RX, CYGNUM_HAL_INTERRUPT_UART0_TX }, { (cyg_uint8*)KS32C_UART1_BASE, 1000, CYGNUM_HAL_INTERRUPT_UART1_RX, CYGNUM_HAL_INTERRUPT_UART1_TX } }; static void cyg_hal_plf_serial_init(void) { hal_virtual_comm_table_t* comm; int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT); // Init channels cyg_hal_plf_serial_init_channel(&ks32c_ser_channels[0]); cyg_hal_plf_serial_init_channel(&ks32c_ser_channels[1]); // Setup procs in the vector table // Set channel 0 CYGACC_CALL_IF_SET_CONSOLE_COMM(0); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &ks32c_ser_channels[0]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Set channel 1 CYGACC_CALL_IF_SET_CONSOLE_COMM(1); comm = CYGACC_CALL_IF_CONSOLE_PROCS(); CYGACC_COMM_IF_CH_DATA_SET(*comm, &ks32c_ser_channels[1]); CYGACC_COMM_IF_WRITE_SET(*comm, cyg_hal_plf_serial_write); CYGACC_COMM_IF_READ_SET(*comm, cyg_hal_plf_serial_read); CYGACC_COMM_IF_PUTC_SET(*comm, cyg_hal_plf_serial_putc); CYGACC_COMM_IF_GETC_SET(*comm, cyg_hal_plf_serial_getc); CYGACC_COMM_IF_CONTROL_SET(*comm, cyg_hal_plf_serial_control); CYGACC_COMM_IF_DBG_ISR_SET(*comm, cyg_hal_plf_serial_isr); CYGACC_COMM_IF_GETC_TIMEOUT_SET(*comm, cyg_hal_plf_serial_getc_timeout); // Restore original console CYGACC_CALL_IF_SET_CONSOLE_COMM(cur); } void cyg_hal_plf_comms_init(void) { static int initialized = 0; if (initialized) return; initialized = 1; cyg_hal_plf_serial_init(); } //----------------------------------------------------------------------------- // LED void hal_diag_led(int mask) { #if 0 cyg_uint32 l; HAL_READ_UINT32(KS32C_IOPDATA, l); l &= ~0x000000f0; l |= (mask & 0xf) << 4; HAL_WRITE_UINT32(KS32C_IOPDATA, l); #endif } //----------------------------------------------------------------------------- // End of hal_diag.c